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Preface

This web-based series of lectures on Numbers and Their Application to Math and
Science is the outgrowth of my work since 1993 teaching high school math to a select
group of students with very diverse backgrounds. These students attend the Berrien
County Math and Science Center at Andrews University. It is assumed, somewhat
erroneously, that all students have successfully completed Algebra in eighth grade.
All will be taking Geometry or higher in ninth and are expected to complete AP
Calculus AB by grade 12.

Although these students represent about 1% of the area’s high school population,
they are well distributed from the top 10% of the rural/small town population across
Berrien and Cass Counties. This series of lectures serves to review basic number
concepts, apply these concepts to the mathematics and science they will be studying
for four years, and also lay a framework for [SEF/EXPOItype projects in mathematics,
especially during their freshman year. Fundamental concepts essential to doing well
on contests, like 0 being even, 1 not being prime, what complex numbers and bases are,
are reviewed /taught. Additional purposes include: forcing students to study—many
breezed through grade school without cracking a book; separate out the accelerated
students (Algebra II, Precalculus); provide a reference booklet for years to come. As
such, some material is here for exposure only and not mastry.

Historically, I was their only math teacher for four years of high school math. This
had both benefits and pitfalls. One of the major benefits was the ability to tailor our
curriculum’s timing and content to the science and technology components of our
program. Another was the opportunity to introduce such fundamental concepts of
slope, area, bases, proof, etc. in such a way as to ease the transition to Calculus.
This is still being done by 1) a careful selection and use of a variety of textbooks; 2)
different modes of homework usage; 3) selected examples which span a wide variety
of subfields of mathematics.

The consolidation of the Berrien County Math and Science Center at Andrews
University started in 1992-93, continued in 1997-98, and resulted in a target of 50
students at one site, instead of 5675 per grade level. Expansion to two sections
at each grade level was completed in 2000-01, resulting in multiple mathematics
teachers. The schedule dictated grade level sections to occur concurrently. Assuring
uniform delivery and coverage was also a motivating factor in standarizing this ma-

x1
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xii NUMBERS LESSON 0. PREFACE

terial. However, in 2001-02, we started a return to one section of 30 students per
grade level. This resulted in higher SAT scores (freshmen average over 1050) and
thus emphasized the need to keep these students challenged.

Numbers are fundamental to the study of mathematics and science. Their discov-
ery (some insist invention) transformed man into rational beings. Concepts such as
ratio, continuity, n'" roots, significant figures, etc. introduced early in our Introduc-
tion to Statistics unit stretch the ability of many of our students. This unit is thus
designed to complement the instruction given our lowest quartile students in Summer
Algebra and somewhat decouple the distraction of these number concepts from the
study of Statistics. In addition, students accelerating faster than our normal (and al-
ready accelerated) program or those joining late (as Freshmen, Sophomores, and even
Juniors or Seniors) need this information which is not well summarized elsewhere.

In 2001-02 we stream-lined the homework by removing some arithmetic and al-
gebra concepts covered in Summer Algebra so it better fits within our 50+ minute
(55 Tue./Thu.; 45 Fri.) daily class period. In 2006-07 we abandoned the web-page
approach and typeset it in book form. We continue to clarify essential concepts and
generally improve the delivery.

Happy Face Math
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// Happy Face Math by Charlie Smith

I sincerely hope to convey my lifelong passion for numbers as well. I firmly believe
mathematics is a “interactive” or participation sport. Although I don’t expect to
institute cyphering matches (like spelling bee’s only doing calculations), lots of other
similar activities are planned to involve the students. A Chinese proverb states: “I
hear and forget, I see and remember, I do and understand.” Understanding is essential
for a firm foundation. References such as Googleﬁ and Dr. Mathﬁ are also essential.

Sincerely, Ke or Keith the Complex number

'http://wwwé.stat.ncsu.edu/ bmasmith/images/all.gif
Zhttp://www.google.com/.
3http://www.mathforum.com/dr .math.
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Numbers Lesson 0

0.1 Homework Graded on Day 2

1. Fill in the following table (3 x 3) with the digits 1-9 (each used and only once)
in such a way that each row and column totals 15. You will receive bonus points
for also having the diagonals so sum.

2. Below is a Sudoku but two by two using the digits 1-4 instead of the more
popular three by three version using the digits 1-9. The same rules apply. No
number may appear more than once in any given row, column, or two by two
smaller box. For one point each digit, complete the Sudoku below.

2

3. Classify the books in your home six different ways (example hard cover, west-
ern, text, etc.) and count or estimate how many (what percent) are in each
classification. Do they (the percentage) add up to how many books (100%)? If
not, why not.



4.

10.

11.

12.

13.

14.

NUMBERS LESSON 0. DAY 1 HOMEWORK

A square number, or perfect square, is any number which can be expressed as
the product of a number multiplied with itself. For example, 9 = 3 x 3, 9 trees
can be put into a square figure:

Using the set of digits 1, 6, 9, form as many square numbers as possible. The
digits may be reused, such as 11 and 966 (which are not squares), to form larger
square numbers. (Bonus for more than five such numbers.)

Outline for Geometry, Wednesday, Sep. 9, 2009

. 8:00: M-F: Geometry in SH100.

. Teacher: Keith Calkins, known as Dr. Ke®.

. Pictures: not for publication. Wear name tag ABOVE heart, right-side-up.

. Introductions: learn everyone’s name soon. Learn to speak loudly AND softly.

. Telephone: share number on list to be redistributed but not published.

Notecard: fill out personal information; return TODAY.

. Textbook: leave at home for reference until mid-October.

Numbers: textbook handed out piecemeal. Do Homework 0 and read Lec-
ture 1 for tomorrow. Keep all and neat for binding.

Notebook: organize notebook with orange notebook check sheet at front. Pre-
ferred format is 1" 3-ring binder.

Course Outlines: card stock yellow for notebook. Cherry, regular size for home.

Syllabus: Get parent to sign ASAP. Math Help Sessions 7-9 pm Tuesdays after
first week. Computer Help Sessions 7-9 pm Tuesdays and Wednesdays after
first week. Computer helpers are Center graduates or seniors.

Calculator: Get TI-nSpire or TI-84+ soon. Bring in proof of purchase seal.
Handbooks: Distributed in Computers. Parents sign form.

Forms: Turn in forms (medical, handbook, field trip, audio/video), if not done
already. Horseplay is not condoned.
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Numbers Lesson 1

All About Sets

In a small town where all the men are clean-shaven, the barber shaves
everyone who does not shave himself. Who shaves the barber?

Barber’s Paradox

In this lesson we will explore the foundations of mathematics, specifically, sets,
subsets, and their elements. It is difficult to explain number without this fundamental
concept. First, however, we will have the first in our series of biographies of famous
mathematicians.

One of the goals of these lectures is to provide familiarity with the great math-
ematicians. Below we will make reference to Whitehead, Russell, Godel, Euclid,
Pythagoras, Venn, and Euler. In this first lesson we will start with one of the three
greatest mathematicians of all time: Archimedes (¢ 287-212 B.C.). (c. is an abbre-
viation for the Latin word circa, meaning around.) Newton (1642-1727) and Gauss
(1777-1855) will await subsequent lessons. Note that if there were a fourth greatest
mathematician, it would be Euler. Learning common Latin (and Greek) terms is
another goal.

1.1 One of the Greatest Mathematicians: Archimedes

Archimedes was born, lived, and died in Syracuse, Sicily but studied at Alexandria
(Egypt)—at that time the center of learning. He is known as a mathematician,
scientist, and inventor, but his greatest contributions were in geometry, such as the
relationship between the surface area and volume of a sphere and its circumscribing
cylinder. He found lower and upper limits for by inscribing and circumscribing a
circle with a regular 96-gon. He invented engines of war (mirrors, catapults, etc.) and
the water screw. The principle of bouyancy named after him helped him determine
whether or not a crown was pure gold—he streaked from the public bath shouting
“FEureka, Eureka,” or literally I found it, I found it. He is quoted as saying: “Give



4 NUMBERS LESSON 1. ALL ABOUT SETS

me a place to stand and I will move the earth”—meaning levers can do great feats.
His methods of calculating areas in several cases were equivalent to calculus invented
much later. Some of his works were lost and not all the stories and books attributed
to him are necessarily his. The author has done extensive research on his cattle
problemﬂ Archimedes was drawing geometric figures in the sand when a Roman
soldier, approached. Archimedes’ last words were: “Do not disturb my circles," when
against specific orders, the soldier fatally struck him.

1.2 Sets, Elements, and Subsets

One dictionary has, among the many definitions for set, the following:

Set: a number of things naturally connected by location, formation, or order in

time.

Although set holds the record as the word with the most dictionary definitions,
there are terms mathematicians choose to leave undefined, or actually, defined by
usage. Set, element, member, and subset are four such terms which will be discussed
in today’s lesson. Today’s activity will also explore the concept of a set.

| Each item in or inside a set is termed an element. |

The brace symbols “{” and “}” are used to enclose the elements in a set.

Each element is a member of the set (or belongs to the set).

The symbol for membership is “€”. It can be read “is an element of” and looks
quite similar to the Greek letter epsilon (€). Thus € € {a, 3,7, 0, €}.

‘A subset is a portion of a set. ‘

The symbol for subset is “C”. Some books allow and use it reversed (D)—we will
not.

‘A superset is a set that includes other sets. ‘

For example: If A C B, then A is a subset of B and B is a superset of A.

A subset might have no members, in which case it is termed the null set or empty
set.

The empty set is denoted either by {} or by 0, a Norwegian letter. The null set
is a subset of every set.

Note: a common mistake is to use {0} to denote the null set. This is actually a
set with one element and that element is the null set. Since some people slash their

Lhttp://www.andrews.edu/~calkins/profess/cattle.htm.
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1.2. SETS, ELEMENTS, AND SUBSETS 5

zeroes, it is safest when handwriting to always use the notation {} to denote the
empty or null set.

A singleton is a set with only one element.

A subset might contain every member of the original set.
In this case it is termed an improper subset.

A proper subset does not contain every member of the original set.

Sets may be finite, {1,2,3,...,10}, or infinite, {1,2,3,...}. The cardinality of
a set A, n(A), is how many elements are in the set. The symbol “...” called ellipses
means to continue in the indicated pattern. There are 2" subsets of any set, where n
is the set’s cardinality.

Example: How many subsets does a set with three elements have?

Solution: 23 = 8. Let the set be {A, B, C'}. Then the subsets are: {}, {A}, {B},
{C}, {A, B}, {A,C}, {B,C}, and {A, B,C}. We will discuss the pattern made by
the number of subsets of each cardinality in a later lesson

‘The power set of a set is the complete set of subsets of the set. ‘

For any set its power set is at least as big, if not bigger than the original set. That
is, 2" > n for all n > 0. We will have reason to explore this later when we discuss
levels of infinity.

Example: for the set {A, B, C'}, the power set would be:

{1 {4} {B}{C}.{A. BL{A.C}{B.C} {4, B.C}}.

In this class we will consider only safe sets, that is, any set we consider should
be well-defined. There should be no ambiguity as to whether or not an element
belongs to a set. That is why we will avoid things like the village barber who shaves
everyone in the village that does not shave himself. This results in a contradiction as
to whether or not he shaves himself. See also Titus 1:12 in the Bible: “A Cretan said:
all Cretans are liars.” Also consider Russell’s Paradox: Form the set of sets that are
not members of themselves. It is both true and false that this set must contain itself.
These are examples of ill-defined sets.

Sometimes, instead of listing elements in a set, we use set builder notation:
{z | = is a letter in the word “mathematics”}. The symbol “|” can be read as “such
that.” Sometimes the symbol “C” is reserved to mean proper subset and the symbol
“C” is used to allow the inclusion of the improper subset. Compare this with the use
of < and < in Section to exclude or include an endpoint. We will make no such
distinction. A set may contain the same elements as another set. Such sets are equal
or identical sets—element order is unimportant. A = B where A = {m, 0,7, e} and
B = {r,o,m,e}, in general A = Bif A C B and B C A. Sets may be termed

2Hint: use Pascal’s Triangle.
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6 NUMBERS LESSON 1. ALL ABOUT SETS

equivalent if they have the same cardinality. If they are equivalent, a one-to-one
correspondence can be established between their elements.

The universal set is chosen arbitrarily, but must be large enough to include all
elements of all sets under discussion.

Complementary set, A’ or A, is a set that contains all the elements of the universal
1 Wi

set that are not included in A. The symbo can be read “prime.”

For example: if U = {0,1,2,3,...} and A ={0,2,4,...}, then A" ={1,3,5,...}.

Such paradoxes as those mentioned above, particularily involving linfinities (dis-
cussed in the next lesson), were well known by the ancient Greeks. During the 19"
century, mathematicians were able to tame such paradoxes and about the turn of the
20" century Whitehead and Russell started an overly ambitious project to carefully
codify mathematics. Set theory was developed about this time and serves to unify the
many branches of mathematics. Although in 1931 Kurt Go6del showed this approach
to be fatally flawed, it is still a good way to explore areas of mathematics such as:
arithmetic, number theory, [abstract| algebra, geometry, probability, etc.

Geometry has a long history of such systematic study. The ancient Greek Euclid
similarily codified the mathematics of his time into 13 books called The Elements.
Although these books were not limited to Geometry, that is what they are best
known for. In fact, up until about my grandfather’s day, The Elements was the
textbook of choice for the study of Geometry! The Elements carefully separated the
assumptions and definitions from what was to be proved. The concept of proof dates
back another couple hundred years to the ancient Greek Pythagoras and his school,
the Pythagorean School.

1.3 Intersection and Union

Once we have created the concept of a set, we can manipulate sets in useful
ways termed set operations. Consider the following sets: animals, birds, and white
things. Some animals are white: polar bears, mountain goats, big horn sheep, for
example. Some birds are white: dove, stork, sea gulls. Some white things are not
birds or animal (but birds are animals!): snow, milk, wedding gowns (usually).

‘The intersection of sets are those elements which belong to all intersected sets. ‘

Although we usually intersect only two sets, the definition above is general. The
symbol for intersection is “N”.

‘The union of sets are those elements which belong to any set in the union. ‘

Again, although we usually form the union of only two sets, the definition above
is general. The symbol for union is “U”.

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4
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1.4. PICTURES OF SETS (EULER/VENN DIAGRAMS) 7

For the example given above, we can see that:
{white things} N {birds} — {white birds}
{white animals}U {birds} — {white animals and all birds}
{white birds} C {white animals} C {animals}

Another name for intersection is conjuction. This comes from the fact that an
element must be a member of set A and set B to be a member of AN B. Another
name for union is disjunction. This comes from the fact that an element must be
a member of set A or set B to be a member of AU B. Conjunction and disjunction
are grammar terms and date back to when Latin was widely used.

I should note the very mathematical use of the word or in the sentence above.
Common usage now of the word or means one or the other, but not both (excludes
both). Mathematicians and computer scientists on the other hand mean one or the
other, possibly both (including both). This ambiguity can cause all kinds of problems!
Mathematicians term the former exclusive or (EOR or XOR) and the latter inclusive
or. We will see ands & ors again in Numbers Lesson [7] on truth tables.

1.4 Pictures of Sets (Euler/Venn Diagrams)

John Venn (1834-1923) extended the use of diagrams first developed by Leonhard
Euler (1707-1783), the great Swiss mathematician, to give pictures of sets. Venn
diagrams are often used to visualize set operations.

A superset does not have to be the universal set. The above example has white
things as a superset of white birds, while the set containing both animate and inani-
mate objects is another possible universal set. A rectangle should be used to enclose
the universal set, and other sets under discussion are enclosed inside. Relationships
are indicated by overlapping regions.

Here, the English alphabet is our universal set. Vowels and consonants are nondis-
joint subsets thereof. Disjoint would mean their intersection was empty.

Numbers and Their App.—pdf 4 October 4, 2009 ©MMIX Ke G. Calkins



8 NUMBERS LESSON 1. ALL ABOUT SETS

1.5 List of Greek/Latin Terms

Several different Greek and Latin terms and other abbreviations are purposefully
used in this series of lectures. Most are listed here for reference.

e See Sec. aka, also known as

e See Sec. [II ¢, circa, around

e See Sec. cf, confer, compare

e See Sec. Cogito ergo sum, | think, therefore [ am.

e cg, exempli gratia, for example

e See Sec. .3t etc., [ef_ceferal and so forth

e See Sec. [T} i.e., id est, that is (to say)

. placed side-by-side

e See Sec. [0 Ib, libra, pounds (weight), scales

e See Sec. and mantissa, mantissa, makeweight
e See Sec. .10 mod, modulo, a small measure

e See Sec. Modus Ponens, Law of Detachment.

e See Sec. Modus Tollens, Law of indirect reasoning.
e nb, nota bene, note well

e See Sec. [MI.4 Q.E.D., quod erat demonstrandum, that which was to be
shown/demonstrated

e See Sec. vice versa, order opposite
e See Sec. [[5.1} viz, videlicet, namely
e See Sec. [[0.2 vs, versus, against or facing

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4



1.6. SET HOMEWORK 9

1.6 Set Homework

This homework was originally designed to motivate some lecture topics and set
up some information for later reference (problems 1-7). Also, it can take a week or
more for such matters as buying or borrowing a graphing calculator to be resolved.
Each problem is worth two homework points unless otherwise noted.

1. (4 points) Count to ten by ones.
(a) Write these numbers down in order both with names (words) and in sym-
bols (digits).
(b) What number did you start with? Why?
(c) What number comes next after ten?

(d) How many numbers come before ten?

2. (3 points) Suppose you have two rectangular egg cartons each filled with a
dozen eggs. However, the egg cartons are not the same shape-i.e. one is long
and skinny, the other is short and fat. (i.e. is an abbreviation for the Latin term
id est meaning that is (to say).)

(a) What are the two most likely configurations of eggs in these cartons?

(b) What is another possible, but unlikely configuration?

c at are two ways to show that each carton has the same number o
What t to show that each carton has th ber of
eggs?

3. Repeat problem 1, part (a), but instead of assuming Arabic numbers, write
your results using Roman numerals (no words needed).

4. Begin with the number two (in Arabic numerals).

e Double the current number either by multiplying by two or adding itself.

e Repeat this process a total of ten times. Be sure to show your work.

5. Suppose a new toy costs a hundred clams, but you only have eighty-nine clams.
After you buy the toy, how many clams do you have (i.e. you may have bor-
rowed)? Show your work.
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10

10.

11.

12.

13.

14.

NUMBERS LESSON 1. ALL ABOUT SETS

By long division and showing your work, determine how many times six goes
into one million. If it did not go evenly, what is the remainder?

Preferably using the process of long division and showing your work, determine
how many times seven goes into one million. If it did not go evenly, what is the
remainder?

Name a counting song. (Consider bringing it, if really special.)

For problems 9-11: Given A = {m,a,t,h} and B = {e,a, s,y}.

Find AU B.

Find AN B.

Find A’ (also known as (aka): A).

(3 points) Are these statements true or false. Venn diagrams may be helpful.

(a) (AUB)=AUB?
(b)y (AUB)UC =AU (BUC)?
(c) AN(BUC)=(ANB)U(ANC)?

(Future test points) In your Geometry textbook, read section 2.5 and look
carefully at problems 5-10, 15, and 16. Note the application of unions and
intersections to geometric figures.

(0 points) Learn the game of Set® and prepare for a double elimination Set®
tournament!
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Numbers Lesson 2

God Invented The Integers

God invented the integers. All the rest is the work of man.  Kronecker

There is a philosophic question as to whether man discovered or invented num-
bers. This lesson title and quote are part of that debate. Although we discuss the
natural numbers in this lesson, we defer into the next lesson the development of them
using the Peano axioms and mathematical induction. Of course, there is an impor-
tant choice as to where to start: zero or one. Where to stop is another important
question! Alternate methods of developing sequences are noted which lead to Trian-
gular Numbers, Fibonacci Numbers, the Integer, and Factorials. Integer division (an
integer divided by an integer yielding an integer quotient and an integer remainder)
is discussed. First we discuss a second great mathematician.

2.1 One of the Greatest Mathematicians: Gauss

Johann Carl Friedrich Gauss was German, born the only son of poor parents.
However, his early genius was recognized as discussed later in this lesson at a young
age. In his doctoral thesis at age 22, he developed the concept of complex numbers
and the Fundamental Theorem of Algebra. He applied mathematics to gravitation,
electricity, and magnetism, thus his name is closely tied into modern physics. Some of
his important quotes are “Mathematics, the queen of the sciences, and arithmetic, the
queen of mathematics” and “Pauca, sed matura (few, but ripe).” Gauss is perhaps
most famous for what I like to rather redundantly call the bell-shaped, gaussian,
normal curve which we will He is also known for his method of least
squares to obtain the best regression line which we will study much later.

11



12 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS

2.2 The Development of Mathematics via Axioms,
Definitions, and Proof

‘ An axiom is a statement assumed to be true. ‘

‘ Postulate is another word for axiom. ‘

Axioms and logical reasoning together enable mathematicians to prove things. In
this section we will present and discuss certain axioms from which all the properties of
the natural numbers may be proved. Later lessons will develop the concept of logical
reasoning and proof. First, we will present groups of axioms to help us understand
the different number systems we will encounter.

Undefined words in today’s lesson include the following: equal, successor, and
number. The terms addition, multiplication, subtraction, and division will also not
be rigorously defined, but must satisfy the group and field axioms presented in Lesson
and lesson [[4l You were taught rudimentary algorithms in grade school which we
will review very briefly.

2.3 Natural or Counting Numbers and Whole Num-
bers

‘The natural or counting numbers are the familiar set: 1,2,3,4,5,... ‘

The ellipses symbol . .. (often read as dot dot dot) is often abbreviated etc., which
is an abbreviation for the Latin term et cetera meaning and so forth.

There is actually no uniform agreement as to whether or not zero (0) is a natural
number. Popular usage indicates that it is not, whereas books on number theory
will often define it to be one! Computer scientists and some popular programming
languages such as C and C™7 also often treat it as a counting number. The difference
can be summarized by where we point or index (cf your index finger). cf is an
abbreviation for the Latin confer meaning compare.

‘ Most books define whole numbers as the union of the counting numbers with zero.

2.4 Zero and One Indexing

Zero Indexing acknowledges zero as the number we start counting with.

One Indexing acknowledges one as the number we start counting with.

In this class we will be flexible, but try to specify when zero indexing is to be
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2.5. THE COUNTABLE INFINITY, N, 13

used.

‘ The symbol N or NV is used to denote the set of natural numbers.

2.5 The Countable Infinity, N,

The set of natural numbers is an infinite set. There is always a next larger number.
The perhaps misguided concept of “biggest number” is usually conveyed by the term
infinity and symbol co. Actually, this symbol is most commonly used in the context of
the real numbers. For integers, the symbol Ny is commonly used. N is the first letter
of the Hebrew alphabet and is called aleph, much like a or alpha. The subscript
is usually termed null instead of zero, hence aleph-null. The concepts of infinity,
infintesimal, and continuity were the root cause of several ancient Greek paradoxes
which we will explore further in Lesson [[4

2.6 Addition and Triangular Numbers

When we add two numbers together, they are termed addends. The result is

termed the sum.

An interesting subset of the natural numbers generated by addition are called
Triangular Numbers. These are so called because these are the total number of dots,
if we arrange the dots in a triangle with one additional dot in each layer.

The triangular numbers thus are: 0,1, 3,6, 10, 15,21,... (Not everyone considers
0 to be triangular.)

The following example has a rich history dating back to the early childhood of
Gauss. To keep his class busy for a long time, the teacher told them to add the
counting numbers up to one hundred. Gauss finished very quickly thus revealing his
early genius. This is what he did:

Tioo = (1+100)+ (2+99)+ (3+98)+...+ (50 +51) (2.1)
= 101 x 50 (2.2)
= 101 x ? (2.3)
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14 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS

Note how the equal signs are aligned vertically, a form we will strongly encourage
to reduce mistakes.
n(n+1)
2
capital Greek letter ) (sigma) to represent summation. One of your teachers has

n
This can be generalized to: 1), = Zz = , where mathematicians use the
1

a particular fondness for this symbol since the first computer he had much access to
had that nickname.

2.7 Fibonacci Numbers

Another way to add numbers together generates the Fibonacci Numbers. A biog-
raphy for this early Italian mathematician will come in a [ater Tessond! Historically,
this sequence was associated with the number of progeny a pair of rabbits produced
given a month to mature and a monthly reproductive cycle. However, it appears in
such diverse places as sunflower spirals and 3" by 5" cards.

Fibonacci Numbers, represented here by L;, can be defined as follows.
Let Lo =0 and L, = 1. For all other L;, let L,y = L,,_1 + L,.

This definition is recursiveH i.e. each term is defined in terms of the previous
two. The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, ... (Not everyone
considers 0 to be a Fibonacci number.)

2.8 Factorials

‘We multiply a multiplicand by a multiplier, and call the result a product.

Factorials can be defined recursively as n! =n x (n — 1)! where 1! = 1.

By definition, 0!—1. (Don’t ask, it just works best!)

For example, 5! =5 x4 x3x2x1=5Xx4x3x2=5x4x6=>5x24=120.

In general, n! = Hz The symbol II is the capital Greek letter pi () and
i=1
represents product. The expression is termed a pi product.

!See http://www.engineering.sdstate.edu/~fib for more information.

2We used the symbol L in honor of Fibonacci’s first name Leonardo, for the general Lyman
sequences of which the Fibonacci sequence is most famous, and to avoid confusion with Fermat
numbers.
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2.9. SUBTRACTION AND THE REST OF THE INTEGERS 15

2.9 Subtraction and the Rest of the Integers

Early in life, most of us encounter negative numbers, for example, when something
costs more than what we have. Perhaps, we are able to get an advance on our
allowance and thus encounter debt.

When you subtract a subtrahend from a minuend, the result is termed the
difference.

The integers are the counting numbers together with their opposites and zero. ‘

Opposite in this case refers to the concept of additive inverse (a field axiom). It
would seem that we have doubled the size of the number system, but in actuality it
is still a countably infinite set.

The symbol Z or Z is used to denote the set of integers.

It comes from the German word zahlen, meaning to count.

2.10 Integer Division or Division with Remainder,
Modulo, Congruence

‘ Even: An integer is even if it is an integer multiple of 2. ‘

‘ Odd: An integer is odd if it is not an integer multiple of 2. ‘

Hence, the even numbers are 0, £2, +4, . .. and the odd numbers are £1, +3, 5, . ..
Zero is even.

Although division will be presented again later, a special form will be introduced
here. Often the remainder obtained in a division is more important than the quotient.

When a dividend is divided by a divisor, the results are termed the quotient
and remainder, where quotient is the number of times the divisor went into the
dividend and the remainder is how many were left over.

Quotient R Remainder
Divisor |Dividend )

The concept of even and odd introduced above can be expressed as whether the

When doing long division, it looks like this:

remainder was 0 or 1 when divided by 2. This can be expressed as 0 mod 2 or 1 mod 2
where mod is an abbreviation for the Latin term modulo meaning a small measure.
The same syntax is often used to ask the question: What is 121 mod 2?7 Answer:
121 is 1mod 2, or an odd number. We also say, 121 = 1(mod 2) Where = is read
equivalent to. A later homework problem will extend this concept to your every day
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16 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS

experience such as telling time.

Modulo is the remainder when dividing by a divisor.

Numbers which have the same remainder when divided by another are termed
congruent. Congruence will have other uses in geometry to indicate two objects
have both the same shape and measure.
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2.11. COUNTING HOMEWORK 17

2.11 Counting Homework

Each problem is worth three points.

1. Complete the following addition table.

0 1 2 3 !

Ot
(=2}
~
Qo

9 10 11 12

N =+

Qo

—
e}

it
[y

—
[\V]

2. Use the information above to complete the following table about even and odd
numbers. Even or odd should be used to fill in the blanks.

even | odd

even

odd

3. Write out the first 15 Fibonacci Numbers.

4. Consider each Fibonacci Number as either even or odd. What is the pattern?
How does this follow from the above even/odd addition table?

5. Find up to five Fibonacci Numbers which are Triangular Numbers.

6. Find six numbers which satisfy the expression (are congruent to): 1 mod 5.
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18 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS

7. Find the sum of all the integers from 1 to 50, inclusive.

8. Complete the following multiplication table.

X

@]
=
[\V)
N
ot
(=2}

o
=)

W N =

O || S| Ot

[t
=

[y
[y

[
N

9. Use the information above to complete the following table about even and odd

numbers.

X even

odd

even

odd

10. Bonus points: (An easy version of a Fibonacci classic) A snail landed

at the bottom of a 30 foot well. It climbs up 3 feet every day, but slides back
down 2 feet each night. How long will it take the snail to get out of the well?
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Numbers Lesson 3

The Peano Axioms

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.
Albert Einstein

This lesson allows us to slow down here in the early lessons and take a look at
how the counting numbers are developed (Peano Axioms), make reference to a couple
controversial axioms (Well-ordered, and Least Cardinal), and list the mathematicians
we well be studying.

3.1 Father of Geography: Eratosthenes

Eratosthenes was a Greek mathematician, poet, athlete, geographer, and as-
tronomer (276-194 B.C.) In mathematics, he is perhaps best known for his sieve
algorithm for obtaining prime numbers which bears his name and is developed in the
next lesson.

Eratosthenes made remarkable discoveries, inventions, and measurements. For
example, he developed the system of latitude and longitude, first calculated the cir-
cumference of the earth, tilt of the earth’s axis, the earth-sun distance, and invented
the leap day. His contemporaries nicknamed him “Beta,” meaning two or second,
because he was second best, but in so many different fields.

Eratosthenes was the chief librarian of the Great Library in Alexandria, studied
for a time in Athens, and was a friend to Archimedes.

19



20 NUMBERS LESSON 3. THE PEANO AXIOMS

3.2 Dedekind-Peano Axioms and Mathematical In-
duction

1 is a member of the set N.

If n is a member of N, then n + 1 belongs to N (where n + 1 is the “successor”
of n.

1 is not the successor of any element in N.

Ifn+1=m+1, then n =m.

A subset of N which contains 1, and which contains n 4+ 1 whenever it contains
n, must equal N.

In general, we don’t emphasize the above axioms in this class, but they are pre-
sented here to assure you the natural numbers were discovered, exist, and/or can be
created (just in case you had any doubt). Some additional Peano Axioms are listed
in Lesson [44l

Axiom 5 above is the basis for mathematical induction which will be developed
later (Geometry, Chapter 11).

3.3 Well-Ordering Axiom

Well-Ordering Axiom: Any nonempty set of positive integers contains a least

element.

The minimum is another term for least element. The largest element is the
maximum. An important note to remember is that the integers do have an order
(but no minimum or maximum)! Also, the Well-Ordering Axiom is at the center of
some controversy. It is equivalent to the Axiom of Choice and thus the root of the
Continuum Hypothesis. See Numbers lesson [I[4] for more details.
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3.4. CARDINAL VS. ORDINAL NUMBERS 21

3.4 Cardinal vs. Ordinal Numbers

Cardinal Numbers are positive integers (counting numbers) that represent “how
many?”

Ordinal Numbers are numbers that describe position: first, second, third,
fourth,... last

An example: There are nine innings (“how many?”) in a baseball game. Right
now in the ninth inning (position), there is a man on first and third with two outs.
We also saw the term cardinality in section where it was used to indicate the size
of a set, as in how many elements a set had.

In this last context, the cardinality or size of a set, is where controversy arises. It is
well known that not all infinite sets are the same size and thus there arises a heirarchy
of cardinals, possibly well-ordered. This relates to the continuum hypothesis and a
host of related axiom proposals which some think should be accessible to the gifted
high schools student.

3.5 List of Mathematicians

Many different mathematicians are referenced in this series of lectures. There are
two lists provided here. First are those for whom a short biography is provided and
for which the student should make a conscious effort to learn about this semester.
Freshmen will do presentations about these mathematicians during the second nine
week period. The second list is of those of a more incidental nature whose names are
attached to an important concept and the concept should be learned. Sophomores
will do presentations about these mathematicians in their fall semester.

3.5.1 Mathematicians/Scientists with Short Biographies

e Sec.[[LTF Archimedes (c. 287-212 B.C.), one of greatest mathematicians/physicists.
e Sec. Georg Cantor (1845-1918), set theory, transfinite numbers.

e Sec. [[6.1F Abraham de Moivre, (1667-1754), complex root finding theorem.

o Sec. René Descartes (1591-1650), French, analytic Geometry.

e Sec. BTl and 6k Eratothenes (about 200 B.C.), Greek, prime sieve, earth’s
circumference.

e Sec. [T} Euclid (about 300 B.C.), Greek, Father of Geometry, Even Perfects.

e Sec. I3It Leonard Euler (1707-1783), (22" + 1)/641—integer
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22 NUMBERS LESSON 3. THE PEANO AXIOMS

e Sec. 5.1} Pierre de Fermat amateur mathematician, early 1600’s, 22" + 1, 2™ +
y" # 2" n>2 — FLT.

e Sec. [2.1} Fibonacci, 13th century Italian; 0,1,1,2,3,5, - - -; rabbits, arabic al-
gorithms.

e Sec.[ZT} Carl Friedrich Gauss (1777-1855), one of greatest mathematicians/physicists.

e Sec. [[3] and 4Tl Kurt Godel (1906-1978), 1931 Godel’s Incompleteness The-
orem.

e Sec. [5.6t David Hilbert (1862-1943), 23 problems of 1900, Foundations of
Geometry.

e Sec. and Bk Marin Mersenne, (1588-1648), French monk, numbers/primes
of form 2™ — 1.

e Sec. 5.1t John Napier, (1550-1617), Scotland, logs, slide rule, decimal point.

e Sec.[Tl Sir Isaac Newton (1642-1727), invented calculus, three laws of motion,
universal gravitation, one of greatest mathematicians/physicists.

e Sec. and [[0.T} Blaise Pascal (1623-1662), triangle, pressure gauge, calcu-
lator.

e Sec. [Tt Pythagoras (c. 500 B.C.), Greek school, a® + b* = ¢ iff AABC is
right.

3.5.2 Mathematicians Noted More in Passing
e Sec. [[43} Niels Henrik Abel (1802-1829), abelian=commutative.

e Sec. [[.3 George Boole (1815-1864), Boolean Algebra.
e Sec. [5.4l Henry Briggs (1561-1631), log tables.

e Sec. [4Tt Paul Cohen (1934—present), 1963 showed independence of CH and
AC.

e Sec. [4F John Conway, (1937—present), surreal numbers, game of life.

e Sec. [5.2 Richard Dedekind (1831-1916), German, Dedekind Cut defines real
numbers.

e Sec. [[.3} Augustus De Morgan (1806-1871), DeMorgan’s Law.

e Sec. [2.6l Diophantus of Alexandria (about 250 A.D.), integer solutions.
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3.5. LIST OF MATHEMATICIANS 23

Sec. [2.I10F Christian Goldbach (1690-1764), conjecture: all evens=sum of two
primes.

Sec. [[5.4F: Johannes Kepler (1571-1630), three laws of planetary motion.

e Sec. Donald E. Knuth (1938-present), [TeX|, LaTeX, MetaFONT,Art of CP.
e Sec. [T} Leibnitz, (1646-1716), German, coinventor of calculus.

e Sec. B2 Guiseppe Peano (1858-1932), Axioms, induced the natural numbers.

e Sec. [L4 John Venn (1834-1923), set union/intersection diagrams.

o Sec. Andrew Wiles (1953-), proved Fermat’s Last Theorem.

Numbers and Their App.—pdf 4 October 4, 2009 ©MMIX Ke G. Calkins


http://www.ams.org/tex/
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

24

NUMBERS LESSON 3. THE PEANO AXIOMS

3.6 Peano Homework

Each problem is worth 3 points.

1.

10.

Given A ={-2,0,4,7} and B = {—4, —2,0}, show both AUB and AN B using
Venn diagrams.

. Given A = {x |2 >4} and B = {z | z < 3}, find AU B and AN B using real

number lines.

Given M = {residents of Michigan} and N = {residents of Niles, Michigan},
describe in words M U N and M N N.

. Given B = {youths attending BCYF} and C' = {BCM&SC students}, describe

in words BUC and BN C.

Draw a Venn diagram for the previous exercise. What might the Universal set
be?

Given: X = {1,3,5,7,9}, Y = {1,6,11,16,...}, Z = {0,2,4,6,8,...}. Find:

(@) (XNZ)NY
(b) (XUY)NZ

Simplify exactly: a. 9! b. 6!+ 3! c. 8! x 8!+ (10! x 5!)
5 4
Evaluate the sum of the following: a. > (k+2) b. > (2k + 3)
k=0 k=2

. Calculate the powers of 11 from 11° up to 11°. Write each one centered below

the previous one.

Examine the factors of 231 and express it in a form relating it to the triangular
number formula.
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Numbers Lesson 4

The Naturals as Prime or Composite

Chebychev said it and I'll say it again,
There’s always a prime between n and 2n! Nathan Fine

The natural numbers have been studied intensely for millenia. Several fascinating
properties relate to their factors. We will explore these properties such as number of
factors and sum of factors in this lesson.

4.1 One of the Greatest Mathematicians: Newton

Sir Isaac Newton, tiny, weak, and not expected to survive his first day, was born
in England on Christmas day (old style) 1642. He is known not only as one of
the greatest mathematicians, but also one of the greatest physicists as well. He
culminated (to climax) the scientific revolution and authored Principia, the most
important single work in the history of modern science. Newton attended Trinity
College, then laid the foundation of calculus and extended his ideas on color. He
examined planetary motion and derived the inverse square law crucial to his theory
of universal gravitation. The three laws of mechanics were named after him. He
was also warden, then later master, of the mint. There he oversaw a great recoinage
which included reeded edges on coins and tracking down a master counterfeiter. Two
important quotes attributed to Newton are “If I have seen a little farther than others
it is because I have stood on the shoulders of giants” and “I do not know what I may
appear to the world; but to myself I seem to have been only like a boy playing on
the seashore, and diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before
me.”

Returning home from work at the Mint, Newton solved a mathematical problem
that was given to European mathematicians to solve; he turned in his work the next
day anonymously. Upon receiving the solution, John Bernoulli exclaimed, “Ah! T rec-
ognize the lion by his paw.” Newton was knighted for his scientific discoveries rather
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26 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE

than deeds on the battlefield—a first. Newton was buried like a king in Westmin-
ster Abbey. Late in Newton’s life a battle raged between the English and Germans
regarding whether Newton was the sole inventor of calculus or if Leibnitz had also
played an important role.

4.2 Factors, Prime, Composite, 1 is Unique

A factor is a natural number which divides another natural number evenly (as in

without a remainder).

The word factor will be used later in a less restricted sense as in x — 1 and z 4 1
are factors of 22 — 1. Divisor is essentially a synonym of factor and is also commonly
used interchangeably.

‘A prime number only has factors of itself and one. ‘

The first few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47....

‘Twin primes are primes which differ by 2. ‘

Examples of twin primes are: 3 and 5, 5 and 7, 11 and 13, 17 and 19, .... The twin
prime conjecture states there are an infinite number of twin primes. It is believed to
be true but a recent proof was found flawed.

‘A composite number has factors in addition to itself and one.

One (1) is unique in that it is considered neither prime nor composite.

Example: The number 12 has the following factors: 1, 2, 3, 4, 6, and 12. A
number such as 12 can also be factored into prime factors: 12 = 22 x 3!. For integers,
if arranged in order, such factoring is unique.

A prime factor is a factor that is prime.

There is a relationship between the prime factors and the number of factors; it
involves the exponents. We will examine this in the homework.

12
/\ A factor tree is a common way to find factors and I'm sure a TI-84+
2 6 calculator program is also floating around. An example of a factor tree
/\ is given to the left.
2

Example: Consider factoring 180 and 210. There are a wide variety of ways to
construct a factor tree, but the final factorization remains the same.
Solution: 180 = 10-18 = 2.5-2-3? = 22.3%.5 and 210 = 10-21 = 2.5-3-7 = 2-3-5-7.
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4.3. PRIME FACTORIZATION, GCF, LCM 27

4.3 Prime Factorization, GCF, LCM

Once a natural number has been factored into prime factors, we can write its
prime factorization (also known as prime decomposition). When we do this, we list
each prime factor in increasing order and indicate how many times it is repeated
by using a superscript as an exponent. For example: 60 = 22 x 3! x 5!, When
done this way, the prime factorization for the natural numbers is unique. The associ-
ated prime factorization theorem (or Fundamental Theorem of Arithmetic) could be
proved, but not here.

We can use prime factorization to find Greatest Common Factors and Least Com-
mon Multiples. Another method is Euclid’s Algorithm (a procedure) which we
intend to link to here eventually.

GCF: Greatest Common Factor (or GCD) is the greatest number that divides
two given numbers.

Example: The factors of 30 are {1, 2, 3, 5, 6, 10, 15, 30} and the factors of 12
are {1, 2, 3, 4, 6, 12} and so the factors 30 and 12 have in common are {1, 2, 3, 6}.
The GCF would then be 6.

Two numbers are relatively prime if they have no common factors (excluding 1).

In other words, two numbers are relatively prime if their GCF is 1. Examples are:
15 and 16, 20 and 21.

LCM: Least Common Multiple is the smallest (positive) number which is a

multiple of two numbers.

The definitions of GCF and LCM could be extended to more than two numbers. In
fact, since the calculator will only do pairs, such an extension gives more meaningful
test questions!

Example: The multiples of 4 are: {4, 8, 12, 16,...} and 6 has multiples of {6, 12,
18, 24, 30, ...}. The intersection of these sets is {12, 24, 36...}, so the LCM is 12.

Example (Using Prime Factorization): 30 = 2! x 3! x 5! and 12 = 2% x 3'. Thus
the GCF(12, 30) is 2' x3' = 6 and the LCM(12, 30) is 2> x3' x5 = 60. Notice how for
GCF we choose the smallest exponent for each prime factor and for LCM we choose
the largest. It might help to note that 12 = 22 x 3! x 5% and remember that anything
to the zero power is 1. Note how GCF(12,30) x LCM(12,30) = 6 x 60 = 12 x 30.

Example: 25 = 52 x 17° and 85 = 5! x 17'. The GCF(25,85) is 5! x 17° =5
(choosing the smallest exponents) and the LCM(25,85) is 5% x 17! = 425 (choosing
the largest exponents).
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28 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE

4.4 Number of Factors

We can tell how many factors a number has using only the exponents from its
prime factorization. Suppose pi' - p3* - p%* is the prime factorization of some number
N. There are (¢ + 1)(g2 + 1)(gs + 1) factors since each p; to all powers from 0 to g
and whether or not each prime is a factor is independent.

Example: 180 = 2232 . 5!, There are 3 -3 -2 = 18 factors, namely:

{1,180, 2,90, 3,60, 4,45, 5, 36, 6, 30,9, 20, 10, 18, 12, 15}.

Example: 210 = 2-3-5-7. There are thus 2* factors of 210.

4.5 Primes Form an Infinite Set

It can easily be shown that the set of prime numbers is infinite. This proof, which
dates back to Euclid, (link) is as follows. Suppose, on the contrary, that there are only
finitely many primes denoted pq, po, . . . p,. Form the product N = p1 XpaXp3X...XDp.
Then, the number N 41 is not divisible by any p; and so must be divisible by a prime
other than these (including possibly only N + 1 itself). This contradicts our original
hypothesis that we listed all the (finite set of) primes, hence this hypothesis is false.
Hence there must be infinitely many primes. This is a classic proof by contradiction.
It remains an open question whether or not there are an infinite number of twin
primes. Using the well-ordering axiom, we can also prove all numbers are interesting!

4.6 Sieve of Eratosthenes

Having established the fact that there are infinitely many primes, we might want
to generate a list of primes, or determine if a given number is prime. Eratosthenes,
a Greek mathematician around 200 B.C., created a simple algorithml] to find primes.
The procedure represents a sieve, or device used for sifting out grains, since he actually
punched holes. The method is simple:

1. Write down the numbers from 1 to 100 (or any desired range).
2. Start with two (the first prime number).
3. Eliminate all its multiples.

4. Move to the next prime (the next number on the list which you have not elim-
inated).

5. Go back to step 3 and repeat as many times as necessary.

Lhttp://en.wikipedia.org/wiki/Eratosthenes has a link to a java script.
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Note that anything above v/100 = 10 does not eliminate any more numbers, since
factors come in pairs of a big and a small.

1121345678910
11112 13|14 | 15|16 | 17|18 | 19| 20
21 122231242526 |27 28|29 30
31 1323334353637 38|39 40
41 142 |43 | 44 |45 |46 | 47 | 48 | 49 | 50
01 | 52 |53 154 |55 |56 |57 |58 |59 60
61 | 62|63 |64 |65|66 |67 68|69 70
TL| 727317417576 777879 80
81 | 82|83 |84 |8 |8 |87 |88 |89 | 90
91 1921931949596 |97 98|99 | 100

4.7 Division Rules

Here are some useful rules for quickly checking for divisibility of natural numbers
by small factors.

Divisibility by 2: If an integer is even, that is ends in 0, 2, 4, 6, or 8, it is divisible
by 2.

Divisibility by 3: If the sum of the digits of an integer is divisible by 3, then the
integer is divisible by 3.

Example: 729 - 7+24+9 =18 - 14+ 8 = 9. Thus 729 is divisible by 3. Note
how this was done recursively.

Divisible by 4: If the last two digits of the integer are divisible by 4, then the integer
is divisible by 4.

‘In general, an integer is divisible by 2" if the last n digits are divisible by 2". ‘

| Divisibility by 5: If the last digit is 0 or 5, the integer is divisible by 5. |

‘If the last n digits are divisible by 5", then the integer is divisible by 5. ‘

Divisibility by 9: If the sum of the digits of an integer is divisible by 9, then the
number is divisible by 9.

A common method taught in days past for finding computational mistakes was
called Casting Out 9. This is really a form of modulo arithmetic. In other bases, this
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method extends to “Casting Out base - 1.”

Divisibility by 11: If the sum of the digits in the even powers of 10 positions differ
from the sum of the digits in the odd powers of 10 positions by a multiple of 11, the
integer is divisible by 11.

Example: 1,234,508 — 1+3+5+8 = 17 and 2+4+0 = 6, thus since 17—6 = 11,
1,234,508 is divisible by 11.

In general, determining if a large number is prime or composite is a difficult task.
Substantial research continues in this field due to the fact that many encryption
schemes are dependent on this difficulty.

4.8 Perfect Numbers and Mersenne Primes

‘A perfect number is equal to the sum of its factors, excluding itself.

The first two perfect numbers are:
6=1+2+3=1x6=2x3=221x(22-1) and
28=1+2+44+7+14=1x28=2x14=4x7=2%1.(23-1).

The ancients considered these numbers perfect partly due to their close proximity
to the number of days in a week (which is not celestial!) and the lunar/menstral
cycle.

‘Mersenne Numbers are of the form 2™ — 1. ‘

‘Mersenne Primes are primes of the form 2" — 1. ‘

A biography for Mersenne is found at the beginning of Lesson 8l Marin Mersenne
was a 17" century monk who studied the numbers 2" — 1. These can only be prime
if n is prime, but that is no guarantee of primality as seen in the homework.

Euclid showed the known perfect numbers were of the form 27~ x (2? —1). Euler
proved even perfect numbers could only be in this form. It remains an open question
whether or not there are any odd perfect numbers. Another perfect number is gener-
ated, whenever a Mersenne prime is found. The 47" Mersenne primes was reported
April 12, 2009. The exponent is n = 42643801. The largest known prime is usually a
Mersenne prime. GIMPda involves the author and some students in this search.

Prime numbers have been used extensively in cryptology used to hide messages.
Some numbers have become restricted or illegal to possess, utter, or propagate by the
general public, such as those used to encode music and videos on DVDs

In addition to the search for perfect numbers, the GIMPS project also helps in
finding small factors for Mersenne numbers using the Elliptical Curve Method (ECM).

2http://www.utm.edu/research/primes/mersenne. shtml
3See: http://en.wikipedia.org/wiki/Illegal_number]
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4.9 Prime Homework
Each problem is worth three points.

1. What is the sum of the proper divisors of 2* x (25 — 1) and 25 x (27 — 1)? Are
these numbers perfect?

2. For the number 220, find all the factors; add the factors (except itself); count
all the factors; find the prime factorization.

3. For the number 284, find all the factors; add the factors (except itself); count
all the factors; find the prime factorization.

4. Extend the Sieve of Eratosthenes to find the prime numbers between 101 and
200. Bonus points for defining and identifying any prime decades.

101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110
111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120
121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130
131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140
141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150
151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160
161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170
171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180
181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190
191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200

5. How large a factorial can you calculate exactly using a TI-84 calculator? A
TI-nspire calculator?
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10.

11.
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Add the first few odd numbers together. Initially, just the first one. Write it
down as sequence member number one. Then add the first and second (1 + 3).
Write it down as sequence member number two. Then the first three, etc. until
you have added the first five together. Symbollically this can be expressed as:

> 2i+1forn e€{0,1,2,3,4}. What pattern is there in the resultant sequence?
i=0

Prime factor 2047 otherwise known as 2'' — 1.

For both parts, write out the prime factorization of the original numbers.
Bonus points for Venn diagrams!

(a) Find the GCF(156,182).
(b) Find the LCM(496,8128).

Find the least common multiple and the greatest common factor of:
a) 60, 72 b) 12, 20, 36 c) 9,12, 14

Prime factor 1001.

bonus: Bob has every sixth night off from work. It happens that tonight has
his favorite shows that only come on once a week and he is off to watch them.
How long until he gets to watch his shows again?
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Numbers Lesson 5

Powers, Bases/Conversion,
Pascal’s Triangle

The taxicab number of 1729 =7 x 13 x 19 was dull.
1729 is a very interesting number. It is the smallest integer which is the
sum of two cubes multiple different ways.

Paraphrase of Hardy and Ramanujan

In this lesson we will examine ways to express the natural numbers, bases, powers,
and some other important catagories of natural numbers. We will also explore some
related topics such as parity, Fermat numbers, and Pascal’s triangle.

5.1 The Prince of Amateur Mathematician: Fermat

Pierre de Fermat was an amateur mathematician living in the early 1600’s (1601
1665) who had a profound influence on mathematics for the last four centuries. By
amateur we mean Fermat earned his living by doing other work and mathematics
was purely a hobby. Fermat was a jurist, which means he had a law degree and
practiced law. In his job he was supposed to avoid social contact and this probably
gave him more time to devote to mathematics. With Pascal he developed the theory
of probability and independent of Descartes he developed analytic geometry. He also
developed many important concepts which led into the development of calculus. In
this lesson we will explore the numbers which were named after him.

Perhaps Fermat’s most famous legacy is known as Fermat’s Last Theorem. After
Fermat died his son found written (about 1637) in the margin of his textbook by
Diophantus the equation z™ + y™ # 2", where n > 2 along with the statement:
“I have discovered a truly marvelous proof of this, which, however, the margin is
not large enough to contain.” This is a generalization of the Pythagorean Theorem
(where n = 2). This became known as Fermat’s Last Theorem (now FLT) because it
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remained after all his other theorems had been solved. The theorem part of the name
was also a misnomer until it was actually proved in 1993/4. More on both theorems
is in Lesson 12

There is also an important theorem known as Fermat’s Little Theorem which
forms the basis of some primality testing: If p is a prime number, then for any integer
a, a? — a is evenly divisible by p (a? = a (mod p).

5.2 Powers, Exponents, Base 10

‘The expression z" is called a power where, n is the exponent and z is the base.

Example: 29 = 1024, 1024 is a power of 2, specifically it is 2 multiplied by itself
10 times: 2 X 2 X 2 X 2 X2 X2 X2 x 2 x2x 2. Exponentiation is a shorthand
notation for such repeated multiplication.

Most people have 5 digits (“fingers”) on each hand and 2 hands. This has led to
the use of the decimal system of notation with 10 digits: 0, 1, 2, 3,4, 5,6, 7, 8,9. We
express our numbers using place value where each position to the left is weighted
10 times the position to its right. Thus 1331 =1 x 103 +3 x 102 +3 x 101 +1 x 10" =
1000+ 300+ 30+ 1. This system of writing numbers is the Hindu-Arabic Number
System or Arabic Numerals.

5.3 Roman Numerals

We already encountered in the homework for Numbers Lesson 1 the Roman Nu-
meral System. We wish to formalize here some information about them and make
certain you are familiar with them.

The following symbols have the following values: 1=1; V=>5; X=10; L=50; C=100;
D=500; and M=1000. Lower case can also be used, especially for small values: i=1;
v=>5; x=10; 1=50. Smaller values go to the right unless they represent subtraction.
The restrictions for subtraction are: 1) you can subtract no more than one symbol;

2) that symbol can not be more than an order of magnitude less; and 3) it must also
be a power of ten. Thus 49 = XLIX, but not IL and 45 = XLV, but not VL.
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5.4 Properties of Exponents

“Anything” to the zero power is 1: 2 = 1 (z cannot equal 0.)

Anything to the first power is itself: 2! = .

Properties of Exponents:

b +b

1. Product of two powers with like bases: % x x” = 2%,

2. Quotient of two powers with like bases: x¢/2” = 297,

3. Power of a power: (z%)° = 2.

4. Power of a product: (zy)® = z%y“.

5. Power of a quotient: (x/y)* = x%/y“.

Notice how the place value system was not possible before zero was invented (some
insist discovered!).

One order of magnitude means one power of ten. ‘

A Ke? term is order of bagnitude, or binary order of magnitude, which means
one power of two.

Some powers have special names like ™ where n = 2 are called squares and for
n = 3 are called cubes. Some times the term perfect square or prefect cube is used
not in the sense of perfect number but in the sense of being the square of a rational
number, like 22 = 4 and not the square of an irrational number, like V5 -5 = 5.
Five is not considered a “perfect square.”

5.5 Base 11, Base 12, Converting from Base 10

The number above (1331) could just as easily be expressed in base 11 as 1000,; =
1 X113 4+0x 112+ 0 x 11' + 0 x 11° Note: when no base is indicated (usually
via a subscript afterwards), base 10 is assumed. Maybe you prefer base 12, where
92F15 = 9x 12242 x 121 + E x 12°, and T represents the digit “ten” and E represents
“eleven” in our duodecimal system. The following example also illustrates how to
convert from base 10 to another base by repeated division and use of the remainders.

9R 2
12[ 110 R 11 or “E”
12[1331
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5.6 Base 2, Base 4, Base 8, and Base 16; Converting
to Base 10

The computer revolution has expanded the use of bases 2, 8, and 16 especially. A
typical base 2 number might be (the character “6” in EBCDIC):

11110110 = 1x2"4+1x2°4+1x224+1x22+0x22+1x22+1x2'+0x2°
128464+32+16+0+4+2+0
— 246

Base 2 is also called binary. Base 8 is known as octal. Hexadecimal, or
affectionately called hex for short, refers to base 16.

Since 4, 8, and 16 are powers of 2, it is an easy matter to convert such a number
from base 2 to base 2. You regroup bits n at a time from the right. For example:
111101104 = 33124 = 3665 = F'646.

In base 16, we need names for our 6 additional “fingers” (I mean digits). The usual
choices are A, B, C, D, E, and F. Below is a table of how the numbers are represented
in the common bases.

Each binary digit is called a bit.

Each hexadecimal digit (or 4 bits) Ke? calls a hit (hex digit).
It is more commonly called a nibble.

8 bits make a modern bytelll (Hence the term nibble above for half a byte.)

Among the many definitions of bit is another important historic and mathematical
meaning. The US dollar originated out of the Spanish-American peso or piece of eight,
which could be broken into eight parts called bits. Hence 2 bits is the equivalent of
a modern US quarter and 8 bits is a dollar.

Note how close in magnitude 10® = 1000 and 2'° = 1024 are.

The term kilo (see Numbers Lesson [[0) which really is 10® now often means 2'°
(1024).

The term mega which really is 10° now often means 229 (1,048,576).

The term giga which really is 10° now often means 2% (1,073,741,824).

The term tera which really is 10" now often means 2%° (1,099,511,627,776).

'Historically a byte ranged from 6 to 12 bits.
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Base 16 | Base 10 | Base 2

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 Y 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

For a good demonstration of adding binary numbers see the video at
http://www.woodgears.ca/marbleadd/index.html

5.7 Parity

Parity is a term now commonly used in computer storage and communications.
The word is related to par as in golf where “he hit under par” and connotes equivalence.
In computers, it relates to base 2 and there are several types: even, odd, mark, and
no. Even parity typically means a bit will be appended to each byte (or word) to force
an even number of bits. For example, the character “1” in the ASCII communication
code is 3115 or 001100015. If transmitted or stored with even partiy, this byte would
have an additional bit appended and that bit would be set (=1) for there to be an
even number of bits set. Odd parity would mean the appended bit would be reset
(=0). Errors can then be detected if the received or recalled value does not have the
correct parity. More advanced encoding schemes (LRC, CRC, Hamming, etc.) allow
error correction as well, but require additional storage. Mark indicated the parity bit
is always set (=1). No parity indicates the parity bit is either not present or equal to
Zero.

Numbers and Their App.—pdf 4 October 4, 2009 ©MMIX Ke G. Calkins


http://www.woodgears.ca/marbleadd/index.html
http://www.woodgears.ca/marbleadd/index.html

38 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES

5.8 Other Bases

An interesting application of base 3, known as ternary, can be read about in
an article in the American Scientist, July-Aug. 1998, pg 314-9. There is no reason
the base has to be positive. A homework problem will deal with base —3. Base 60
was developed by the ancient Babylonians. We still use it for time (60 seconds = 1
minute; 60 minutes — 1 hour) and angle (60 seconds — 1 minute, 60 minutes — 1
degree; 6 x 60 = 360 degree — 1 circle) measurements. A fun base can be base 26
and will also be dealt with in the homework. The letters of the English alphabet are
an obvious choice for “digits.”

5.9 Fermat Numbers

Fermat noted that 22 +1=2'41=3 = Fj was prime as was 2 41=5= Fi,
2241 =241 =17=F, 2 +1 = 2841 = 257 = [}, and 22" +1 = 21641 = 65537 =
Fy. He conjectured that 22" + 1 = F,, was always prime. In 1732, Leonard Euler,
another famous mathematician, showed that 22 + 1 = 232 4+ 1 = [5 — 4294967297
was divisible by 641. The search for prime factors of larger Fermat numbers continues
and is another potential EXPO Project.

In 1796, Gauss used Fermat numbers in his proof that a regular heptagon (7-sided
polygon) was not constructible, whereas the regular heptadecagon (17-sided polygon)
was. Please note that F), usually refers to Fermat numbers which is why we used L,
for Fibonacci numbers in Numbers Lesson 21 (Note also: Most calculators process
stacked exponents left to right and not right to left as mathematicians would expect,
thus parentheses are highly recommended.) Before the 1977 Fortran standard Fortran
compilers were notoriously schizophrenic on how this was interpretted. The TI-82/3/4
series of calculators still is, with a different order used depending on whether the A
or ~! symbols is used! (Compare 3A3A(—1) with 3A371.)

5.10 Pascal, Pascal’s Triangle

Blaise Pascal was yet another famous mathematician contemporary with Fermat
with whom he shares the honor of inventing probability. His biography is located in
Section [[0.Jl Pascal’s Triangle is useful in many diverse fields of mathematics and is
displayed below:
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1 row 0

1 1 row 1

1 2 1 row 2

1 3 3 1 row 3

1 4 6 4 1 row 4

1 5) 10 10 5 1 rowb)

............ ... . TOW N

Notice how each entry is the sum of the numbers diagonally above it to the left
and to the right—where missing numbers on the sides can be assumed to be zero.

Notice how we already saw the first few rows in the homework as the powers of 11!
Each entry in Pascal’s triangle can also be found as: ,C, = #lr),, where n is the row

number and r goes from 0 to n for each position in the row. An alternate notation
for these binomial coefficients is:

(" = (") + (") or i1Cr = nCr + 1 Cry.

T T

Pascal’s Triangle was well known to the Chinese 300 years before Pascal where it
was used to extract n'® roots. However, Pascal was the first to apply it to games of
chance between two people.

Example: The recursive definition of factorials is useful for simplifying combina-

. _ 9l 9876 _ 987
tions or ,Cr. 9Cs = 531 = “grg1 = 35

definition of factorial and the common factor of 6! has been cancelled.

where we have explicitly show the recursive

5.11 Golden Rule, FOIL/Box

Although we will formally define binomial in Numbers Lesson [[3], a quick review
of algebra will be included here. First, when dealing with equations, it is important

to always follow the “golden rule:” “what you do to one side, always do to the other.”
This is partially formalized as two axioms as follows:

Additive Property of Equality: If a = b, then a +c =0+ c.
Multipicative Property of Equality: If a = b, then ac = be.

Also, notice what happens when 23 is multiplied by 12:

(12)(23) = (10-20) + (10-3) + (2-20) + (2 - 3)
— 200430440 +6
= 276
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23 12
X 12 X 23
46 36
+ 23 + 24
276 276

This is an important algorithm to remember when multiplying binomials such as
(x+1D(z+1)=2+2+2+1=2>+ 22+ 1, and is often referred to as the FOIL
method, an acronym for First, Outer, Inner, Last. However, the box method
generalizes to higher order polynomials.

|| 20 | 3]

T 222 | —3ay
2

—2y | —4xy | 6y

So, (22 — 3y)(z — 2y) = 22* — Tzy + 6y>.

5.12 Binomial Theorem or Formula

The Binomial Theorem or Formula using Pascal’s Triangle can be useful for eval-
uating binomials raised to powers:

(x+y)" =, Cox™y® +, Cra" 1yl +, Cox™ 2y + ...+, Cray"

Example:

(Bz+4)° =1-(32)°(4)°+5-(32)*(4)* +10- (32)3(4)2 +10- (32)%(4)> +5- (3x)* (4)* +
1+ (30)°(4)°

Of course, 4° = (32)° = 1, (3z)! = 3z, and 4' = 4 so this might be written as
follows before simplifing further.

(3z+4)° =1-(32)5 420 (32)1+10- (32)3(4)*> + 10+ (3z)?(4)> +5- (3x) (4)* +1- (4)°

However, it has now lost the obviousness of the pattern, where each coefficient
comes from a line in Pascal’s Triangle, one set of exponents are decreasing, while the
other set is increasing. For any term, the exponents sum to the power, in this case 5.
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5.13 Base Homework

Each problem is worth two points.

1. Write out the definition of googol from a good dictionary.

2. Write out the definition of googolplex from a good dictionary.

3. Compare the American, French, British, and German number systems for the
term billion and milliard. (See next problem.)

4. When we think of large numbers, we think of thousands, millions, billions, and
trillions. Find a good dictionary that extends the concept of numbers beyond
trillion and write a few down.

5. Solve for z and z: 2% x 23 = 2% and (2?)3 = 2.

6. Clearly apply the FOIL method to expand (z 4+ 1) x (z + 1).

7. Write a huge number using ONLY three 9’s (and nothing else).

8. Use Pascal’s Triangle to expand (x + 1)3,

9. Calculate 22° and 2%°. Compare (the relative or percent difference) with 10°
and 10%, respectively.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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Knowing that the number of dominoes in a set is a triangular number, and
that there are 28 dominoes in a double 6 set, calculate the number of dominoes
in a double 9, double 12, double 15, and double 16 set.

Madam I'm Adam. Name no one man. Some numbers are palindromes.
(Look it up in dictionary). Write at least five of the fifteen, prime, three digit
palindromes. (Use Homework 3, problem 4 for reference.)

Convert 1101, into base 10.

Convert 27 into base 2.

Consider $1.17 as 117 pennies and convert it into the smallest number of quar-
ters, nickels, and pennies. Write this as a base 5 number of pennies.

Convert 2345 (2 quarters, 3 nickels, 4 pennies) into a base 10 number of pennies.

Change 38 days into weeks and days.

Change 210 hours into days and hours.

Change $2.69 into the smallest number of coins consisting of quarters, dimes,
nickels, and pennies.

Change A3B5:¢ into base 10.

Multiply and simplify: a) (2o —5)(3z + 2) b) (x +3)(x — 7).

Bonus: How many what is a crore? What is its lvalue in US dollars?

Bonus: How much modern American change can you have and not be able to
make change for a dollar?
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Numbers Lesson 6

This 1s a Lie!

Cogito ergo sumEl René Descartes

In this lesson we give an overview of the field of logic. We introduce if-then
statements, logical shorthand, negation, converses, inverses, and the contrapositive.
Deductive and inductive reasoning are introduced along with direct and indirect proof.
First we have to think our way into existence.

6.1 Father of Modern Mathematics: René Descartes

René Descartes, the early French mathematician (1591-1650) spent considerable
time philosophizing about mathematics and its very existence. To get started he had
to assume his very own existence in his famous quote (in Latin): “Cogito ergo sum,”
which means, “I think, therefore I am.”

Descartes studied law but never practiced it, choosing instead to travel Europe
as a mercenary soldier. In this way he met lots of people and had many useful
experiences. There is speculation he acted as a spy in this way. When Galileo was
condemned by the Catholic Church, Descartes abandoned plans to publish a great
work he had written.

Descartes was also a key figure in the scientific revolution. He invented analytic
geometry with the cartesian coordinate system which is named after the latinized
version of his name. This invention revolutionized mathematics by forming a strong
connection between geometry and algebra. Descartes also spent considerable time in
bed, rarely getting up before noon. It has been said he developed the cartesian coor-
dinate system while lying in bed watching a fly on the ceiling and trying to describe
its movements. Descartes also created exponential notation, the use of superscripts
to indicate repeated multiplication.

'T think, therefore I am.
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Descartes died in Stockholm, Sweden while tutoring the queen there. Although
he died of pneumonia, the fact of having to get up early and ride across town to tutor
the queen in that cold environment is said to have been the major cause.

6.2 Hypothesis, Conclusion, Conjecture

A premise (also known as an antecedent or hypothesis) is a tentative assumption
made in order to draw out and test its logical or empirical consequences.

A consequence or conclusion is the necessary result of two or more propositions
taken as premises.

Sentential logic or propositional logic, consists of a sentential language, a semantic
interpretation of that language, and a sentential derivation system. Predicate logic
goes further and builds on sentential logic. We give here the merest overview of this
broad field.

6.3 Deductive vs. Inductive Reasoning

As stated in the first two lessons, Geometry often deals with proofs. Proofs are
based on logical reasoning which follow two basic types.

Deductive (or logical) Reasoning is the process of demonstrating that if certain
statements are accepted as true, then other statements can be shown to follow from
them.

Inductive Reasoning is the process of observing data, recognizing patterns, and
making generalizations from the observations.

Both are important to mathematics in general and to Geometry specifically.

The generalization used in inductive reasoning is called a conjecture.

A statement is a declarative sentence which is either true or false, but not both.
Proposition is often used interchangely with the term statement. A paradox is a
sentence which is both true and false, such as “I am lying” (cf Titus 1:12). A simple
statement is a statement containing no connecting words. Compound or complex
statements are formed from simple statements using basic connection. The basic
connections are: and, or, if... then..., if and only if, not. Often, other connecting
words such as unless, because, either/or, neither/nor, although, nevertheless, except,
but (save), only, as, since, etc. are used which can be restated using the basic ones.

Examples:

“Unless he is careful, he will crash.” means the same as “If he is not careful, then he
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will crash.”
“Whenever I tell a joke, my students laugh.” is equivalent to “If 1 tell a joke, then my
students laugh.” except for some circumstance of time.

This definition of statement is based on an axiom of Aristotle (ancient Greek
philosoper (c. 384-322 B.C.)) called the law of excluded middle. Symbollically, pV
P. (This is very similar to the principle of bivalence which states every proposition
is either true or false, but not equivalent! There are logics with one and not the
other.) If we reject this axiom, fuzzy logic involving probability is the result. In
recent years, fuzzy logic has started to invade your cars and homes (washing machines,
etc.), and is “the rage.”

When translating declarative statements into logical form it is common to recast
things in the present tense. This assumes that time relationships are not important
to the argument. As noted above, whenever certain common words are, used the
sentence should be recast using the standard if-then syntax of logic.

The following statements may be equivalent and useful for this task:

e If apples are on sale, then I buy apples.

e Whenever apples are on sale, I buy apples.

Because apples are on sale, I buy apples.

I buy apples since they are on sale.

I buy apples unless apples are not on sale.

I buy apples except when apples are not on sale.

I buy apples save when they are not on sale.

I buy apples as they are on sale.

I buy apples until they are not on sale.

The following statements may be somehow different and you might try your hand
at recasting them in standard form.

e [ buy apples only if they are on sale.

Although apples are not on sale, I buy apples.

I buy apples whether or not they are on sale.

I buy apples either if they are on sale or if they are not on sale.

I buy apples neither when they are on sale, nor if they are not on sale.

Apples are not on sale, nevertheless I buy apples.
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6.4 Logical Shorthand

Short hand notation is often used when writing logical arguments. Statements
such as “I have a job.” may be replaced by p and the conditional statement, “If I
have a job, then I must work.” might be replaced by p — ¢, where ¢ in this case
is equivalent to “I must work.” A conditional is also known as an implication. An
if-then statement can be rewritten using the word implies, and in fact, the symbol —
is often read that way. Some reasoning is valid, in that it gives correct or truthful
results whereas some is faulty or invalid. You may think the old adage: “Watch
your p’s and ¢’s” is derived from the extensive usage of these symbols. However, it
actually is drinking advice to watch ones pints and quarts!

A theorem is a statement that has been proven, or can be proven, from the postu-

lates.

A corollary is a result which follows naturally, or a specific application of a
theorem. A lemma is a mathematical statement proven not for its own sake, but for
use in proving a more important statement called a theorem.

Modus Ponens (MP) says that if p — ¢ is true and p is true, then ¢ must be true.
This principle is also known as the Law of Detachment (LD).

Modus Tollens (MT) says that if p — ¢ is true and ¢ is false (not true), then p
must be false. MT is essentially equivalent to the Law of indirect Reasoning
(below) and is the basis for proof by contradiction.

Example: consider the following conditional statement: If the weather is beauti-
ful, then we’ll go for a walk. MP implies that if p is true (The weather is beautiful.)
q is also true (We'll go for a walk.). MT implies that if p — ¢ is true (If the weather
is beautiful, then we’ll go for a walk.) and ¢ is false (It is not the case that we’ll go
for a walk.) then p is false (The weather is not beautiful.).

It is a good thing when a system of axioms is consistent, sound, and complete.

‘Consistent means none of the theorems contradict one another. ‘

Soundness means the system’s rules of proof will never allow a false inference from

a true statement.

‘Complete means all true statements can be proved within the system.

Unfortunately, no useful system of arithmetic can be both consistent and complete
(Godel’s Incompleteness Theorem).
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6.5 Negation/Double Negation, Converse, etc.

The negation, symbollically ~ p, p, or -p, of a statement is very useful. If p is “I
have a job,” then ~ p is “I do not have a job.”

The double negation, as taught in English (not Spanish!) gives back the original
statement! ~ (~ p) is equivalent to p. If it is not true, that “I do not have a job.”
Then it must be true “I have a job.”

‘The Converse of p — ¢ is ¢ — p. ‘

‘The Inverse of p — q is ~ p —~ q. ‘

‘The Contrapositive of p — g is ~ ¢ —~ p. ‘

Law of Contrapositive (LC) states that if a conditional is true, so is its contra-

positive.

Continuing the weather example above, the contrapositive would be “If we’ll not
go for a walk, then the weather is not beautiful.” LC tells us this is true if the original
statement is true. It should be easy to see that the converse of the inverse is the
contrapositive.

‘Whether the conditional is true does not affect whether the converse is true. ‘

‘A counterexample is an example of a conditional statement being false. ‘

Sometimes, instead of writing a long proof to determine something is true, many
will try to find a counterexample.

An “if and only if” (often abbreviated iff) statement is called a biconditional
and combines the statements p — ¢ and ¢ — p into p «<» ¢. To prove a biconditional,
one proves the corresponding two conditionals.

A syllogism is composed of a major premise, a minor premise, and the resulting

conclusion.

A syllogism has three parts. Therefore, this is not a syllogism. (ha ha ha).

The consequence is often preceeded by the word therefore which is also often
abbreviated by three dots arranged in a triangle pointing up (.".).

The Law of Syllogism is also called the Law of Transitivity (see also Numbers
Lesson [I4]) and states: if p — ¢ and ¢ — r are both true, then p — r is true.

Reasoning and also definitions are sometimes said to be circular.
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6.6 Direct vs. Indirect Proof

Mathematical proofs come in two basic flavors known as direct and indirect. We
already saw an example of an indirect proof in Numbers Lesson ] when we proved by
contradiction that primes form an infinite set. Proof by contradiction is also known
as using the law of indirect reasoning.

Law of Indirect Reasoning:
If valid reasoning from a statement p leads to a false conclusion, then p is false.

Any proof using the Law of Contrapositive (above) or the Law of Ruling out
Possibilities (below) are also classified as indirect proofs.

Law of Ruling out Possibilities:
When statement p or statement g is true, and ¢ is not true, then p is true.

We will see further examples of these five laws of logic in Chapter 11 of our

Geometry textbook and my associated

6.7 Model Theory and Mathematical Models

Traditionally logic was a part of philosophy and one of the three subjects studied
together: grammer, logic, and rhetoric. Since the mid-1800’s it has been studied as
a part of the foundations of mathematics. It is important for a full understanding
of fallacies and paradoxes. Set theory has largely replaced the role of logic in the
development of mathematics.

There are variations on logic and extensive discussions which link logic with vari-
ous schools of philosophy. The field has changed extensively within the last 100 years
with the development of first order logic. First order logic extends propositional logic
by allowing quantification over individuals in a universe of discourse. The symbols
used are: V meaning “for all” and J meaning “there exists.” Second order logic
allows quantification over sets. Second order logic is required for full use of real
numbers (least upper bound).

We can combine axioms with a logic system to develop model theory. This use of
the word model in mathematics is different and more recent than the mathematical
models one might construct to describe some scientific phenomenon.
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6.8 Logic Homework

Each problem is worth two points, except as noted.

Given p = “This is a frog.”, ¢ = “It should croak.” Write out in words the
following:

1. Conditional (p — q).

2. Inverse (~ p —~ q).

3. Converse (¢ — p).

4. Contrapositive (~ ¢ —~ p).
5. Biconditional (p < ¢).

6. (6 points) Write out in words the indicated conditional statements for the
following sentence: “If I get my allowance today, I’m going to buy my favorite
DVD.”

(a) Inverse:
(b) Contrapositive:
(c) What can you conclude if you are told, “I bought my favorite DVD.”?
7. Given a compound statement: My sister, who cooks whenever she can, loves

cooking for people as long as they are appreciative of her labors. Write this
statement in shorthand, symbolically identifying each piece.

8. Give a counterexample of: “Bears are large and dangerous to approach.”

9. Lots of advertising tries to appeal to a human need to belong. Write one
counterexample for each of the following suggestive advertisements. “You’ll be
cool if you buy Converse shoes.” “Buy a Lexus automobile, then everyone will
be dripping with envy.”
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Rewrite the sentence as conditional statement: All squares are rhombi.

Write the converse and state if it is true: If you are a driver, then you are at
least 16.

Form the converse to: “We’ll go to the fair if they announce square-dancing over
the radio.”

“If you go fishing, you are sure to hook a trout.” You bring home a trout for
supper. Did you catch it? Explain your answer.

Given: “If a golfer has won the [U.S. Open Tournament, then [s|he is in the
major leagues.” What can you conclude about these two people? Tiger Woods
won the U.S. Open Tournament. Bernhard Langer| has not won a U.S. Open
Tournament.

What can be concluded from: “If a nail is lost, then a shoe is lost. If a shoe is
lost, then a horse is lost. If a horse is lost, then a rider is lost. If a rider is lost,
then a battle is lost. If a battle is lost, then a kingdom is lost.””?

See Section 2.2 of your geometry textbook for further examples. Several prob-
lems from prior editions were assigned in the past.

Base 26 can be fun. Convert your first name/nickname from base 26 into base
10. Try to restrict your first name to 6 letters to avoid 32-bit integer overflow.
Let A=1,B=2,....Y = 25,7 = 0, ignore upper/lower case.

Bonus: Express the numbers 8 through 12 in base —3. Use 0, 1, and —1 as
your digits. Check out the article Third Base in the Nov./Dec. 2001 issue of
American Scientistl
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Numbers Lesson 7

To Tell the Truth

A theorem a day Means promotion and pay!
A theorem a year And you’re out on your ear! Paul Erdos

We have already seen in Numbers Lesson [ the relationship between union (dis-
junction) and or as well as intersection (conjunction) and and. Here we will also
introduce various symbols used when drawing logic diagrams, give truth tables in two
different forms for a few other common operator, and explore how and and or are
similar to switches in series and parallel circuits.

Exclusive or is discussed along with DeMorgan’s Law, tautology, and contradic-
tion. We close after touching on nands, nors, flip-flops, and logic equations. First we
discuss a mathematician world-reknown for his logical development of Geometry.

7.1 The Father of Geometry: Euclid

Euclid of Alexanderia was an important Greek mathematician living around 300
B.C., his exact lifespan is unknown. Euclid was born in Greece but spent much of his
life near the great library in Alexandria, Egypt.

Euclid wrote the 13 volume series of books known collectively as the Elements. It
became the most successful mathematical textbook ever. Several online Versionﬂ of
the Elements exist, including a wonderful color VersionH from the early 1800’s. In the
Elements Euclid assumes five axioms and develops the whole of euclidean geometry
from them. Euclid’s fifth postulate (or variations thereof such as “through a point
outside a line one and only one line can be drawn parallel to the given line.”) became
very controversial by the early 1800’s. In addition to geometry, many number theory
ideas are explored and proven in the Elements. These include the form of even perfect
number and the infinitude of primes, An algorithm to find the greatest common factor
also bears his name. Euclid summarized much of the known mathematics of his time.

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
Zhttp://www.math.ubc.ca/people/faculty/cass/Euclid/byrne.html
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Figure 7.1: 2 x n Truth Tables for And, Or, Eor, and Not.
Ao v [o]1] Lcor [0[1]
01010 010]|1 0 [[0]1 011
1101 111 1 110 110

7.2 Truth Tables

Numbers Lesson [6lintroduced the concept of logical statements and connectives
used to joined them into compound statements called arguments. Here we explore
the conclusion of these arguments as the input statements take on various values
of true or false. Since the connectives we are studying (and, or, if-then, iff) and
negation (not) are truth-functional (its truth value can be figured out solely on the
basis of its components), we can evaluate these arguments by exhaustively listing all
possible values these inputs may take on. If there are n components, there will be 2"
rows in the corresponding truth table.

Parentheses should be used when combining multiple compound statements to-
gether with connectives. If parentheses are omitted, the following order of oper-
ation should [generally| be assumed: biconditional (highest), conditional, conjunc-
tion/disjunction, and negation (lowest).

Given in Figure [Tl are truth tables in the form of multiplication and addition
tables. You might compare these with those found in the homework for lesson 2 for
multiplying and adding even numbers.

7.3 Ands, Ors, Exclusive Ors

Since the and and or tables above are so similar to the multiplication and addi-
tion tables seen earlier, and is often symbolized by e or A (similar to intersection)
and or is often symbolized by + or V (similar to union). | is also often used for or. Be
very careful when programming since conventions vary widely between programming
language! Languages such as C and C++ introduce additional confusion by differen-
tiating between bitwise (operating on each bit in a string) and logical operators (only
treating the value as zero or not zero).

Augustus De Morgan’s (1806-1871) major contribution to mathematics was re-
forming logic and establishing symbolism for algebra. He was the one to define and
introduce mathematical induction, which up to that point was still unclear. One ma-
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Figure 7.2: Contingency Table for Two Variables and Many Operators.

plq|P|d|pNq|plg|peorq|p—q|pe=q|pANq|pVq|peorq|pAD|pVD
0j{0f[1]1] O 0 0 1 1 1 1 1 0 1
0/1]1]0] O 1 1 1 0 1 0 0 0 1
1{0j0]1| O 1 1 0 0 1 0 0 0 1
1{1(0l0] 1 1 0 1 1 0 0 1 0 1

jor result known as De Morgan’s Law is summarized below in two different formats.

De Morgan’s Law: (ANB) = A UB and (AUB) =A'NB.

De Morgan’s Law: ANB=AVBand AVB = AAB.

The major author debugged a significant number of COBOL programs by checking
logic of this form.

Around the same time, George Boole (1815-1864) was also establishing logic sym-
bolism. Boolean Algebra, which is a foundation for computers, is an algebra of sets
with the operators of union and intersection. Equivalently it is an algebra with the
numbers 0 and 1 and operators of and and or. More details are available in Numbers
Lesson T4l

As noted above, truth tables appear in two basic forms: 1) as multiplication
or addition style tables; and 2) as an exhaustive list of possible values. Take a
moment and compare these truth tables with those obtained in the homework in
Numbers Section 2.I1] regarding the addition and multiplication of even numbers.
Then, compare the format used in Figure with the format used in Figure [.1] in
this lesson.

Often in a truth table the symbol T for true is used for 1 and the symbol F for
false is used for 0.

Note how neor and the biconditional are the same.

Another common name for the biconditional is equivalence.

If a proposition contains only 1’s (T’s) in the last column of its truth table, it is a
tautology. (See p V D in the table above.)

If a proposition contains only 0’s (F’s) in the last column of its truth table, it is a
contradiction. (See p and ~ p in the table above.)

An jargument] is valid if it has good logical structure, otherwise it is invalid. An
argument is sound if and only if it is valid and has true premises, otherwise it is
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unsound. One also uses the following terms to identify statement requirements in
A implies B: necessary: (B cannot be true unless A is true, or sufficient: A can-
not be true unless B is true. A fallacy uses a false premise, invalid reasoning, or
vague/ambiguous language. One also calls a set of statements either inconsistent if
they lead to a contradiction or consistent if not. A set of statements is complete
if one can determine for any combination of statements a result (i.e. prove it) or else
incomplete. Kurt Godel, whose biography appears in Sec. [I41] in 1931 showed that
no complete system that admits the natural numbers (Peano axioms) can be consis-
tent, which is now known as G6del Incompleteness Theorem. Thus any useful
logical system must either be inconsistent or incomplete. This derailed attempts to
axiomize all of mathematics.

If a proposition contains both 1’s and 0’s (T’s and F’s) in the last column of its

truth table, it is a contingency.

Forming truth tables like this is a common way to compare the validity of two
different statements. Actually, few of the 16 possible combinations of 0’s and 1’s
are missing in the table above. A [former teacher! of the major author added a let
operator to complete the list—those were his initials!

7.4 Logical Symbols

Given below are three symbols commonly used to represent inverters (nots) in
electronic diagrams. Note the little circle on the two on the left. The absence of the
little circle on the one on the right can leave some ambiguity since the same symbol
can be used to represent a non-inverting buffer (gate expander).

P et e

Given below are the corresponding symbols for ands, and ors. An and-gate is

equivalent to a series circuit as illustrated in the diagram below right, whereas an
or-gate is equivalent to a parallel circuit also illustrated below right.

— SBwitches o
D—

A B

A i
AND Battery Lamp

Series Circwit
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.//

A
L’ B
Switches
i Il
Battery Lamp
B— Parallel Circuit

7.5 Nands, Nors, etc.

(Earlier we noted p nand q as pA ¢ and p nor ¢ as pV ¢. In the table below we
have used the symbol A for nand, and the symbol » for nor.) Compare the nand’s
and nor’s in the table above with those below. Since nand’s and nor’s can serve as
inverters (a not), (by tying both inputs to the source), any logic can be generated
using one of them exclusively.

A0 ‘ 1 ‘ |n neor || 0 |1
011 01(11]0 0 10
111]0 1110]0 1 01

7.6 Logic Equations

Electronic logic was implemented as vacuum tubes (“valves”) in the early com-
puters (1950’s, generation 1), and with diodes/transistors (DTL, 1960’s, generations
2 and 3, with generation 3 being packaged in integrated circuits (ICs)). The 1970’s
were dominated by TTL (transistor-transistor) logic. In DTL the nor-gate was basic
whereas in TTL the nand-gate was basic. A typical basic nor gate and a nand-gate
based Set-Reset flip-flop are shown below. Many different kinds of flip-flops exist:
clocked, D-type, J-K type, J-K master-slave, edge triggered, etc.. (Add link here to
good electronic site.)
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TRANSISTORS

Basic TTL nor gate Nand-gate Set-Reset flip-flop

Today, complex microprocessors utilizing millions even billions of logic gates are
routinely etched onto silicon chips. However, these basic logic gates composed of
several transistors (invented in 1947) are still an important part of the fundamental
design. These logic gates are built up into more complex structures such as flip-
flops, memory elements, [shift| registers, counters, decoders, multiplexors, adders,
etc. Often many such microprocessors are etched at the same time on one big silicon
wafer. The Pentium 4/D and Core 2 by INTELl now running at speeds of about
4 GHz! demonstrate amazing technological progress.

Some computers of the 1960’s and 1970’s (SDS/Xerox Sigma) were documented
using logic equations. A typical logic equation might read as follows: NFARWD=I
. 0U6.(04.05.N06) (This can be interpret to say that the negation of the signal
representing the family of read /write direct instructions (hexadecimal operation codes
.6C or .6D) is generated by the upper nibble being a 6 and the lower nibble being
.C (lowest order bit being ignored). Here, hex is indicated by the leading period.)
A logic diagram is also shown below right. Note how in diagram form this takes up
additional space and uses graphic symbols. The logic equation format is very compact
and was easily printed using 1960’s technology.

- ou6
e \ (OY.05.00) NFA R\ D
o6

S
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7.7 Truth Homework

Each problem is worth two points. For problems 1 and 2 assume these are
syllogisms and the major and minor premises are true.

1. Determine whether each argument is valid or invalid. If invalid, determine the
error in reasoning.

(a) If I inherit $1000, I will buy you a cookie. I inherit $1000. Therefore, I
will buy you a cookie.

(b) All cats are animals. This is not an animal. Therefore, this is not a cat.

2. Determine whether each argument is valid or invalid. If invalid, determine the
error in reasoning.

(a) If Alice drinks the water, then she will become sick. Alice does not drink
the water. Therefore, she does not become sick.

(b) If Ron uses Valvoline Motor oil, then his car is in good condition. Ron’s
car is in good condition. Therefore, Ron uses Valvoline Motor oil.

3. Form a valid conclusion from the following statements.

(a) If T am tired, then I cannot finish my homework. If I understand the
material, then I can finish my homework.

(b) Everyone who is sane can do logic. No lunatics are fit to serve on a jury.
None of your sons can do logic.

4. Form a valid conclusion from the following statement: No kitten that loves fish
is unteachable. No kitten without a tail will play with a gorilla. Kittens with
whiskers always love fish. No teachable kitten has green eyes. No kittens have
tails unless they have whiskers.

5. Help Keith find the sugar addict from a truth table of the following statements:
Keith: Three of you are always right. Who took my oatmeal pie cookies?
Aurora: It was either Rita or Shirleen.

Rita: Neither Jenny nor I took it.

Shirleen: Both of you are wrong.

Jamie: No, one is wrong; the other is right.
Jenny: No, Jamie, that’s not right.

6. Fill in the truth table:

o o[ prp pvp D]
010
111
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Construct a truth table for: a) pAq b) DATG

i k=1E=l k=]

Construct a truth table for: [(p | ¢) AT] AT

[r[pla][r[@loAT[[plg)ATIAT]
0

blyq
00
00
011
011
110
110
111
111

—lo|l~Rlolr|lo|—

Use the following variation on the classic nursery rhyme for the next four ques-
tions: When I was coming from St. Ives, I meet a man with 7 wives. Fach
wife had 7 sacks. Each sack had 7 cats. FEach cat had 7 kits. Kits, cats, sacks,
and wives, how many were going to St. Ives. (A similar problem dates back to
Fibonacci.)

Express this quantity in base seven.

Calculate the quantity in base ten.

Convert the base 7 quantity into base 10.

How does this compare with the answer to the traditional wording (going to).
Construct a “truth table” for the multiplication of positives and negatives.
Draw Venn diagrams illustrating DeMorgan’s Laws.

See Section 2.3 of your geometry textbook for further examples. See especially
problems 2.3: 10-13.

Bonus: Relative to crore, find out what numbers the following Hindu terms
refer to: lakh, neel, padma, shankh.
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Numbers Lesson 8

Beyond the Integers: Fractions

Five out of every four Americans has problems with fractions!

Seen on a tee shirt

This lesson moves us beyond the integers by introducing the rational numbers.
We explore the axioms which make groups before exploring the parts of a fraction
and every type of fraction imaginable. We continue with a review of the addition,
subtraction, multiplication, and division of fractions before touching on ratios, pro-
portions, and cross multiplication. First we talk about a mathematician previously
introduced.

8.1 Father of Acoustics: Marin Mersenne

Marin Mersenne (1588-1648) was a 17" century French monk best known for
his studies of numbers of the form 2" — 1. Mersenne was a well-educated theolo-
gian, philosopher, and music theorist. He edited works of Euclid, Archimedes, and
other Greek mathematicians. His more important contribution to the advancement of
learning was his extensive Latin correspondence with mathematicians and scientists
in many countries. Scientific journals had not yet come into being so Mersenne was
the center of a network for exchange of information.

Mersenne compiled a list of Mersenne numbers he thought to be prime. His list
was only partially correct. It included Mg; and Mss7 which are composite and omitted
M1, Mgg, Mjo7 which are prime. Here we are referring to the number 2”7 —1 as M,,. It
took two centuries to resolve these issues and even yet many fundamental questions
about these numbers remain. Questions such as if there is a largest Mersenne prime
remain unanswered although it is suspected there are an infinite number of Mersenne
primes.
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8.2 Group Axioms

It is useful at this time to introduce and discuss the group axioms.

1. Closure: if {a,b} € G, then a e b € G and is unique.
2. Associativity: if {a,b,c} € G, then ae (bec) = (aeb) ec.
3. Existence of unit element (identity): i € G, iea =aei =a,Va € G.

4. Existence of inverses: Ya € G,3 an element denoted a=! € G

such that cea ' =a tea =1.

Groups are an important mathematical structure which form the basis of the
study of abstract algebra, known to mathematicians as just algebra. The axioms
above depend of the concept of a set G with elements a, b, ¢, etc. and one operation
(e above) such as addition, multiplication, reflection, etc.

Note how the familiar set of natural numbers are closed under both addition and
multiplication (axiom 1). Both multiplication and addition are associative (axiom 2),
and each has an identity element (axiom 3). The additive identity element is zero
(0), whereas the multiplicative identity element is one (1).

Group axiom 4 requires inverses. We have seen our number system “grow” from
natural numbers to integers when the operation of subtraction (additive inverses)
was introduced. When the operation of multiplication is used and the concept of
multiplicative inverses is required, the concept of division is the result and the number
system must now include fractions.

An important restriction, the fact that 0 has no multiplicative inverse, will be
developed later in Numbers Lesson We thus see that the integers form a group
under addition, but not under the operation of multiplication!

8.3 Parts of Fractions

We introduced division in Numbers Lesson 2] but only in the context of integers
and remainders.

If you have ever shared an apple with someone, the concept of half should be
well developed. Former president George Bush (number 41) was nicknamed “Have
half” early in life for this reason. In such a situation, we are dividing one integer by
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8.4. TYPES OF FRACTIONS 61

another, often larger, integer.

A rational number is a number which can be expressed as the ratio of two integers.

The set of rational numbers is denoted by @, as in quotient.

A vinculum is an overhead line as is used for fractions, radicals, and for repeating

decimal fractions. The plural is vincula.

‘The numerator is the portion of a fraction above the vinculum. ‘

‘The denominator is the part of a fraction below the vinculum. ‘

‘Percentage is the numerator of a fraction with a denominator of 100. ‘

‘Millage or permille is the numerator of a fraction with a denominator of 1000. ‘

Percentages are written with a percent sign (%) and permille are written with a
permille sign (%o or ppk). Similar higher order fractions are parts per million (ppm),
parts per billion (ppb), and parts per trillion (ppt). Note: there is some ambiguity
associated with ppt—it may occasionally represent ppk. These are especially useful
for specifying trace amounts or small relative uncertainties.

Example: Lead is a heavy metal which can accumulate in the body. The EPA
(Environmental Protection Agency) has set a limit of 15 ug/liter in water which cor-
responds to 15 ppb since a liter of water has a mass of 1 Kg=1000g.

Example: Calkins reported in Physical Review A 73, 032504 in March 2006
the value 335116048 748.1(2.4) kHz for the D; centroid for cesium. His uncertainty
was thus 2.4/335116 048 748.1 = 7.2 x 107! or about 7ppt. When combined with
other measurements it gave a QED-free value for the fine-structure constant a~! =

137.0360000(11) or about 8 ppb.

8.4 Types of Fractions

| A unit fraction is a fraction with a numerator of 1. |

Historically, unit fractions were the first to be developed. Ancient Egyptians would
add long series of unit fractions to generate other values. It was a historic event when
2/3’s came into usage! An application of unit (Egyptian) fractions will be examined
in the homework. Today, fractions come in many forms: mixed numbers, improper
fraction, decimal fractions, etc.

An improper fraction has a numerator larger (in magnitude) than the denomina-

tor, a proper fraction does not.

An interpretation of improper fractions is that the denominator says how each
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62 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS

whole piece is divided, and the numerator says how many total pieces we have. Im-
proper fractions are quite acceptable in high school and beyond and are, in fact, often
the preferred form of answer. Too bad elementary/middle school teachers always
consider them wrong! However, in their defense, for those less numerically inclined,
converting to a mixed number may give a better sense of the number’s magnitude.
(Converting to a decimal approximation doesn’t necessarily do that so clearly!)

‘A mixed number has an integer part and proper fraction part. ‘

A mixed number is generated by dividing the denominator into the numerator to
determine how many whole parts there are. The remainder is the numerator of the
fractional part.

‘A complex fraction has fractions in the numerator or the denominator. ‘

‘Partial fractions describes a technique for splitting a fraction into pieces. ‘

This technique will be more formally introduced in Algebra II and is often used
in Calculus to simplify a complex expression for ease in integration.

5 —49 + 54 —7+6 and S5r—1 2 n 3
- = 0 00O @ = _ — n = .
63 63 9 7 »?—xr—2 x+1 x-2
. . ) 1
Here is an example of a continued fraction: 2 + ————
24 51—

Continued fractions can arise due to recursive definitions. Consider the example
above as the solution to the equation: z =2+ 1/z or 2—2xr—1=0o0rz=1+v2
Early methods of expressing and extracting square roots depended on this method so
it was well developed. It can also be useful for finding integer solutions.

8.5 Operations with Fractions

8.5.1 Simplifying (or Reducing) Fractions

Some examples on how NOT to simplify fractions are as follows:

B 1 B 1
% 5 7 B0 10

Yet this, perhaps in a slightly more complicated situation, is a very common
mistake. Our Algebra II book calls it “freshman cancellation!” Consider what disaster
happens when this was done to the examples below. If in doubt, try letting = 2 and
compare the before and after results. You can only cancel out factors, where a factor

multiplies everything, not terms, where terms are parts of expressions connected by
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8.5. OPERATIONS WITH FRACTIONS 63

addition and subtraction.

2x o T+ 3
I .
r+1 r—2>5

8.5.2 Addition and Subtraction

When adding and subtracting fractions, the first step is to get a common denom-
inator. After that the numerators are combined. To get a common denominator,
determine the Least Common Multiple. Then multiply each respective fraction’s nu-
merator and denominator by a special form of 1 (our multiplicative identity) to get
the LCM.

2 4
3 5
The LCM = 15, so multiply each fraction by 1 so the denominator becomes 15.
2 5 4 3
3 5 5 3
Then you add or subtract the numerators, depending on the operation.
10 + 12 _ 22 _qr
15 15 15

8.5.3 Multiplying Fractions

To multiply fractions, the rule is to multiply the numerators together and the
denominators together. Each product is put in its corresponding location.

10 22 220
11 5 55

Of course, after you are done multiplying (or adding, etc.), you should always
simplify!!! Another way to do it is to reduce as you go:

162 222 4 4
—_— ) — = — = .
H1 511

8.5.4 Dividing Fractions

In order to divide fractions, reciprocals are useful.

‘The reciprocal of a number is it’s multiplicative inverse.

For fractions, this can be obtained by exchanging the numerator with the de-
nominator. The 27! key on the calculator does this as well. Whole numbers are
nonnegative fractions with a denominator of 1. (Thus unit fractions are the recipro-
cals of whole numbers.) Division is equivalent to multiplying by the reciprocal. On
many very early computers, this was the only form of division implemented!
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Wl N
=
Wl N
=1 o

2 1
Example: 3 divided by 5

The reason can be seen by simplifying the complex fraction.

2 2-6 2-6

3 313126
TS Ty
6 o1

8.6 Ratios and Proportions

Ratios are two numbers with the same units compared. Sometimes they are
written like 2:1 or 6:3 where the colon symbolizes that the 2 is compared with 1.
Most frequently, ratios are written as division: 2/1 or 6/3. When there are more
than two numbers involve it is called an extended ratio. Here are some examples
encountered using ratios:

e An ocean has more water than a lake.

Enlarging a picture.

Peter and Paul drove equally fast, but Mary drove twice as far.

The Tigers are better hitters than the Cubs.

e Tasha is for the metric system because she will be taller in centimeters than in
inches.
e The triangle has side length ratios of 3 :4 : 5.
. . 2 1 12
Proportions are two or more ratios set equal: — = — = —. When there are

6
more than two ratios, it is usually called an extended proportion. If a proportion

has a missing term, we can simply cross-multiply and solve for the missing term.

1
Example: 1£6 =1 becomes 4z = 16 which gives z = 4.

8.7 Cross-multiplication

Cross-multiplication is actually a short-cut for multiplying each ratio by a
special form of 1 involving the other denominator. In other words, you multiply the
numerator of one fraction by the denominator of the other and vice versa (Latin for
order opposite; then set these products equal to each other. (See example just
above.)
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8.8 Fraction Homework

Each problem is worth two points. SHOW WORK, especially

on problems 2—6.

1.

10.

11.

12

Use Pascal’s Triangle and the Binomial Theorem to expand (2 + 3)® by exam-
ining (2z + 3)?, (22 +3)3, ...

L i . 1 1
Simplify completely using a common denominator: - + T

Simplify completely using a common denominator: - + IES

Simplify completely using a common denominator: — + —.

Simplify completely using a common denominator: - + — + —.

Simplify completely using a co on denominato J + 18 + 8
m m usin mmon denominator: — + — + —.
Py P Y 8 143 77 91

Find 25% of 16.

Find 250% of 16.

. The owner of a house with a state equilized value of $50,000 (the value used for

tax computation purposes and which should not exceed half the market value)
must calculate how much a proposed 2 mill road improvement tax will cost him.
Help him!

Express the number 2.7 as:  a) an improper fraction;  b) a mixed number.

1
Divide 50 by 3 then add 3.

22
Convert - exactly into a decimal fraction.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS

2,1
Simplify completely: g’ 21.
12 4
.. 6 15 77
Simplify completely (factor and cancel common terms): 35 X 7 X 9
35 15 6
Simplif letely: — + — x —.
implify completely Ay X -

For problems 16-18:

Egyptian fraction is another name for unit fraction. In ancient Egypt, these
were the only fractions allowed. Other fractions between zero and one were
always expressed as a sum of distinct Egyptian fractions. The greedy algo-

rithm was commonly used to render fractions, such as §, into unit fractions.
The algorithm begins by finding two consecutive unit fractions that the given
fraction is between (3 < 2 < 1). Using the smallest fraction, subtract it from
the given fraction. This new number plus the smaller fraction is the result. The

greedy Egyption number for g is %+ % (2-1=25_235— 1) Of course, there

52 10 10 10
is no guarantee the result is a unit fraction, so more than 2 fractions may well

be required. (See MMPC 1996, part II, problem 1.)

1 1 1 1 1
Explicitly show how — + — = -+ - + —.
xplicitly show OW2—|—1O 3+4+60

2
Find the greedy representation for 3

9
Find the greedy representation for 10"

Using your corrected list of the first 15 Fibonacci Numbers from homework
2 problem 3, find the approximate decimal ratio of consecutive pairs. Bonus:
what is the exact limiting value this approaches?

Write the word name for the number which corresponds to 22" 1. Express this
number in binary, hexadecimal, and base 10.

Read section 11.2 of your geometry textbooks for further examples for Lesson
[ See especially problems 12-17.
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Numbers Lesson 9

More on Fractions

No one shall expel us from the Paradise
that Cantor has created. David Hilbert

This lesson presents order of operation for arithmetic, number lines, rules for
solving inequalities, and long division. The lesson continues with a discussion of
decimal fraction, concentrating further on what makes a fraction repeat or terminate.
A section on finding exact rational expressions for repeating decimals is followed
with a discussion on division by zero. We conclude the lesson with a proof that the
rationals are countably infinite. This proof dates back to Cantor who is featured in
a biography.

9.1 Father of Set Theory: Georg Cantor

Georg Ferdinand Ludwig Philipp Cantor (1845-1918) was a German mathemati-
cian best known for creating set theory. We will introduce those axioms in Lesson
Cantor developed a one-to-one correspondence between various sets but not others.
In this way Cantor proved the real numbers uncountable or nondenumerable via a
diagonalization argument we will also present in Lesson 14l

Cantor’s work raised many philosophic questions and met with serious objections
by his fellow mathematicians. Cantor suffered from depression after about age 40,
depression likely bipolar in nature, but at the time blamed on the ridicule from his
colleagues. Inconsistent proofs due to unclarified assumptions has also been cited as a
contributing factor. The philosophic differences especially with Kronecker (See quote
at the beginning of Lesson 2] lead to a paradigm shift in mathematics toward using
set theory as foundational. The harsh criticism of his work gave way to international
accolades by age 60. Long periods of depression limited Cantor’s work during the
later years of his life with World War I forcing poverty and malnutrition before he
died in a sanitarium (mental institution).
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68 NUMBERS LESSON 9. MORE ON FRACTIONS

Cantor established an unending sequence of larger infinities. Power sets play a
key role in this development. He believed his work on transfinite numbers to have
been communicated to him by God. Cantor established a one-to-one correspondence
between the points on the unit line segment and all the points in an n-dimensional
space about which he said: “I see it but I don’t believe it!” Cantor is also known for
the continuum hypothesis, also discussed in Lesson [[4], that no set has more members
than the natural numbers and less members than the real numbers.

9.2 Order of Operations

We have already assumed that multiplication occurs before addition and exponen-
tiation before that in Numbers Lesson [Bl on bases: 314 = 3 x 10?4+ 1 x 10! 4+ 4 x 10°.
We will summarize these rules here as follows.

1. Operations within symbols of inclusion are done first.
2. Exponentiation is done next right to left if stacked.
3. Multiplication and Division are then performed in order left to right.

4. Addition and Subtraction are next performed in order left to right.

The most common symbols of inclusion are called parentheses ( ), but brackets
[ |, braces { }, vincula (plural of vinculum), and others (absolute value, radicals) are
also encountered. Some discussion regarding order of exponents is in order. Although
mathematicians for centuries have clearly intended 22° = 28 = 256 and not 43 = 64,
programming languages such as FORTRAN and C and graphing calculators have not
been as consistent. The same calculator may be schizophrenic and do it both ways,
depending on the circumstances. (Compare 4 A 27! using the 7! key on the TI-84
with 4 A2 A —11)

Be sure to use parentheses whenever encountering stacked exponents.

The rules above are often remembered via the mnemonic (from the Greek meaning
a memory aid): PEMDAS- Please Excuse My Dear Aunt Sally or Please Eat Miss
Daisy’s AppleSauce. Pink Elephants May Dance And Sway.

Rule number 3 above deserves a little more ink since really only purists, computer
scientists, algebraic calculators, and perhaps high school teachers seem to rigorously
adhere to it. Consider expressions such as 3/27 or 3/2 m where implicit multiplica-
tion might occur. Some textbooks, especially those beyond the high school level, and
most high-level math /physics journals assume the 2 is first multiplied by the 7 in the
first example, but not in the second. It is for this reason that I highly recommend
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9.3. NUMBER LINE 69

against the use of a solidus (/) and for the use of a vinculum (—) especially when
handwriting fractions. “No authority decrees this, ...[but| this one rule [multiplication
indicated by juxtaposition is carried out before division| is not universal agreement
at the present time, but probably is growing in acceptance.”ll When a student answer
is an order of magnitude too large I quickly check to see if a 7 in the denominator
wandered “upstairs” due to the lack of parentheses. One can add to this the lack of
agreement beyond the high school level in evaluating —1". Are we exponentiating
negative one, or negating one raised to the n. If n is even, these will differ! Again,
purists and calculators following the proscribed order of operations will exponentiate
before negating, whereas the other may be intended in some circumstances. This
problem originates because the negative symbol (—) serves three functions (subtrac-
tion, negation, and additive inverse).

9.3 Number Line

A common convention for organizing sets of numbers is to use a number line.
Some number line conventions will be noted as follows:

1. A number line has larger numbers to the right and smaller numbers to the left.
At its center is zero.

2. The integers are usually marked off with tick marks and labelled.

3. Since numbers go on forever, but paper doesn’t, arrows are put on each end.
Number lines can be used to show the solution set to certain problems, especially
those with infinite solution sets. A sample number line is diagrammed below.

5721 I I (N N IS N SN (N NN SN NN (N N S S I S . N R N
Y Ll

-5 0 5

9.4 Inequalities

Mathematics deals not only with equality (=) but also with five inequalities <, <,
#, >, and > known respectively as less than, less than or equal to, not equal, greater
than or equal to, and greater than. The big end or opening points toward the bigger
quantity. (The alligator is eating the big one, some of my students tell me.) Two of
these (<, >) are known as the strict inequalities, because they do not include the
end points. All inequalities but # are called order inequalities. Number lines are
useful to convey such ideas as x > 2. To do this, another number line convention
should be noted.

!Dr. Math: http://www.mathforum.org/library/drmath/vie/57021.html
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70 NUMBERS LESSON 9. MORE ON FRACTIONS

4. If a point is to be excluded at the end of a group of numbers on the number
line, an open circle is used. Thus, a closed circle indicates inclusion of the
endpoint. Alternatively, a parenthesis is used to indicate exclusion and a bracket
to indicate inclusion. This convention is rooted in the practice of specifying
intervals as open, closed, or even half-open, such as 2 < x < 5 as (2,5] shown
below.

5% T N N N N N SO T S S I TR N 1
< = o2 g >

It should always be clear from context whether an expression such as (3, 5) refers
to an ordered pair (See Numbers Lesson [[3]) or the open interval 3 < x < 5.

Inequalities are algebraically treated much like equalities (what you do to one
side, do also unto the other).

When an inequality is multiplied or divided by a negative number, the
direction the inequality points is reversed.

l—2z > 2
—r > 1 subtract 1 from both sides

r < —1 multiply by —1 both sides and reverse the inequality

9.5 Long Division

Division is usually the last of the four basic operations (4, —, X, +) to be mastered.
Division is the inverse operation of multiplication, but has an important exception as
discussed below.

The division of one number by another can be represented as a fraction with the
dividend as the numerator and the divisor as the denominator. One can simplify the
fraction before doing the long division involved.

(Reminder: The divisor is out in front of the “box”, the dividend is under it and

the quotient is on top of the “box”).

Quotient R Remainder
Divisor |Dividend ’

An example of a division problem is 441 = 12. After reducing, this is the same as

147
147 + 4 or the fraction -~ To find the quotient (or to find its mixed number), we
divide thusly.

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4



9.6. DECIMAL FRACTIONS 71

36.75 (or 36 R3 or 36 3/4)

4 [0
12
27
24
30
28
20
20
0

9.6 Decimal Fractions

Fractions are often expressed with fairly arbitrary denominators: %, %, % To com-
pare them in magnitude, it is helpful to line them up on a number line: % < % < %.

To quantify the difference between them, it is helpful to change the denominator to
be 10 or a power of ten. Such fractions are called decimal fractions or often just
decimals.

1 o

5 = 10° 0.5
2

3 = 0.66666 . . .
3 75 75

So % is closer to % than to % Of course, if we obtained a common denominator

of 12, that would have been clear as well: % < 1—82 < %. The choice of base 10 is
very common, although basimal fractions related to powers of two are commonly
encountered with computers. In fact a marvelous algorithmﬁ for calculating 7 was

recently discovered, but involves hexadecimal fractions only.

9.7 Repeating/Terminating Decimal

The number of digits in the repeating unit of a nonterminating but repeating
decimal fraction is an area of interesting study. The biggest unit fraction (i.e. smallest

2 http://www.mathsoft.com/asolve/plouffe/plouffe.html
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1
denominator) with much interest is - = 142857 142857 ---. As can be seen in the

table below, all multiple of - have the same digits in the same order, just a different

starting point.

1| 0.142857
210285714
210428571
2| 0.571428
2| 0.714285
21 0.857142

In an earlier homework, you already did the equivalent of finding the decimal
fraction for 1/7 (7 into 1,000,000; NL1). Note how there can be seven different
remainders (0—6) when dividing something by 7. However, if the remainder of 0 is

obtained, the fraction terminates (i.e. = = 1.0). This is part of the reason the cycle
length is six for the fraction —. In today’s activity you will derive the exact decimal

fractions for 77 and o which exceed the calculator’s accuracy. Of course you could
also attempt this by long division like your teacher did since calculators were not
common until he was in high school.

Terminating decimals are decimals that have an ending. These numbers do not go
on forever or repeat. They are clearly rational numbers since you can express them as
the ratio of two integers: the decimal values over the power of ten (what the last digit
of the decimal represents). Don’t forget to reduce, because this result is not unique.
For example, you could multiply the numerator and denominator by 2. It should
be clear that fractions with denominators containing only powers of 2 and
5 (the prime factors of our base 10) terminate, whereas those containing
other prime factors do not.

115 23
115 = —— =22
0-115 1000 200
336 42
43336 = 45— = 45—
1000 125
14641
14641 =
0146 100000

9.8 Finding Integer Ratios for Repeating Decimals

Knowing all repeating decimals are rational numbers, or the ratio of two integers,
leaves us with the task of finding these integers when presented with an arbitrary
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example.

Suppose you are asked to find two integers whose ratio is 0.586586--- = 0.586.
One way is to use the FRAC key on your calculator, but another involves just a little
algebra.

Let 1000z = 586.586586 - - -

1000 = 10% was chosen since there

) .. lx = 0.586586 - - -
are three repeating digits.
Subtracting off the original
We are left with this 99z = %%%‘000 o

or ZE:@

For fun, you might try this method on 0.143434343 ... = 0.143 = %!

9.9 Division by Zero

We stated in Numbers Lesson [8 that zero does not have a multiplicative inverse.
This is equivalent to the concept that zero multiplied by anything is always zero. If
we examine this further, we discover that sometimes things are not quite exactly zero
and if multiplied by something big enough, unity will result. Examine the sequence of
0.1x10 =1;0.01x100 = 1; 0.001 x1000 = 1; ... Next examine the same thing but as a
division problem: 1-+-0.1 = 10; 1+-0.01 = 100; 1+-0.001 = 1000; .... The denomonator
approaches zero and the quotient approaches co. However, if we approach zero from
the other side: 1 + —0.1 = —10; 1 =+ —0.01 = —100; 1 = —0.001 = —1000; ...the
result is at the other “end” of our number line. For this reason, it is usual to call
division by zero undefined (ill-defined). For some applications, it is useful to join our
number line at the two infinities, thus closing our unbounded interval! Thus the
complete number line (interval between plus and minus infinity) is termed both open
and closed.

9.10 The Rationals are Countable

Another important consideration is how many rational numbers are there? The
answer may surprise you. Start by listing the natural numbers with one as a de-
nominator. For every successive row, increase the denominator. Then you will have
completed a chart containing all the positive rational numbers.
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1/1 2/1 3/1 4/1 5/1
1/2 2/2 3/2 4/2 5/2
1/3 2/3 3/3 4/3 5/3
1/4 2/4 3/4 4/4 5/4
1/5 2/5 3/5 4/5 5/5
1/6 2/6 3/6 4/6 5/6
Some of them appear more than once (1/2 =2/4 =3/6 = ---). We then count

the fractions in this order: 1/1,2/1,1/2,1/3,2/2,3/1,---. Since we have put the nat-
ural numbers into a one-to-one correspondance with the positive (unsigned) rational
numbers, they are countable or there are “just as many” as natural numbers. This is
commonly recognized as the [lowest order of infinity, or ¥y or aleph null. There are

other arrangements possible, such as sorted by “height” (numerator plus denomina-
tor) then by numerator, for example. However, fractions cannot be put in a strictly
increasing order, because in between each pair is always another! The rational num-
bers are thus termed dense. However, we will see in Lesson [I1] there are still gaps

between them!
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9.11.

PEMDAS HOMEWORK I6)

9.11 PEMDAS Homework

Each problem is worth two points, except as noted for problem 12

10.

11.

. Compare in magnitude the decimal representations for: 22/7, 355/113, and .

Put in order from least to greatest: 0.1958,0.1958,0.1958,0.1958, 0.1958.

Convert 468.468468 - - - into the ratio of two integers.

2

Find a rational number between z

1
and 3

Simplify: 3 x 15+ 2 x 6.

. Simplify: 2 x 6 + 32 + 42 + 5.

Simplify: 4 x [2 —3(z +1)%] x (2 —10+5).

Solve for x and graph on a number line: 14 — 3z < 13.

Solve for x and graph on a number line: 2z —4 > —11(z — 2).

Expand and simplify: (22 — 3y)(2x + 3y).

Factor completely: a) =% + 9z + 20; b) x? + 8x — 20.
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12. Calculate the exact decimal representation of the unit fractions (See Section
B.4) with denominators 2 through 21. Clearly indicate the length of the part
which repeats or whether it terminates (rep.len.=0). Can you find any pattern
to the repeat lengths? This problem is worth 17 points.

Fraction

Decimal Value

Terminates

Non-rep. Len.

Repeat Len.

1/2

0.5

yes

1

0

1/3

0.3333 - - -

no

0

1

1/4

1/5

1/6

0.1666 - - -

no

1/7

1/8

1/9

1/10

1/11

1/12

1/13

1/14

1/15

1/16

1/17

1/18

1/19

1/20

1/21
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Numbers Lesson 10

Scientific Notation, Significant
Figures, etc.

An approximate answer to the right question is worth a great
deal more than a precise answer to the wrong question. John Tukey

This lesson is devoted to accuracy, precision, scientific notation, significant figures,
and the importance of rounding vs. truncating. It ends with sections on common unit
of measurement and unit conversions with an emphasis on metric/English equivalents.
Our biography for this lesson is on Pascal.

10.1 Miserable Infant Prodigy: Blaise Pascal

Pascal was born, lived, and died in France (1623-1662). He is considered a French
philosopher, mathematician, and physicist and one of the greatest minds in western
intellectual history. He was the only son of a judge with some scientific background.
His early training was restricted to languages and much of his later life was devoted
to religious exercises. By age 12 he discovered geometry, read Euclid’s Elements, and
came up with some original proofs. By age 14 he was attending weekly meetings of
famous mathematicians, by age 16 he wrote a paper on conic sections, and by age
18 started work on a mechanical adding machine. In correspondence with Fermat he
established the theory of probability. This contributed greatly to the development
of the fields of actuary, mathematics, social statistics, and physics—not to mention
helping his friends with their gambling!

Pascal did research on pressure and invented the syringe. He advocated empirical
experimentation and the accumulation of scientific discoveries. Analytic, a priori
methods were the norm in those days. A run-away horse carriage accident at age
31 further destablized his delicate health and lead him toward religion and away
from science and math. The triangle of binomial coefficients, a computer language, a
pressure law, and the SI unit of pressure are all named after Pascal.

77
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Figure 10.1: Accuracy versus Precision Targets. Left: no accuracy, nor precision.
Left Middle: accurate and precise. Right Middle: precise, but not accurate. Right:

accurate, but not precise.

10.2 Accuracy vs. Precision

‘Accuracy is a measure of rightness. Precision is a measure of exactness.

Versus (vs.) is Latin for against or facing. Accuracy and precision, although sim-
ilar in meaning, have a very subtle difference important to mathematics and science
in general and statistics specifically. You can have one without the other, neither, or,
best of all, both together. As you can see below, precision has to do with repeatabil-
ity, how well your results can be reproduced. Here is an example involving e. It is
an important number we will study further in Numbers lesson [[3l It is also on your
graphing calculator is several places.

e— Accurate? Precise?

27 no no
2.18281828 no yes

2.72 yes within 1 ppk no
2.718281828 | yes within 1 ppb yes

Figure [0.1] illustrates what accuracy and precision might mean in the case of a
dart board with darts. The table below illustrates the same ideas with words.

Darts Accurate? | Precise?
Randomly spread far from the bull’s eye no no
Clustered inside the bull’s eye yes yes
Clustered outside the bull’s eye no yes
Unclustered but inside the bull’s eye yes no

A common measure of precision is the standard deviation or uncertainty. We will
discuss standard deviation more in the upcoming Statistics lectures. Uncertainty is
the magnitude of error that is estimated to have been made in the determination of
results. It is now common to state results in the form: measurement (uncertainty)
units. Precision can also be thought of in terms of repeatability.
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10.3. SCIENTIFIC NOTATION 79

Example: Consider the results from the author’s dissertation available at
http://etd.nd.edu, click on search, enter Calkins as last name, and click now on the
search button below. We reported there our 2005 results of the cesium D1 transition
centroid frequency as: 335 116 048 748.2(2.4) kHz. Basically, the 2.4 kHz is saying
we are about 68% confident that the true value is with +2.4 kHz of the reported value
of 335.116 048 7482 THz (about 894.5nm or in the infrared).

10.3 Scientific Notation

In science, numbers large and small are commonplace and a shorthand notation
call scientific notation was developed to simplify their specification and utilization.
It is based on place value and base ten. Recall that 10* = 10; 10? = 100; 10® = 1000
and 3 x 100 = 300 = 3 x 10% or 10® x 81 = 8.1 x 10*.

A number is in scientific notation if it is in the form: Mantissa x1(Qcharacteristic
where the mantissa (Latin for makeweight) must be any number 1 through 9.9, and

the characteristic is an integer indicating the number of places the decimal moved.

The manissa might sometimes be called a coefficient. The term mantissa is more
commonly applied to the decimal fractional portion of a logarithml

Examples of scientific notation:

92,900,000 miles becomes 9.29 x 107 miles (earth-sun distance).

Planck’s Constant: .000000000000000000000000000000000663 Js is 6.63 x 1073* Js
3141592653 is approximately 3.1416 x 10°.

6,600,000,000,000,000,000,000 tons is 6.6 x 10%! (6.6 sextillion) tons or the “mass” of
the earth.

Note the use of the EE key on calculators and an E on computer printouts in
reference to scientific notation. 3.14E9 is the same as 3.14 x 10°. D may also be
seen indicating use of double precision (typically 64 instead of 32 bits of precision).
An easy way to remember when changing number into scientific notation is: if the
mantissa is a smaller number in magnitude than your decimal value, then the char-
acteristic will be a positive number. If the mantissa is a larger number than your
decimal value, then the characteristic will be negative. Keep this hint in mind as you
change from scientific to decimal notation.

Example: 5.43 x 1073 = 0.00543, since the characteristic is negative, you know
the decimal number is smaller than 5.43, so you move the decimal left. Another
example: —0.000002 = —2 x 107°.

10.3.1 Operations with Scientific Notation

When adding numbers in scientific notation, the characteristics must be the same.
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s 5 The easiest way is to decrease the larger
2.3 107 +4.55 x 10 characteristic by rewriting the mantissa!
230 % 10° + 4.55 x 10° — 234.55 x 107 Af:ter.rewriting' and adding, rewrite in
scientific notation.
Results rounded according to rules given
below.

Notice what happens when you add the following together: 8.23 x 1017, 4.67 x 10'2,
and —1.05 x 1072

The same method is used when subtracting numbers in scientific notation! Here,

2.3455 x 10° ~ 2.3 x 10°

however, if they are close in value loss of significance may result—the answer may
be nonsense! When multiplying numbers in scientific notation, add the characteristics
and multiply the mantissas. Division is similar, divide the mantissas and subtract the
denominator’s characteristic from the numerator’s characteristic. Always convert
the answers back into proper scientific notation form.

Example: 8.1 x 1073 x 2 x 10° = 16.2 x 10? = 1.62 x 103,

Example: 1.08 x 1017 + 1.2 x 101 = 0.9 x 107" = 9 x 106.

A variation on scientific notation is engineering notation. In engineering nota-
tion the exponent is a multiple of three, reflecting the fact that the standard multi-
plier in the metric system is 10® = 1000. It is thus more common to speak of meters,
kilometers, millimeters, nanometers, and femtometers than is to speak of decimeters
and dekameters. Unfortunately, some units such as centimeters and Angstroms are
entrenched which complicates our conversion to SI (see below).

Numbers written in scientific notation are assumed to be measurements, thus
approximations. Therefore, the rules outlined below must be applied.

10.4 Significant Figures, Rounding and Truncating

The significant figures (digits) in a measurement include all the digits that can be
known precisely plus a last digit that is likely an estimate.

The rules for determining which digits in a measurement are significant are:

1. Every nonzero digit in a recorded measurement is significant. 24.7m, 0.743 m
and 714m all have three significant figures.

2. Zeroes appearing between nonzero digits are significant. The measurements
7003 m, 40.79 m, and 1.503 m all have four significant figures.

3. Zeroes in front of (before) all nonzero digits are merely placeholders; they are
not significant. 0.0000099 only has two significant figures.
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4. Zeroes at the right end of the number if a decimal point is present and
also zeroes to the right of the decimal (unless leading) are significant. The
measurements 1241.20 m, 210.100 m, 0.00123456 m, 5600.00 m, and 123000000 m
all have six significant digits.

5. Zeroes at the end of a measurement and to the left of an omitted decimal point
are ambiguous. They are not significant if they are only place holders: 6,000,000
live in New York—the zeroes are just to represent the magnitude of how many
people are in N.Y. But the zeroes can be significant if they are the result of
precise measurements. A vinculum over the least significant zero is often used.

Examples: tell how many significant figures each of the following has: 9027.0,
9027, 9270, 9270., 0.9270, 9270, and 0.00927.

Solution: 9027.0 has 5 significant digits, 0.00927 has 3. 9270 also has 3 but there
is room for doubt. All the rest have 4.

The significant figures in a number in scientific notation is the number of digits
in the mantissa. The number 4 x 10° has only one digit in the mantissa, so it has
one significant figure. 9.344 x 10° has 4 significant figures. Thus the number 1200
which is unclear as to how many significant figures it has is more clearly expressed as
1.200 x 10? as having 4 significant figures or as 1.2 x 10® as having 2.

When calculating with significant figures, an answer cannot be more precise than

the least precise measurement.

This means for...

e Addition and subtraction: the answer can have no more digits to the right of
the decimal point than are contained in the measurement with the least number
of digits to the right of the decimal point.

Example: 12.21m + 324.0m + 6.25m = 342.46 m, but the answer must be
rounded to 342.5m, or 3.425 x 10m. Specification of units is also ex-
tremely important.

e Multiplication and division: the answer must contain no more significant
figures than the measurement with the least number of significant figures (the
position of the decimal point is irrelevant).

It is very important to round rather than truncate your results: 7 ~ 3.1416 not
m &~ 3.1415, You are often instructed to round to so many significant digits or to such
and such a level of precision. There are variations, but the standard rule would round
anything from $0.50 up to $1.49 all to $1. One variation would round $0.50 down
and $1.50 up based on the evenness/oddness of destination digit. A common mistake
to be avoided is “double rounding,” for example, rounding 1.46 first to 1.5 and then
to 2. More on that will be discuss in the Introduction to Statistics, lesson 3.
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10.5 Various Common Units

The National Institute of Standards and Technology, formerly the National Bu-
reau of Standards, is our nation’s official source of standard weights and measures,
as well as other standards, such as for programming languages. The metric system
(Systéme International or SI) has a long, interesting history and is in use the world
over. A notable exception is in common (non-scientific) uses in the United States.
SI differentiates between basic and derive units and hence is often called the MKS
system for meter (length), kilogram (mass), second (time), the fundamental three
of the seven basic units. The other four basic units are: K (temperature), ampere
(current), candela (illumination), and mole (amount of substance). Listed below is a
hodge-podge of units and the most important conversions.

1. English units of volume:
3 teaspoons=1 tablespoon (useful for child medicine dosage, not just cooking)
8 tablespoons per stick of butter—4 sticks per pound (Historically, a pound was
cut in quarters.)
2 cups per pint, 2 pints per quart, 4 quarts per gallon, 16 fl oz per pint (a pint’s
a pound the world round—works only for water. That is, a fluid ounce of water
weights about a ounce.)
231 cu in per gallon (US liquid—there are also Brit and US dry gallons).
There are 160 Brit oz per Brit Gal., 0.9607594 Brit fluid oz per US fluid oz.
There are 1.16 US liquid gallons per US dry gallon. 8 US dry gallons per bushel,
4 pecks per bushel. 42 US gallons per US petro barrel (31.5 US gallons per US
liquid barrel). 2 US liquid barrels per hogshead. A cord is 4'x4’x8'—be sure to
get that and not a third of that (“rick”) when buying wood!
Concrete is specified in cubic yards (27 cu ft per cu yard—why?).
There are many more “English” units of volume, with a rich history but most
are fortunately falling into disuse. I have never had to use: Grains, Scruple (20
grains), Minim (20 scruples), Drachm/Dram (60 minims; 1/8 or 1/16 oz), Gill
(5 Brit oz), Bucket (4 Brit gallons), Firkins (9 Brit gallons), Bag (3 bushels),
Seam (8 bushels), or Butt (2-47 barrels or 2 hogsheads). Since fresh water on
ships was stored in a butt, and people congregated and gossiped there, the term
scuttlebutt now refers to gossip, not just the fountain!

Note: 33.8 ml/fl oz and 3.785 liters per gallon are useful crossovers.

2. Common “English” units of weight include: caret (200 mg), ounce (12 apothe-
caries/troy or 16 avoirdupois per pound!), pound, and ton (2000 pounds per
short ton, 2240 pounds per long ton, 2204 pounds per metric ton). Mostly
fallen into disuse are: pennyweight (20 per troy oz), slug (32.174 avdp. pounds),
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10.5. VARIOUS COMMON UNITS 83

hundredweight (20 per ton). Pounds are, of course, abbreviated as lb!

28.349523 grams per ounce and 2.20 pounds per kilogram are useful crossovers.
Also, a nickel weights exactly 5 grams and a post-1982 penny half that.

3. Common units of time are: the pico-, nano-, micro-, milli-, seconds. There are
60 seconds per minute (angle or time!), 60 minutes per hour (or degree), 24
hours per day, 7 days per week, 14 days make a fortnight, 365.24 days per year
more or less. There are sidereal, calendar, and tropical years as well as calendar
and lunar months. We also speak of decades, centuries, millenia, age of the
earth (4.5 billion years), or universe (about 13.7 billion years—a Hubble time).

NIST is responsible for defining the second, currently via the cesium fountain
clock and cooperates internationally to generate world time known as Coordi-
nated Universal Time (UCT). However, the [US Navy] is responsible for main-
taining and distributing this time and uses several dozen cesium clocks and
about one dozen hydrogen masers to do this. They are researching the use of a
cesium fountain clock to help stabilize and steer the hydrogen masers. The sec-
ond is metric. The 215 century/3"¢ millennium started [January 1, 2001.] Also,
the designations 12 am (technically moom; Chicago style midnight) and 12 pm
should not be used.

4. You are responsible to know and understand the metric prefixes of: Giga, Mega,
Kilo, milli, micro, nano, and pico. You should be very aware that giga(G),
mega(M), and kilo(K) can have slightly different meanings especially when used
in a computer related context. There K refers not to 1000, but to 1024 = 210,
M might refer to 1,000,000; 1,024,000 (3.5" floppies!); or 1048576 = 2. G
might refer to 1,000,000,000; 1,073, 741,824 = 23°; or possibly some number in
between! The terms Kibi(Ki), Mebi(Mi), Gibi(Gi) have been suggested.

5. Common “English” units of length include the inch, foot (12 inches per foot),
yard (36 inches per yard), mile (5280 feet per statute mile—a nautical mile is
about 6076 feet (Int) or 6080 feet (Brit)). My father still speaks in rods (16.5
feet), which is also a pole or perch. Physicists speak of lightyears (5.8785 x
10" miles or 9.46 x 10'2km). This is the distance light travels in one year.
Light in vacuum travels exactly 299,792,458 meters per second (about
3x10® m/s). This value is c. When combined with the definition of the second,
this defines the meter. Hands (4"), mil (.001"), and points (about 1/72") are
still commonly used. Falling into disuse are furlongs (8 per mile), leagues (3
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naut. miles), fathom (6 feet), chains (80+ per mile), and cables (720 feet).

More metric crossovers: Exactly: 2.54 ¢m/in= 39.37 inches per meter.
Approximately 1.609 km per mile or 0.62 miles per km.

Feet are often abbreviated as single quotes and inches as double
quotes. (I am 56".) These same quote symbols are used for angle measure-
ment in minutes, seconds, and thirds. (A right angle is 90°0'0”0".)

10.6 Unit Conversions

Converting from one type of unit to another is a common occurance in science.
It is just another incidence of multiplying by our multiplicative identity (1)! For
example, to convert 0.62 miles into feet we multiply by the identity 5280 feet/1 mile.
The units of miles in the numerator and demominator cancel and we are left with
3273.6 feet. (More than 3 significant figures were retained, since 5280 is an exact
value.) Two additional and useful conversions are given below as further examples.

Example: 60 miles/hour x 5280 ft/mile x 1hour/3600s = 88ft/s.

Example: 5280 ft/mile x 5280 ft /mile /640 acres/sq mile=43560 sq ft/acre. This
is a square about 209 ft on a side or a rectangle exactly 132" x 330’. A square mile is
a section, 36 sections are a geographic township. Political townships vary in size.
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10.7 Significant Figures Homework

Each problem is worth two points, except as noted.

10.

11.

12.

13.

14.

15.

Using your TI-84 calculator result for 69! in scientific notation, multiply 69! by
7 and approximate 70! also in scientific notation.

For problems 2-7 round each measurements to the number of significant figures
shown in parentheses. Write your answer in scientific notation.

314.721m (4 sig. fig.)
0.001775m (2 sig. fig.)

64.32 x 107 m (1 sig. fig.)

. 8792m (2 sig. fig.)

87.073m (3 sig. fig.)

4.3621 x 10°m (1 sig. fig.)

For problems 8-17 do the following operations and give the answer to the cor-
rect number of significant figures.

74.626 m — 28.34m
61.2m + 9.35m + 8.6m
944m — 2.11m

1.36m + 10.17m
34.61lm — 17.3m

2.10m x 0.70m
2.4526 m = 8.4.

0.365m = 0.0200.
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16. (1.8 x 1073m) x (2.9 x 10-2m)

17. 5.3 x 1072 m + 0.255

18. (Four points:) The five students at table #2 obtained the following measure-

ments for the length of 12-inch rulers in centimeters (four groups tried it 4
times). Determine whether each student’s measurements were accurate and/or

precise.

Meas. #\Student: | Audrey/Rashmi | Becky Cami Kara
1. 31.51 30.4 30.281 28.1
2. 31.45 30.5 30.781 28.9
3. 31.61 30.3 30.441 28.7
4. 31.35 30.4 30.431 28.6
Accurate: Yes or No Yes or No | Yes or No | Yes or No
Precise: Yes or No Yes or No | Yes or No | Yes or No

19. (Three points:) Identify the exponent for the power of ten multiplier for each

of the following metric prefixes. (Hint: they are in order and all the missings

ones are multiples of three.)

Prefix | x107
Yotta- 24
Zetta- 21
Exa- 18
Peta- 15
Tera-

Giga-

Mega-

Kilo-

deci- —1
centi- —2
milli-

micro-

nano-

pico-

femto-

atto- —18
zepto- | —21

20. Bonus: Find a humorous| unit /prefix such as 10° phones is one Megaphone!
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Numbers Lesson 11

Beyond Rationality

All is number. Pythagoras

In this lesson we will explore numbers which cannot be expressed as the ratio of
two integers, i.e. irrational numbers. Our biography is on Pythagoras and then we
explore a proof often attributed to him that many radicals are irrational. We study
the parts of a radical and how to simplify and multiply them. We discuss rationalizing
denominators and give the old method of extracting roots by hand. We close with a
section on the Golden Ratio.

11.1 The Father of Numbers: Pythagoras

Pythagoras was an ancient Greek (c. 576-c. 500 B.C., both dates have large single
digit uncertainties) mathematician, philosopher, and mystic perhaps best known for
his theorem and school. We will discuss the Pythagorean Theorem in the next lesson.
Many mathematical results are attributed to Pythagoras but some of them were likely
developed by his students at his school/brotherhood, a few even after he died. At
this time it is very difficult to separate the man from his legend.

Pythagoras coined the word philosophy to signify a love of wis-
dom. Pythagoras and his school believed everything could be de-

scribed mathematically, hence predicted and measured. Rhythmic m
cycles were often involved, especially in describing the cosmos,

another word he likely created. Mathematics and religion thus be-

came comingled. Thought became superior to observation, a notion
still present in many religions with an antiscience bias.

Pythagoras was born on an island off Greece settled by Greeks. His secret reli-

gious school was communal (at least for those in the inner circle) and lasted several
generations after his death, thus influencing Aristotle, Socrates, and Plato. Secrecy
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was not always well observed. The school was located in southern Italy. Both male
and female students were welcome and treated equally at a time when women were
often considered property. The pentagram (a regular pentagon with all diagonals
producing a 5-pointed star) was their symbol. Any writings Pythagoras produced did
not survive, but his teachings may have all been strictly oral.

In astronomy the known planets were said to produce a harmony of the spheres.
Musical tones and scales were also studied. One story has his school studying the
blacksmith’s anvils which harmonized because of their simple proportional sizes.
Pythagoras believed in reincarnation and claimed to remember four previous lives.
Many of his followers or disciples studied in Egypt where the transmigration of the
soul was a common belief. Pythagoras was also the first influential Western vege-
tarian. Beans were also not to be eaten since they contained or transmitted souls,
although it is possible abstaining from beans really meant abstaining from politics.
Pythagoras’s death may have been a murder and some tales indicated he stopped
running when he came to a field of beans.

11.2 Irrational Numbers

It was widely believed that all numbers were rational, expressible as the ratio of
two integers, until the Pythagorean school (around 500 B.C.) discovered otherwise.
(Legend has it that someone shared this secret (“spilled the beans”) and was thrown
overboard the ship they were on at the time.) Today, such numbers are called ir-
rational numbers. Since then irrational has become an adjective meaning lacking
normal logical clarity! The square root of 2 (1/2) may have been the first irrational
number discovered. It is the solution to the simple problem z? = 2.

Irrational numbers are real numbers that cannot be expressed as the ratio of two
integers.

Common irrational numbers are nonrepeating and nonterminating decimals. These
include the roots of any prime and indeed most radicals.

11.3 Simplifying Radicals

The symbol /is called a radical. The number underneath the surd symbol (“check-
mark”) is the radicand. n is the root index, indicating what the root is. When
no root index appears, 2 meaning square root is assumed.

Irrational numbers were originally considered absurd! Historically radicals were
written without a vinculum: | /(2), for instance.

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4



11.4. PYTHAGORAS’S PROOF THAT THE /2 IS IRRATIONAL 89

V2 can also be written as 22. In general, %% means the b root of 2. Such
rational exponents still follow the exponentiation rules given in Numbers Lesson [Bl

11.4 Pythagoras’s Proof that the v/2 is irrational

Given below is a proof often attributed to Pythagoras of the existence of irrational
numbers using the v/2 as an example. (Some have suggested that the golden ratio
was the first irrational number discovered.)

Statements Reasons

V2 =a/b Proof by contradiction: assume true
what we are proving false

2 = a? /b 2% = a? Square both sides (expressions remain
equal)

a and b have no common factors assumed without loss of generality: a/b
represents reduced fraction

If a is odd, a? is odd, but odd times odd is odd, a cannot be both

2b% is clearly even, a contradiction even and odd simultaneously.

If a is even, let a = 2¢ even can be factored into 2 and another
number even (2) times anything is even

a’> =a-a=4c? = 2b* Substitution of equals into product
(twice)

2c2 = b? Division Property of Equality

So b is even; hence a, b have the com- | Q.E.D. (quod erat demonstrandum:

mon factor 2, a contradiction. Latin for which was to be proved.)

When simplifying radicals, break the radicand into factors of perfect squares,
cubes, etc. (9 is the perfect square of 3, 4 is the perfect square of 2, 27 is the cube of
3). Separate the factors into separate radicals. Then express the roots of the radicals
with perfect squares, cubes, .. ..

Examples:

V27T =49-3=V9-V/3=3V3

V96 = V16 - 6 = V16V6 = 4V6

V250 = /125 - 2 = V/125v/2 = 5¢/2
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11.5 Multiplying Radicals

When multiplying radicals, multiply the radicands of like root indexes and then
simplify the product. Usually, the easiest way is to simplify as you go along so that
you don’t end up with large products to factor.

Examples:

V6V3=v6-3=v18 =v9-2=3V2
(V1) =VTVT =1

(2v5)? =2v5-2v5=4-5 = 20

Compare the next two examples and notice how they differ. Both methods are
correct. Choose the one which saves you the most time.

V50V15 = V750 = V25 - 30 = 5v/30

V5015 = 5v/2 - V15 = 5v/30

Note when the radicals have different root indexes:

YT6VE = VB2V =292 V32

11.6 Rationalizing Denominators

Common practice is to simplify expressions to get rid of radicals in the denomina-
tor of fractions. Historically, this was all but necessary before calculators. (Imagine
dividing v/2 by the v/3 by long division!) In order to rationalize the demoninator, the
common practice of multiplying by one is used. One comes in many forms: anything
divided by itself is one. So multiply the fraction by the square root that is in the
denominator over itself.

Examples:

3_ V3 _VBv2 _ V6

2 V2 V2v2o 2
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11.7 Extracting Roots

The v/2 can be approximated on your calculator. Before calculators were devel-
oped, the following method was widely taught and used. It is based on Newton’s
Method which will be taught in calculus. Since the decimal representation of v/2 goes
on forever without terminating or repeating, calculators can only give you a fairly
precise decimal approximation.

Whenever you use the decimal approximation of a radical, you should note that it

is an approximation and not exact by the use of the symbol ~.

1. Separate the number into groups of two digits going each way from the decimal
point.

2. Estimate the largest square which will go into the first group.

3. This number goes both in the normal divisor’s location for long division and
above the first group as in long division.

4. Double this digit and bring it down for the next step (see example below).
5. Also bring down the next group of digits as in long division.

6. Estimate how many times the two digit number formed using this doubled digit
and the number of times...will go into the number.

7. Repeat steps 4-6 above, but now the number down will be 2, 3, 4 digits, etc.
Continue until the desired accuracy is achieved.

Example: Extracting root 2.
O G G G G G ¢
7/ 2.00 00 00 00 00 00
Find an integer that squared goes into 2:
1

Step 1:

2:
Step 21 550000000 0000
Double the quotient and bring down to be the divisor. Another digit will follow.
1. 7
1/ 2.0000 00 00 00 00
1
27/ 100

Find the number,?, so that 27 will go into 100 ? times. (We find that it is 4:
244 <100 < 25-5)
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1. 4

1/ 2.0000 000000 00
1
24/ 100
96
1

We continue to repeat the steps: double the quotient and find the last digit until
we get the precision we need.

1. 4 1
1/ 2.0000 00000000
1
24/ 100
96
281/ 400
281
119

How long would it take you to verify for accuracy the following level of precision?El

V2 = 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731
76679 73799 07324 78462 10703 88503 87534 32764 15727 35013 84623 - - -.

11.8 Golden Ratio

Another curious irrational number is ¢ = % ~ 1.618--- and his partner ¢’ =
@ ~ 0.618 - --. These are known as the Golden Ratio and symbolized by ®, the
Greek letter capital phi. Notice how things like 3" x 5” cards often assume these
proportions. Notice also how ratios of consecutive Fibonnaci numbers approach the
Golden Ratio as seen in Numbers Homework 8.8 The Golden Ratio is also one of the
roots of the quadratic equation 2 — 2 —1 = 0. If you change the 2’s in the continued
fraction given in Numbers Lesson [l to 1’s, you will have yet another representation!

| & = 1.61803 39887 49894 84820 45868 34365 63811 77203 09180 - - - |

'WARNING: some students have naively programmed this on their calculator and not gotten
this result due to round off error.
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Name Score

11.9 Radical Homework

Each problem is worth one point.
Examples: Simplifying Square Roots

V75 =253 =+25-1/3=5/3
V76 = V419 = V419 = 2V/19
V144 =1/9-16 = V916 =3-4=12 /54 =196 = v/9v6 = 3v/6 not 3v/2v/3

Examples: Multiplying Square Roots

(V3)(v2) = (V6)
(V3)? = (V3)(V3) =3
(2v3)? = (2v3)(2V3) =4 -3 =12

Examples: Rationalizing the Denominator

8 V8 VB8 V2 V16 4

Express each square root EXACTLY in simplest form (one point each).

1. V12 2. /18 3. V24 4. /32 5. V40
6. /48 7. V60 8. V75 9. V73 10. V95
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11. v/90 12. /216 13. /120 14. /235
16. /324 17. /720 18. /242 19. /784

Express each product EXACTLY in simplest form.
21. (3v/2)? 22. (44/3)? 23. (2v/3)(V2) 24. (3v/6)(2v/3)

Rationalize the denominator, then simplify EXACTLY.

2. |/ 27, /2 28. /& 29. /2

15. /810

20. v/828

25. (7v/3)?

30. (/1%
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Numbers Lesson 12

Theorems: Pythagorean, Fermat’s
Last, etc.

I have discovered a truly marvelous demonstration
which this margin is too narrow to contain. Pierre de Fermat

This lesson introduces two important theorems, the Pythagorean Theorem and
Fermat’s Last Theorem (FLT). We repeated the quote above due to its importance.
Considerable space is given to an introduction to trigonometry before the Pythagorean
Theorem is applied to the practical application of finding distances. Diophantine
analysis is introduced to help discuss FLT. Perfect cuboids, the Fermat-Catalan Con-
jecture, and Goldbach Conjecture are also covered.

12.1 The Father of Modern Mathematics: Fibonacci

The Italian Fibonacci or Leonardo of Pisa (c. 1170—-c. 1250) was the “most talented
mathematician of the Middle Ages.” Fibonacci is best known for spreading the use of
the Hindu-Arabic place value number system and also a sequence of natural numbers
presented [earlier] The name Fibonacci may have been assigned posthumously or was
the name Leonardo published under. In either case it seems to be a reference to his
father and some have suggested it to be self-depreciating in that his father’s nickname
meant simple. Leonardo’s father was a merchant and thus he visited Arab markets
in North Africa and as a young boy Leonardo learned the computation methods
there. Leonardo’s publication caused the eventual displacement of the use of Roman
numerals thus ushering in modern arithmetic. The Fibonacci sequence was not new
with Fibonacci, but his publication of it in conjunction with the tallying of a rabbit
population popularized it.
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96 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT’S, ETC.

12.2 Pythagorean Theorem, Proof, Triples

One of the most important discoveries in antiquity was that not only did 32 +42 =
52, but also, if such a triple could be found, these were the side lengths of a right
triangle. (A right triangle contains one 90° or right angle.) Several cultures (Chinese,
Babylonians, Egyptians, and Greeks) may have independently made this discovery,
but due to our historic European slant and records preservation, this has been known
as the Pythagorean Theorem. However, the Greeks went further, developing geometry
not only for practical purposes, but also in abstraction and for its logical structure.
The Pythagorean Theorem is one of the most important facts learned in Geometry.

A triangle with sides a, b, and ¢ (longest) is a right triangle if and only if a*+0* = 2.

Hence we know how the sides are related if it is a right triangle. We can also
prove the triangle to be a right triangle if its sides have this relationship—the converse
situation.

There are over three hundred different proofs of the Pythagorean Theorem. One
of the common proofs uses a square within a square (see figure below). Each side of
the inner square has length c. Each corner of the inner square intersects the sides
of the outer square. The four triangles formed by the intersection are all congruent.
Therefore each side of the outer square is made up of two segments, a and b.

b a

a b

In order to find the distance c in terms of a and b, we use the fact that the area
of the outer square is the same as the sum of the area of the four triangles and the
inner square. The rest is algebraic manipulation. (a+b)* = ¢* +4(3)ab. Expanding,
we get: a? + 2ab + b* = ¢® + 2ab. After subtracting 2ab from both sides, we conclude
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that ¢ = a® + b2 Q.E.D

A pythagorean triple is a set of three integers a, b, ¢ such that a® + b* = 2.

A primitive pythagorean triple is a pythagorean triple such that GCF(a,b) = 1.

Common pythagorean triple are: 3, 4, 5; 5,12, 13; 7,24, 25; 9, 40, 41;
and 6, 8, 10. All but this last triple are primitive. The last is called a multiple.
Note: it follows that if GCF(a,b) = n, then n is also a factor of ¢. Notice how
32 =44 5; 52 =12+ 13, .... This is a characteristic of a general class of primitive
pythagorean triples involving squares and two consecutive integers and was illustrated
in homework 3, problem 6. Pythagorean triples such as 8, 15, 17 do not have this
characteristic.

12.3 Special Triangles

A regular polygon has all sides equal (equilateral) and all angles equal (equian-
gular). In a triangle these cannot occur independently. The resulting triangle with
sides in the ratio 1:1:1 and angles of 60°,60°, 60° is discussed, in part, below. The
three most important right triangles are: the 3,4, 5; the isosceles right (45°,45°,90°);
and the 30°,60°,90° triangle. The 3,4,5 triangle has angle measures of about 37°,
53°, 90°. Watch especially for these special angles and triangles.

The isosceles (2 or more sides equal) right (having a 90° angle) triangle can be
thought of as having legs (the shorter sides of a right triangle) of length 1. Thus
the hypotenuse (the longest side of a right triangle) is V12 + 12 = /2. Please
label the upper “?” (blue ?) thusly in the figure above. The 30°,60°,90° triangle
can be thought of as a bisectedﬁ equilateral triangle. Thus one side might be 1, the
hypotenuse then is 2 and the other side must satisfy 12 + 22 = 22, or 22 = 3, thus
x = /3. Please label the lower “?” (red ?) thusly in the figure above. These side
length ratios must be memorized and will be seen often in trigonometry which is the
study of triangle measure, but primarily involves triangle side length ratios. Note: if
a’+b* < %, the triangle is obtuse (contains an angle more than 90°). If a*+b* > ¢,
the triangle is acute (all three angles are less then 90°).

L We realize this proof depends on the concept of area and the area formula for triangles, items
not yet formally covered in this course. Motivation for them could occur back when factors are
presented.

2We will formally define this term in Geometry, but its meaning should be clear here: to cut into
two equal parts.
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12.4 Trigonometry Definitions

A quick introduction to a semester of trigonometry can
be summarized as follows. Three items taken two at a
time can be done six different ways (32 = 3!/(3—2)! =
6/1 = 6). One trigonometric definition involves ratios
(two numbers) of the three sides of a right triangle.
For sake of future reference, we will identify the tri- b ¢
angle as AABC with right angle C'. This is a very
standard convention. Side c is then the hypotenuse
and is opposite ZC, etc. In relation to angle A, ais cU B

its opposite side and b is its adjacent side (adjacent
means to lie nearby). See the figure to the right.

sin A=opposite/hypotenuse cos A=adjacent/hypotenuse tan A=opposite/adjacent

sin is the normal abbreviation for sine and in English is pronounced the same
with a long i sound (saying its name). It comes from the Latin word for curve which
came from a Sanskrit word meaning bowstring. cos is the normal abbreviation for
cosine where the prefix co- has the usual meaning of together or partner. tan
is the normal abbreviation for tangent from Latin meaning to touch which has a
more general geometric meaning of the intersection of two geometric figures at a point.
These relationships are often remembered via the mnenomic SOH CAH TOA. One
can readily see that tan A=sin A/cos A. The remaining three trigonometric func-
tions: secant or sec A=1/cos A; cosecant or csc A=1/sin A; and cotangent or
cot A=1/tan A are less frequently used and usually don’t even appear on calcula-
tors. Remember, there is only one cofunction in each reciprocal relationship. It is
important to note that a rather confusing notation is historically used for the inverse

!z refers not to the reciprocal of sin A, but rather to the

x is an angle whose sin is equal to 2. However, sin® z

trigonometric functions. sin™
inverse function. That is sin™!
means (sin(x))? and must be entered as such on your calculator. The table below

follows directly from these special triangles and trigonometric definitions.

tan 90° is ill-defined since cos 90° = 0 (or the adjacent side is zero) and division by
zero is not allowed. More will be presented on the trigonometric function definitions
after Number Lessons [13] introduces the cartesian coordinate system and Number
Lesson [15] introduces transcendental numbers.
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Angle (deg) | Angle (Radians) | Sine | Cosine | Tangent
0° 0 0 1 0
30° z 1/2 | V3/2 V3/3
36°5211.63.." | 0.64350... 3/5 | 4/5 3/4
45° z V2/2 | V2/2 1
53°748.36..." | 0.92729... | 4/5 | 3/5 4/3
60° z V3/2 | 1/2 V3
90° 5 1 0 ill-defined

12.5 Distance

The most important applications of the Pythagorean Theorem is for finding the
distance between points in a plane. See Numbers Lesson [[3] for the formal develop-
ment of the cartesian coordinate system. Consider the points (1,2) and (4,6). Since
our z and y axes are orthogonal (as in at right angles or mutually perpendicular),
it should be clear that the distance between them is V4 — 12 +6 — 22 = /32 + 42 =
V9 + 16 = /25, which is 5. In general, the distance between two points (21, ;) and

(w2, yo) is:

D= /(z2 —21)2 + (y2 — 11)?

Points 1 and 2 may be interchanged with no affect since the squaring operation
forces the result positive. That is, distance is always positive, unless termed directed
distance, in which case it may be negative.

12.6 Diophantine Analysis

Integers were the first numbers to be discovered and studied. As a result, con-
siderable efforts went into finding integer solutions to some problems. Diophantus of
Alexandria, a Greek, lived about 250 A.D., wrote a treatise introducing symbolism
whose indeterminate equations are solved with rational values. Consider the problem
of finding triangular numbers which are also square. We already know the formulae
for both and can set them equal: n(n+1)/2=2? or n(n+1) = 222. 0,1, 36,1225, . ..
are solutions when ({n,z} € {(0,0),(1,1),(8,6),(49,35),...}. Such analysis can be
quite difficult and might involve expressing square roots as continued fractions, etc.
and sparked the early interest of many mathematicians.

12.7 Fermat’s Last Theorem

Fermat considered extensions to the Pythagorean Theorem and wondered if there
existed any natural numbers such that 2" +y" = 2" for n > 2. This became known as
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Fermat’s Last Theorem and was solved in the negative only in recent years. Specifi-
cally, Fermat conjectured this equation to be false. His notes are in the margin of his
copy of Diophantus’ Arithmetica where he remarked about 1637: “I have discovered a
truly marvelous demonstration which this margin is too small to contain.” This was,
of course, written in Latin, since that is what European scientists and mathemati-
cians communicated in until Isaac Newton’s book Optiks was published in 1704 in
the vernacular (language native to the region, as in English). Fermat clearly proved
his theorem for n = 4. It is also clear that to prove it for all prime n is sufficient.
Euler produced an incomplete proof for n = 3 in 1770 which was completed by later
mathematicians. Legendre proved it for n = 5 in 1823. Lamé proved it for n = 7
in 1839. In 1850 Kummer proved it for all n’s which did not divide the numerators
of the Bernoulli numbers!] One early proof failed because prime factorization is not
unique over the complex numbers. Andrew Wiles in 1993 gave a three day series of
lectures where he stunned the world on the last day by completing a proof of some-
thing which implied FLT (Fermat’s Last Theorem). Although it required a little
patching up over the course of the next year or so, it is now well accepted. However,
at 300 pages and dependant on recent advances in mathematics, it seems doubtful
Fermat ever had a proof, but his margin certainly was too small!

12.8 Perfect Cuboid

Consider a three dimensional application of Pythagorean Theorem. In a box with
dimensions 3 x 4 x 12, it is clear the longest (body) diagonal is 13 (5% + 12% = 169 =
13%). There are 3 different lengths of diagonals on the faces:

V32 +42=5 V32 +122 = /153 VAZ +122 = /160

In a perfect cuboid (box or rectangular parallelopiped), all seven of these num-

bers: three lengths, three face diagonals, and one body diagonal would be integers.
This seems like a another potential EXPO project and two homework problems will
give two of the three types of close encounters known. It is known that if a perfect
cuboid exists, one of its sides must be at least 100 billion. It is also known that
perfect parallelopipedﬂ exist.

12.9 Fermat-Catalan Conjecture

The Fermat-Catalan Conjecture is a generalization of Fermat’s Last Theorem. It
asks if with z, y, and z as relatively prime integers, can the equation: x? + y9 = 2",
with %+ % —I—% < 1 be satisfied. p, q, and r are also integers. Here are the only known
solutions:

391 1 1 1 5
»27 67 307 427 667 "
4This older spelling seems to be falling out of favor to parallelepipeds, at least by Google.
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T Y zlplg|r
1 2 317132

2 7 3151124

7 13 2131219

2 17 1171312

3 11 122 1542

17 76271 | 210663928 | 7| 3| 2
1414 | 2213459 65327
9262 | 15312283 11313127
43 96222 | 30042907 | 8 | 3 | 2
33 | 1549034 15613 |82 |3

For the first row, 17+ 2 =1+8 =9=32 with 1/7+1/3 +1/2 =41/42 < 1.

The second row has 2°+7% = 32+49 = 81 = 3* with 1/5+1/2+1/4 = 19/20 < 1.

Several students in 1997-98 attempted 25000 bonus points for finding another
solution and some continued their research in 2000-01 as an EXPO projects or college

research.

12.10 Goldbach’s Conjecture

Christian Goldbach lived in Russia 1690-1764. His mathematical work includes
what has become known as |Goldbach’s Conjecture| which states: every even number

greater than 2 can be expressed as the sum of 2 primes, not necessarily distinct. No

counterexample has ever been found, but a complete proof has eluded mathematicians

since 1742. However, during the summer of 2003 two groups, one Chinese, one [ranian,

both claimed proof. I reject the Chinese proof out of hand. They may have proved

something similar, but not Goldbach’s Conjecture.

They assume one is prime—

elsewise, it is elegant. You be the judge of the Iranian proof.
Example: 100=3+97=11489 =17+ 83 =29+ 71 =41 4+ 59 = 47 + 53.
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12.11 Distance Homework

All values should be given as exact, which means in simplified radical form.

(Remember to rationalize the denominator, if necessary.) Decimal approximations
are optional, but also lend completeness, but must be clearly identified as
approximations. Each problem is worth two points.

1.

Using the Pythagorean Theorem in its three dimensional form (a?+b?+c¢? = d?),
find exactly and simplify the three face diagonals and the body diagonal of a
parallelopiped (box/cuboid) with a = 240, b = 44, ¢ = 117.

. Using the Pythagorean Theorem in its three dimensional form (a?+0*+c* = d?),

find exactly and simplify the three face diagonals and the body diagonal of a
parallelopiped (box/cuboid) with @ = 104, b = 153, ¢ = 672.

Find the exact length of the hypotenuse of an isosceles right triangle if the legs
are of length 5.

Given the hypotenuse of an isosceles right triangle as 12, what are the exact
lengths of the other two sides.

Given a 30°,60°,90°, triangle with the hypotenuse 14, find the exact lengths
of the other two sides.

Given a 30°,60°,90°, triangle with the side opposite the 60° angle being 12, find
the exact length of the other two sides.

Find the exact distance between the points (—12,6) and (4, —6).

Find the exact distance between the two points (3,5) and (1,—1).
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10.

11.

12.

13.

14.

15.

16.

17.

Driving to Dairy Queen from the MSC, you go a 1/4 mile to the left. The road
bends (90°) to the right, and you proceed on for another mile to Main street.
At Main Street, you take a left and continue for another 2 miles. Dairy Queen
will be on the left side of the road. If you happened to walk directly from MSC
to Dairy Queen, how many miles would you save by not driving?

George lives 5 miles north and 2 miles east of the MSC, while Jenni lives 1 mile
west and three miles south of the MSC. How far apart do they live? (Assume
a flat earth!)

A circle is the set of points equidistant from a given point. If (4,2) is the
center with (6,3) on the circle, prove that (2,3) is also on the circle. Note:
(x —h)*+ (y—k)* = r? gives the relationship for a circle centered at (h, k) with
radius r.

The distance from point A to (3,2) is 15. Find point A. How many answers
could you have?

Verify rows 3 through 5 of the Fermat-Catalin Conjecture table.

Verify that Goldbach’s Conjecture is true for 58 and 74. How many different
sums satisfy Goldbach’s Conjecture for 587 For 747 (An example is 78: 71 + 7
=11 + 67 = 17 + 61)

Use your calculator (in degrees mode or use degree symbol) to verify sin 15° =
@ and cos 15° = @, then carefully evaluate exactly (@)24—(@)2.

N
[

Verify tan 15° = 2 — /3 =

B
+
N

s

Read section 8.6 in your geometry textbook and look at problems 8.6: 11-14,
18-19, 27.
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Numbers Lesson 13

Cartesians, Polynomials, Quadratics

Read Euler, read Euler, he is the master [teacher| of us all. LaPlace

This lesson develops the cartesian coordinate system, relations and functions, then
discusses slope, equations of a line, quadratics, the quadratic formula, the discrimi-
nant, cubics, and higher order polynomials.

13.1 Analysis Incarnate: Euler

When the four greatest mathematicians are listed, Euler’s name is the one added
to the great three. Leonard Euler—pronouced Oiler—(1707-1783) was a Swiss math-
ematician and physicist, although he spent most of his life in Germany and Russia.
Since he published more papers than any mathematician of his time he has been
called prolific—prolific can also be applied to the fact that he fathered 13 children.

Euler’s father was a friend of the Bernoulli family and Euler’s genius was soon
discovered by them. His course of study shifted from theology to mathematics when
Johann Bernoulli intervened, telling Euler’s father he would be a great mathematician.
Euler followed Johann’s son Daniel to St. Petersburg after son Nicolas died. Euler was
barely 20 when he started working at the Imperial Russian Academy of Sciences—
he had just completed his Ph.D. The Academy emphasized research and had few
students and a good library. After 14 years Euler moved to Berlin. While there he
wrote over 200 letters to a German princess explaining diverse areas of math and
science. These were compiled into a best-seller. Frederick the Great’s mother had
difficulty engaging Euler in conversation to which he replied: “Madam, it is because
I have just come from a country where every person who speaks is hanged.”

Euler lost sight in his right eye while in Russia and his sight in his left eye dete-
riorated while he was in Germany, rendering him nearly blind. However, Euler had
phenominal mental calculation skills and a photographic memory which allowed him
to compensate so his productivity seemed barely affected. “Euler calculated without
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apparent effort, as men breathe.” Euler later returned to St. Petersburg where he
worked the last 16 years of his life.

Euler developed the field of graph theory which we will discuss further in Geom-
etry and revolutionized several other fields, such as number theory. He standardized
the use of many mathematical symbols, terminology, and notation we now take for
granted, such as 7, e, i = v/—1, ¥, f(z), etc. His final words were: “I die” when he
died of a stroke, perhaps with a child on his lap, which is how he often worked.

13.2 Introduction

Coordinate geometry was developed by both Descartes and Fermat. Today we use
cartesian coordinates extensively which are named after the former. The relationship
between two sets of numbers are often represented via a graph or an equation. For
example: F' = %C’ + 32 relates temperature in Celsius to temperature in Fahrenheit.
One variable is designated the independent variable (C') and the value (F') depends
on it and is thus the dependent variable. Often, it is easy to reverse these roles:
C = g(F — 32). Such relationships, if plotted on a coordinate system are lines and
hence termed linear.

13.3 Ordered Pairs, Quadrants, Relations, Functions,
f(z), VLT

Mathematicians often speak of forming the cartesian product of several items.
The cartesian product is a set operation, but results in a (potentially) bigger object
which is generally not a member of our universal set! One example would be the
rational numbers formed as ratios of integers. This one happens to be the same size
as the integers.

The cartesian coordinate system is such a cartesian product of two number lines,
labelled x and y. Now instead of having points on a number line with a single number
to indicate its distance from the origin (zero), we have points on a plane with two
numbers to indicate position. The number lines divide the plane into four quad-
rants labelled I, I, III, IV counterclockwise with quadrant I having both positive x
and positive y coordinates. Occasionally Arabic instead of Latin numbers are used,
especially when referring to a single quadrant. The axes are not in any quadrant.

IT | I
III | IV

These coordinates are called ordered pairs and are separated by commas and
enclosed within parentheses. The first coordinate (abscissa) is « and is plotted hori-
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zontally. The second coordinate (ordinate) is y and is plotted vertically. Warning:
the notation for an open interval is identical!

Lattice points are points in the xy-plane with integer coordinates for both x and
Y.

A relation is a set of ordered pairs.

A function is a relation for which there is exactly one value of the dependent
variable for each value of the independent variable.

Instead of writing y = = + 2, functional notation is often used: f(x) = z+ 2. This
does not mean to multiply f by z. It means f is the name of the function with x as
the independent variable. It gives the recipe for finding f(x) = y given an x value.

‘The set of values of the independent variable is the domain. ‘

‘The set, of values of the dependent variable is the range. ‘

The Vertical Line Test can be used to determine if a relation is a function as
follows. Check if any vertical line ever crosses the relation more than once. If it does,
the relation has failed the vertical line test and is not a function.

13.4 Slope, Line Equations

About half of calculus is concerned with finding the slope of any function any-
where. Slope is thus an important concept but should already be familiar.

2= Ay dy
T9—1x1 Az dx

slope = m = rise/run =

Parallel lines have equal slopes.

Perpendicular lines have slopes which are negative reciprocals.

Note: modern books tend to use an inclusive definition of parallel which allows a
line to be parallel to itself. Others exclude this.

This should be well studied in Algebra, so only a quick review is presented in
today’s activity. In summary, if y = ma+b, then m is the slope and b is the y-intercept
(i.e., the value of y when z = 0). Often linear equations are written with integer
coefficients in either standard (Az + By = C') or general (Ax + By —C = 0) form.
Such relationships must be converted into slope-intercept form (y = mx + b) for
easy use on the graphing calculator. In today’s activity —10z+vy = —5 (10x —y = 5)
and y = 5 are encountered. Such systems of equations are either inconsistent
(parallel lines, so have no points in common), dependent (coincident lines (same
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4]
[
[¢,]

Figure 13.1: Systems of equations can be inconsistent (left with y = z and y = x4+ 2),
dependent (middle with y = x and 2y = 2z), or independent (right with y = = and
y=—x+2).

slope and y-intercept), so all points are in common), or independent (slopes are
different). See Figure 3.l One other form of an equation for a line is called the
point-slope form and is as follows: y —y; = m(x — x1). The slope, m, is as defined
above, x and y are our variables, and (z1,y;) is a point on the line.

13.5 Special Slopes

It is important to understand the difference between positive, negative, zero,
and undefined slopes, and that is also covered in today’s activity. In summary, if
the slope is positive, y increases as x increases, and the function runs “uphill” (going
left to right). If the slope is negative, y decreases as x increases and the function
runs downhill. If the slope is zero, y does not change, thus is constant—a horizontal
line. Vertical lines are problematic in that there is no change in . Thus our formula
is undefined due to division by zero. Some will term this condition infinite slope,
but be aware that we can’t tell if it is positive or negative infinity! Hence the rather
confusing term no slope is also in common usage for this situation.

13.6 Polynomials

Polynomials are algebraic expressions involving only the operations of addition,
subtraction, and multiplication (4, —, x) of variables. The coefficients should be
rational or perhaps real.

Polynomials involve no nonalgebraic operations (such as absolute value) and no
operations under which the set of real numbers is not closed, such as <+ or square
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root.

An expression is a collection of variables and constants connected by operation
symbols (4, —, X, =, etc.) which stands for a number.

‘A term is a part of an expression which is added or subtracted.

Quadratic functions are polynomials with degree two and will be explored below.

The degree of a polynomial is the maximum number of variables which are factors
in any one term.

Polynomials (poly- means many) are named based on how many terms they have
and by their degree.

Monomials have one term.
Binomials have two terms.
Trinomials have three terms.

Linear functions are a special class of polynomials with degree one. A constant
function has degree zero.

If only one variable is present, such as x, we have a polynomial in z. The coefficient

of the term with highest degree is called the leading coefficient. There may also
be a constant coefficient which has no x multiplier.

13.7 Quadratic Functions

The general equation for a quadratic function is y = ax? 4 bx + ¢, where a, b, and ¢
are constants, and a # 0. (If a = 0, then the function is linear.)

—b+ Vb2 —4
Learn the Quadratic Formula (its derivation is given below): x = 5 ac
a
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ar’ +br +c=0 Given: the general quadratic equation

ar® +br = —c Move constant to other side, by subtract-
ing ¢ from both sides.

2 _ . .
a4 bw _ —c Remove coefficients from quadratic term

(x?) by dividing everything by the coeffi-
cient.

2?2 +bx/a+ (b/2a)* = —c/a+ (b/2a)* | To have perfect square trinomial (that’s
why method is called Completing the
Square), need to take half of “b”, square
it, and add that to both sides.

(x +0b/2a)(x +b/2a) = —c/a + (b/2a)? | Factor left side since it is now a perfect

square.
(r +0/2a)* = —c/a + (b*/4a?) Rewrote in exponential form (z x z = z?).
(x4 b/2a)* = 2% + % On the right side, rewrote fractions to have

common denominator, 4a?.

x+b/2a = W Took square root of both sides (As you do

to one side, do to the other.) When adding
fractions with a common denominator, add
the numerators.

—b+v/b%2—4dac

T = 2a

I[solate the variable by subtracting b/2a
from both sides.

The shape of the graph of a quadratic equation is called a parabola. On both
sides of the vertex (the maximum or minimum point on the graph), the graph of the
equation either increases or decreases. The vertex lies on the axis of symmetry.
Thus the graph on one side of the line (axis) of symmetry is a reflection of the graph
on the other side. Several examples of parabolas are explored in today’s activity.

Where the graph crosses the z-axis are points called x-intercepts where y = 0.
The general equation then degenerates into ax?® + bx + ¢ = 0. To solve for z, the
quadratic formula method must be mastered. It involved fractions and radicals.
Quadratic Relations will be explored in Algebra II, Precalculus, and Calculus BC.
They will allow the full nature of conic sections to be explored.

To obtain the solution to a quadratic equation, Completing the Square is some-
times used. Using the completing-the-square method, as outlined above in the deriva-
tion of the quadratic formula, on the general equation (az? + bz + ¢ = 0) will find the
solutions to any equation.
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13.8 Discriminant

If az? + bx + ¢ = 0, then the quantity D = b® — 4ac is called the discriminant.

Gauss’s Fundamental Theorem of Algebra states that the number of solutions
to any equation cannot exceed its degree. In fact, if we carefully count repeated (see
Activity 12) and complex roots (see Numbers Lesson [I€]), we will find equality. So,
a quadratic equation may have up to two solutions. To determine quickly how many
and what type of solutions a quadratic equation has, analyze the discriminant.

Given: az? + bx + ¢ = 0, where a,b, and ¢ are real numbers.

If ¥ —4ac | <0 | The equation has no real-number solutions. The solutions, in-
volving non-real complex numbers, will be discussed in Numbers
Lesson

If b — 4ac | > 0 | The equation has two different real-number solutions. If D is a

perfect |rational| square, the solutions are rational.

If ¥* — 4ac | = 0 | Then the equation has a repeated real-number solution with the
vertex on the z-axis. If @ and b are rational, then the solution
will also be rational.

An example is 22 —62+8 = 0 where a = 1, b = —6, and ¢ = 8. So the discriminant
becomes (—6)? — 4(1)(8) = 36 — 32 = 4. Since 4 is a positive number, the equation
will yield two real-number solutions. These answers are (6 4+ 2)/2 and (6 — 2)/2,
which reduce to 4 and 2. These are related to the original equations as follows:
22— 6z +8=(v—4)(z—2)=0.

13.9 Solutions, Roots, Zeroes, and z-intercepts

The four terms solutions, roots, zeroes, and z-intercepts are often used some-
what interchangeably to refer to the values of x where an equation is zero.

13.10 Cubic, Quartic, Quintic

Polynomials with degree three are referred to as cubic functions. Degree four
polynomials are quartic functions and degree five polynomials are quintic func-
tions.

There are ways to solve cubic functions and quartic functions, but the general
quintic function az®+bx* + cx® +dz? +ex+ f = 0 is not solveable algebraically—only
numerical approximation can be obtained. Polynomials in x with only even or odd
exponents are termed even or odd. This terminology is carried over to other graphs
which have similar symmetry when graphed. See Figures and [[3.3
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Figure 13.2: Odd Functions: y = z (left), y = 2 (middle), and y = sinx (right),
where f(—x) = —f(z).
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Figure 13.3: Even Functions: y = 2? (left), y = —(2? — 9)(2? + 1) (middle), and
y = cosx (right), where f(—z) = f(z).

For example, the sine function is termed odd because sin(—xz) = — sin x, whereas
the cosine function is termed even because cos(—z) = cosz, similar to what hap-
pens with polynomials with only even or odd degree terms. The even functions are
symmetric about the y-axis, but the odd functions are symmetric about the origin.
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13.11 Functions Homework

Each problem is worth two points.

1.

10.

Aunt Ethel hands you $15 in quarters (¢) and dimes (d). Name five ordered
pairs (g, d) representing the change she might have given you. Graph the
points. What relation do you observe?

. What are the slopes of the line containing points (0,2) and (9,5) and the line

with points (—1,4) and (5,8)7 Which line is steeper?

Prove that “If two lines are parallel to the same line, then they are parallel to
each other.”

. If the slope of a line is _73, what is the slope of a perpendicular line to it?

For problems 5-8, classify the following lines as vertical, horizontal, or oblique
(neither):

LTy =2

2z = 6.

dr—2y =1

. y=17—-5.

Graph: y = 3z + 2.

Graph: z + 4y = 4.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS

Determine if the following system of equations is inconsistent, independent, or
dependent:

20 — 3y =5
10z — 15y = 25.

Determine if the following system of equations is inconsistent, independent, or
dependent:

6z + 4y =3
xr— 1.5y =4.

Find a line perpendicular to the given line: 4x —y = 3.

Graph the equation y = 22 — 3. Is it a relation or a function?

Graph the equation 2% + y? = 4. Is it a relation or a function? (If doing by
calculator, solve for y. Enter into calculator both branches for y due to 4 the
square root.)

Graph the function y = 2% + 5z + 6. Find the domain and range.

Graph the function y = 2% — 4z + 4. Find the domain and range.

Solve the equation for x exactly: 522 + 8z — 6 = 3.

Determine if the equation has real solutions. 4z — 13z + 11 = 0.

Solve the equation, y = 22 — 42 + 5 exactly, when y = 0. What does this infer
about the graph of the function?

Read sections 3.6 and 3.8 in your geometry textbook and do problem 10 in both.
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Numbers Lesson 14

It’s Been Real

Wir miissen wissen, wir werden wissen.El David Hilbert

In this lesson we will extend our understanding of numbers beyond the rational
to the reals—i.e. all the numbers on the real number line. We will state various facts
about the irrationals and reals, discuss continuity and denseness, prove the reals to
be nondenumerable, present the field axioms used with the real numbers, including
the Peano Axioms of Arithmetic, and Trichotomy. We discuss orders of infinity and
some of Godel’s work. We present the axioms of set theory, and close with a section
on paradoxes. Some of this makes for heavy reading and is here more for reference
than mastry at this time.

14.1 Father of [inJcompleteness: Kurt Gédel

Kurt Godel (1906-1978) is one of the two most important logicians, the other
being Alfred Tarski (1902-1983). Kurt Godel is generally considered an Austrian-
American mathematician although he was born in an area which is now in the Czech
Republic. He became Czech upon the political organization at the end of World War
I, and became a German citizen when Germany took over Austrian (Anschluss) in
1938. Godel and his wife left Vienna in 1940 and travelled via the trans-Siberian
railway, Japan, and California to the Institute of Advanced Studies in Princeton, NJ.
He had visited Einstein and others there several years earlier and even spent a year
at Notre Dame.

By 1931 Godel unveiled Godel’s incompleteness theorem for which he is best
known. It proved that for any computable axiomatic system strong enough to describe
arithmetic on the natural numbers: 1) if it was consistent, then it was incomplete; 2)
the consistency of the axioms could not be proved within the system. This ended a

'We must know, we shall know.
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half century of attempts epitomized by Hilbert, Whitehead and Russell, of finding a
set of axioms sufficient for all mathematics.

Before coming permanently to the US, Godel was able to show that the Axiom of
Choice (AC) and the Generalized Continuum Hypothesis (GCH) were true in a set
theory model (using the Zermelo-Frankel axioms or ZF) known as the constructible
universe and thus consistent with the standard axioms of set theory. During the
1960’s Paul Cohen developed a model in which they were false thus showing their
independence. More on these below

14.2 Reals

‘There are numbers on the number line which are not rational. ‘

We already showed that the V2 was irrational. We also stated that the rationals
were dense—between each rational number was another rational number. However,
apparently they are not continuous or complete. Somehow if we only had rational
numbers on our number line, we would skip over the v/2 even though any decimal
approximation, such as 1.414,1.4142,---, is on our number line!

‘The Real Numbers are all the numbers on the number line. ‘

Physicists like to say that they work with continuous functions with continuous
derivatives (slopes), whereas mathematicians spend a lot of time worrying about
whether or not a function or its derivatives are continuous. You will explore this
concept further in Algebra II and Calculus. Suffice it to say now that if you can plot
the function without picking up your pencil, it is continuous. A number line is such
a plot.

Real Numbers are either rational or irrational.
All rational and all irrational numbers are real numbers.

The rational and irrational numbers are disjoints sets which together make up the
real numbers.

‘The symbol R, R, or R denotes the set of real numbers. ‘

NCcZcOcCR or NCcZcQcCR

John Derbyshire in Prime Obsession, page 170, offers the mnemonic: Nine Zulu
Queens Rule China to help remember how these nested Russian dolls are arranged.

The real numbers are nondenumerable (uncountable).

Proof by contradition:
Assume that the real numbers are denumerable (meaning, they have one-to-one cor-
respondence to natural numbers). Then there exists a pairing of each number such
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that neither set has any elements left over. The following notation indicates one
such pairing where the a’s, 0’s, ¢’s, etc. represent digits and the subscripts indicate
the location to the right of the decimal point: 1 < 0.aya2a3---, 2 < 0.b1b203 - - -,
3 < 0.cicac3- -+, etc. But we will now show that there is at least one real number
which is not included in this pairing. Let N = 0.njnsng---, where the n’s represent
any digits such that: n; is not equal to a;, ns is not equal to by, n3 is not equal to cs,
etc. Thus N is a real number and is different from each of the real numbers in the
one-to-one correspondence. Thus the set of real numbers is non-denumerable. This
proof goes back to Georg Cantor in 1874.

14.3 The Field Axioms

We introduced the group axioms in Number Lesson [8l Another interesting math-
ematical object is a ring. They have two operators usually called addition (+) and
multiplication (X or e or just juxtapositioned (from Latin: to be placed side by
side)). Since x and x can so easily be confused, e is often preferred. A ring is an
abelian group under addition, where abelian means it is commutative (see the ax-
iom below), and comes from a famous Norwegian mathematician named Niels Henrik
Abel (1802-1829). (Abel is generally pronounced with a long e sound and accented
second syllable.) A ring must also be closed under multiplication, and must also be
associative (for an associative ring). There is also an axiom to interrelate addition
and multiplication (see the distributive property below). The rings of interest to us
have a unit element which will serve as our multiplicative identity (1), and are
commutative under multiplication. A field is just another mathematical object with
more structure than a ring.

If the elements different from 0 in a commutative ring with unit element form an

abelean group under multiplication, the ring is called a field.

Zero must be excluded because it does not have a multiplicitive inverse—division
by zero is not allowed. The only fields we will be concerned with are the binaries
(0,1), the rational numbers, the real numbers, and in Numbers Lesson [I6, the complex
numbers.

The eleven field axioms are listed below and are true for any real numbers, repre-
sented below by z, v, and z.

‘Closure under addition: real numbers are closed under addition. ‘

That is, adding any pair of real numbers will result in a unique real number.
141 = 2. Always. This also means we stay inside the set.

‘Closure under multiplication: real numbers are closed under multiplication. ‘

Multiplying any real number pair together will result in a unique real number.
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2 x 2 =4 and never 5.

Additive Commutativity: © +y =y + x.

Order does not matter. You can add a column of numbers from the top or from
the bottom.

Multiplicative Commutativity: r ey =y e x.

The root word commute is commonly used to describe exchanging places, like
going forth and back between home and work.

Additive Associativity: (z +y)+2z=x+ (y + 2).

Multiplicative Associativity: (zy)z = z(yz).

Distributivity: Multiplication distributes over addition. z(y + 2) = zy + xz.

Additive Identity Element: The additive identity is a unique element, which
can be added to any element without altering it. The additive identity is zero (0).
r+0=u1x.

We have both a left and right additive identity element and they are the same:
r+0=2=0+uz.

Multiplicative Identity Element: The multiplicative identity is unique; it is one
(1). zol=ux.

We also have both a left and right multiplicative identity element and they are
the same: rel=z=1eux.

Additive Inverses: For every real number there exists a unique inverse, such that
when added together, the result is the additive identity (0). The additive inverse is
the opposite (negative) of the given real number, z + (—z) = 0.

Multiplicative Inverses: For every real number not equal to zero there exists a
unique inverse, such that when multiplied together, the result is the multiplicative

identity. z e z7 = 1.

271 is a general designation for an inverse, but here denotes the multiplicative

inverse or reciprocal (1/x).
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14.4 Reflexive, Symmetric, Transitive, Closure, Tri-
chotomy

The three axioms of Reflexive, Symmetric, and Transitive, can be used to define
equality. In fact, these three are often added to the five Peano axioms given in Lesson
to form Peano Arithmetic. In this situation they are applied to the natural
numbers only. One additional axiom is needed, that of closure for equality, which is
given below.

In addition to the field axioms, real numbers satisfy additional important axioms
or properties.

Reflexive Property: If z is a real number, then x = x.

Operations which are reflexive look the same in a mirror. This axiom establishes
that a variable stands for the same number wherever it appears in an expression.
Order is not reflexive: 5 < 5 is a counterexample.

Symmetry: If x =y, then y = x.

Notice that symmetry is true for only the equal (“=") sign. Order relationships,
such as < and >, cannot have the numbers rearranged without changing the meaning.
For example, 4 < 5 is not the same as 5 < 4.

If x =y and y = 2z, then x = 2.
Transitivity: If 2 <y and y < z, then z < 2.
If x >y and y > z, then x > 2.

The prefix trans- means across like rapid transit quickly takes you across a city.
An easy way to remember which of these three properties is which is to note that the
initial letters RST are in alphabetic order and corresponds to 123 or the number of
variables which appear in the description!

Closure: For all @ and b, if a is a natural number and a = b, then b is also a natural

number.

That is, the natural numbers are closed under equality. We stated it for natural
numbers to complete the list of nine Peano axioms, but it can also be accepted for
real numbers.

Trichotomy: If x and y are two real numbers, then exactly one of the following
must be true: y <z, y > x, or y = x.

Trichotomy means to section or cut into three pieces. Please note it is three
pieces not two because the reals are continuous (not just dense). You will hit a
number wherever you cut the real number line.
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14.5 Higher Orders of Infinity, N,

George Cantor introduced transfinite numbers back in the 1870’s as a way to deal
with the fact that not all infinite sets are equivalent. The cardinality of the integers,
rational numbers, even algebraic numbers is designated the first order of infinity and
assigned the name aleph null (Xy) where aleph (X) is the first Hebrew letter. However,
the cardinality of the real numbers or such important subsets as the transcendentals
or irrationals is beyond that of a countable infinity. This cardinality became known as
the cardinality of the continuum and was designated by c¢. By forming power sets (the
set of all subsets of a given set), Cantor was able to form higher order infinities. These
became known as g, Ny, Ry, - - -, where 2% = R; Cantor believed this first aleph (X;)
was the cardinality of the continuum and was sometimes able and sometimes not able
to prove it. This may well have been a contributing factor to his mental instabilities.
This hypothesis (2% = X;) became known as the Continuum Hypothesis (CH)E
This power set relationship was later generalized to apply to any successive pair of
alephs and became known as the generalized continuum hypothesis. Only much later
was it shown that CH is independent of the usual axioms of set theory and was thus
unproveable (Kurt Gédel, 1937 and Paul Cohen, 1963). The method used by Cohen
became known as forcing.

While we are on the topic, another axiom, the axiom of choice (AC) suffered a
similar fate, being proved independent of the rest of mathematics (Godel, 1940 and
Cohen, 1963). However, unlike CH, it is still routinely, but not universally, used in
the development of mathematicsﬁ One last related topic is Godel’s Incompleteness
Theorem, 1931, which showed that there were things within any formal system
which were neither provable nor not provable. These recent developments make one
question the very merits of establishing a rigorous foundation for mathematics!

14.6 The Axioms of Set Theory

Following are the axioms of set theory generally used in mathematics. They were
designed by Ernst Zermelo, et al at the beginning of the 20*® century. This minimal
set of assumptions leads to a consistent body of mathematical knowledge, including
the natural, real, and complex numbers along with their properties and arithmetic.
Along with other axioms, the areas of geometry, algebra, topology, etc. can also be
formed. Georg Cantor developed set theory but implicitly assumed many of these.

e Existence: There exists at least one set. (The empty set can be chosen. The
set containing the empty set would then be constructed - - -.)

Zhttp://www.ii.com/math/ch/
3http://www.cs.unb.ca/~alopez-o/math-faq/mathtext/node35. html
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e Extension: Two sets are equal iff they have the same elements.

e Specification: To every set A and every condition S(z) there corresponds a
set B whose elements are exactly those elements x of A for which S(z) holds.
This axiom leads to Russell’s paradox.

e Pairing: For any two sets there exists a set to which they both belong.

e Unions: For every collection of sets there exists a set that contains all the
elements that belong to at least one of the sets in the collection.

e Powers: For each set there exists a collection of sets that contains among its
elements all the subsets of the given set.

e Infinity: There exists a set containing 0 and containing the successor of each
of its elements.

e Choice: For every set A there is a choice function, f, such that for any non-
empty subset B of A, f(B) is a member of B.

14.7 Surreal Numbers

John Conway invented surreal numbers in recent years. These numbers have mul-
tiple infinities and many other unusual but useful properties. Donald Knuth wrote a
novellete to help explain these numbers even before the technical paper was published.

14.8 Continuity

Our macroscopic existence means that most of our physical observations are con-
tinuous. Thus most physical phenomina is modelled by continuous functions with
continuous derivatives (slopes). Some cutting edge models attempting to unify grav-
ity with quantum mechanics while retaining general relativity (as in loop quantum
gravity, unlike string or M-theory) treat space as quantized. However, the mathemat-
ical treatment of functions is riddled with concerns about continuity. Discontinuities
fall into two catagories: removable and nonremovable. We stated before that con-
tinuous functions can be drawn without having to lift your pencil from the paper. For
removable discontinuities one must only avoid an occasional point whereas nonremov-
able discontinuities involve moving your pencil up or down. The function z/x would
have a removeable discontinuity at x = 0, whereas |x|/x would have a nonremoveable
discontinuity. The definition of continuity is wrapped up with the concept of limit
and will not be discussed further here.
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14.9 Paradoxes

We already encountered various paradoxes in Numbers Lesson [ (Barber, Rus-
sell’s) and Lesson [0 (Liar’s). Several paradoxes dating back to the ancients are
presented below. Zeno’s name is often associated with these and other equivalent
ones which show that motion is only an illusion. Even in ancient times these were
considered absurb, but it took a modern understanding of infinity, infintesimals, and
convergent infinite series to dispel most (not all!) doubt.

14.9.1 Paradox: Dichotomy

‘You cannot even start.

“That which is in locomotion must arrive at the half-way stage before it arrives
at the goal.”—Aristotle.

14.9.2 Paradox: Archilles and the Tortoise

‘You can never catch up.

Aristotle rendered this paradox as follows: “In a race, the quickest runner can
never overtake the slowest, since the pursuer must first reach the point whence the
pursued started, so that the slower must always hold a lead.”

14.9.3 Paradox: Arrow

| You cannot even move. |

“If everything when it occupies an equal space is at rest, and if that which is
in locomotion is always occupying such a space at any moment, the flying arrow is
therefore motionless.”

This paradox, instead of dividing up space like the prior two, divides time.

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4



14.10. REAL HOMEWORK 123

14.10 Real Homework

Each problem is worth two points.

1.

10.

Name the axiom used: 104+ 13+17+23 =10+ 17+ 13 + 23.

Name the axiom used: 14 e ((17+52) +30) = 14 e (17 + (52 + 30)).

Name the axiom used: Tx11x13=11x7x13.

. Name the axiom used: /(7 x 11) x 13 = /7 x (11 x 13).

Name the axiomS used: r + 0 = x always.

Show by counterexample that subtraction is not commutative.

Show by counterexample that subtraction is not associative.

Show by counterexample that negative numbers are not closed under multipli-
cation.

Show by counterexample that there is no Symmetric Property of greater than

(7).

Show by counterexample that not equal (“#£”) is not transitive.
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11.

12.

13.

14.

15.

16.

17.

NUMBERS LESSON 14. IT’S BEEN REAL

Is the relationship of “Alexis is a sister of Tom” symmetric? Show by example
why or why not.

For problems 12-15, which field axioms do the following sets of numbers fail?
An example is irrational numbers failing for closure under multiplication since

V2v/2 = 2, which is rational.

Natural numbers (N).

The integers (Z).

The rational numbers (Q).

The |binary digits {0,1} with and as the multiplication type operator (x) and
eor (or modulo 2 addition) as the addition type operator (+), the only difference
is “1+1=07).

Consider again the set {0,1} with and and or as operations. Does and dis-
tribute over or as well as vice versa? Fill in the table to prove or disprove these
distribution rules.

plag|r|pe(gVr)|(peg V(per)|pViger)|(pVage(pVr)
0]0]0
0]o0]1
0]1]0
0|11
100
1]o]1
1]1]0
111

Read section 3.4 in your geometry textbook. Do problems 3.4: 4 and 16.
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Numbers Lesson 15

Transcendental Meditations

Who of us would not be glad to lift the veil behind which the future lies
hidden; to cast a glance at the next advances of our science and at the
secrets of its developments during future centuries? David Hilbert

In this lesson we will discuss numbers which are not solutions to polynomial type
equations and are thus termed nonalgebraic or transcendental. After introducing the
Dedekind cut as a way to define real numbers, we discuss nonalgebraic numbers such
as m and e. Next we discuss the related problem of geometric constructions which
the ancients found impossible and which have since been proven impossible. We end
the lesson by noting how many more nonalgebraic numbers there are than algebraic
numbers.

15.1 The Father of Logarithms: John Napier

John Napier (1550-1617) was born, lived, and died in Scotland. He is remem-
bered as both a mathematician and physicist and is best remembered for inventing
logarithms and Napier’s bones. Logarithms made hand-calculations involving mul-
tiplication and division much easier and quicker by turning them into addition and
subtraction. This paved the way for many scientific advances, such as the calculation
of Mars’ orbit by Kepler.

Napier was also trained in theology but encouraged people to think he dabbled in
black arts. Many stories have been preserved about his exploits. We will relate two
here.

Napier and his servants discovered the neighbor’s pigeons were helping themselves
to his grain. Napier warned his neighbor he would keep any pigeons found on his
property. The next day Napier was observed scooping up pigeons into sacks—he had
spiked peas with brandy which they had eaten, eaten enough to be unable to fly!

Napier suspected one of his servants was stealing from him. He took a black
rooster, coated it with charcoal, and put it in a dark room. All the servants were
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instructed to enter the room and pet the rooster. The guilty party was soon identified
as the one with clean hands—every one else had done as instructed!

Napier was the Lord for his manor and thus had a very practical interest in such
things as fertilizer and the water level in coal mines. Napier’s favorite book was his
book on the book of Revelation.

Henry Briggs (1561-1631) was so impressed with Napiers invention of logarithms
that he resolved to meet their inventor in person: “where almost one quarter of an
hour was spent, each beholding other with admiration, before one word was spoke.
At last Briggs said: "My lord, [ have undertaken this long journey purposely to see
your person, and to know by what engine of wit or ingenuity you came first to think
of this most excellent help in astronomy, viz. the logarithms; but, my lord, being
by you found out, I wonder nobody found it out before, when now known it is so
easy.” (viz.is an abbreviation for videlicet, Latin for namely.) Briggs proposed two
modifications which resulted in our base 10 or common logarithms. Briggs published
tables accurate to 14 decimal places for all integers 1 to 20,000 and from 90,000 to
100,000 in 1624 in Arithmetica logarithmica with the gap filled in by someone else by
1628. This work remained the basis for all subsequent log tables up until 1924 when
a 20 decimal place table was begun to celebrate 300 years of logarithms. About 1620,
the lslide rule was also invented which is laid out on a logarithmic scale and thus by
adding and subtracting distances, multiplication and division are performed.

15.2 Reals Defined Via Dedekind Cut

Transcendental numbers have a long history, dating back to the ancient Greeks,
even though they were not named or truly recognized until much later. As mentioned
earlier, the ancient Pythagorean school discovered the existence of irrational numbers,
with v/2 being the prototypical example as the diagonal of a unit square. They
then regarded it as a numberless magnitude—distinct from an arithmetic number—
a concept which remained an essential element of Greek mathematics. Soon other
irrational numbers were found: the square root of every prime number, then the square
root of most composite numbers. Irrational numbers, or incommensurables were
well studied by the time Euclid wrote his Elements. However, it was not until 1872
when Richard Dedekind (1831-1916) published his Continuity and Irrational Numbers
that a satisfactory theory developing such numbers was given, one devoid of geometric
considerations. His Dedekind Cut was an essential part of that development and
goes beyond what we can cover here. An alternative approach using a Least Upper
Bound Axiom is also beyond our scope.
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15.3 The Story of 7

The concept of m was invented to simplify calculations involving circles. The
Rhind Papyrus, an Egyptian text from 1650 B.C. contains a statement relating as
equals, the areas of a circle and a square whose side is 8/9 the circle’s diameter. This
value for 7 of 256/81 ~ 3.16049--- is a much better value than the one recorded
about 700 years later and given biblically in I Kings 7:23. “And he made a molten
sea, ten cubits from one brim to the other...and a line of thirty cubits did compass it
round about.” These both recognize the need to relate the diameter or radius of a
circle to its area or circumference. Euler was the one to attached the symbol 7 to
the concept.

7 is in fact defined as the ratio of a circle’s circumference (C) to its diameter (d):

T =C/d.

This gives the formulae: C' = 7d = 27r, where r is the radius.

The area formula is similar: A = 7r2.

Archimedes first proposed a method of obtaining the value of m to any desired
accuracy by calculating the perimeter of inscribed and circumscribed polygons.
By increasing (usually by doubling) the number of sides, the accuracy is increased—
the true value of 7 is squeezed between these two values. Using his crude numerical
representation, Archimedes was able, by using polygons of96 sides| (bisecting the sides
of a hexagon 4 times), to determine: 3% <7< 3% or 3.140845 - - - < m < 3.142857 - - -
or m ~ 3.1418. Over the centuries this value was highly refined until hundreds of
decimal places were known before the invention of computers and now trillions of
digits are known. An interesting challenge has been memorizing these random digits
and the current record is about 83,000 digits, requiring many hours to recite. (The
author had 750 digits well memorized and almost had one thousand at age 16 when
he thought the record was only a thousand. He has since forgotten most all but the
initial 50 which he memorized at age 11.)

|7 = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 - } -

Historically, the value m &~ 22/7 was used and is within 0.04% of the true value.
Such a rational approximation was useful before calculators were invented and older
geometry books have many problems which were done very easily using this value.
The curious value 7 &~ 355/113 can easily be remembered because each of the first
three odd number is repeated once and is even closer to the true value. 72 ~ 9.8696 - - -
is surprisingly close to 10, our preferred base. When students omit parentheses in
denominators on their calculators, their answers are often about an order of magnitude
off for this reason.

Extending the above definition of 7 results in its most common usage: angle
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measurement. The radius of a circle seems like a useful unit to measure arc lengths
or angles. Note how the circumference of a unit circle (one with » = 1) is 27 ~
6.28318 - --. An arc the length of one radius is known as a radian and there are 27
radians in one revolution or full circle (360°). Thus 7 radians are 180° and 1 radian
is 57.2957795 - - ° or 57°17'44.806 - - -”. The conversion of radians to degrees is done
by multiplying the radians by 180°/7. To convert degrees to radians, multiply the
degrees by 7/180°. The circle below is partitioned into standard angle measure in
degrees. It is important to know these Mathematicians like to think of a radian as
the proper serving sigg of pie, just ever so slightly less than 1/6.

120 60

150 30

180

210 330

240 300

270
Pi shows up in some unusual places, especially in probability. Buffon’s needle is
one of the originals but there are many variations, such as
http://www.wikihow.com/Calculate-Pi-by-Throwing-Frozen-Hot-Dogs which is
fairly self-explanitory.

15.4 The Story of ¢

Another important number to mathematics has a much shorter history than 7.
Logarithm means ratio number. Although Napier’s usage was slightly different,
the modern definition is:

log, a = c if and only if b° = a, b>0,and b # 1.

We thus see that exponentiation (exp) is an inverse operation of logarithm
(log). Inverse operations have already figured prominently as in subtraction is the
inverse operation of addition and division is the inverse operation of multiplication.
Another important one is square root as the inverse operation of squaring. Inverse
functions can have important restrictions which differ from the original function!

Logs can be defined to any positive base (except 1), but two bases have become
most prevalent: b = 10 (for common logs), and b = e (for natural logs). Both

!'Knowing the radian values is also important but haven’t been put on this graphic yet.
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15.5. GEOMETRIC CONSTRUCTIONS 129

appear on most calculators. The base is often omitted and high school and chemistry
students can usually assume logz = log,,x. However, in college math and physics,
logz = log, x.

log, x = 2.30258 - - -log, = where 2.30258 - - - = log, 10 =

logig e

Inx is fairly commonly used for natural logs (and now rarely looks like 1n).
Napier’s base was b = .9999999 = 1 — 10~7, which may be only slightly more un-
derstandable when you realize that decimal fractions were not yet widely used—
Napier actually being the one to invent and popularize the decimal point! In making
this choice, Napier came within epsilon (a hair’s breadth) of discovering the limit of
(1 —1/n)™ as n tends to infinity, which is merely the reciprocal of (1 + 1/n)" as n

tends to infinity.

lim (14 1) =e.

n—oo

This latter value is:
e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 - - -

Logarithms were quickly adopted by scientists all over the world because they
simplified calculations by turning multiplication and division into table look-ups,
addition and subtraction, and then another table look-up to find the antilog. Like
we saw in scientific notation, the decimal part of a logarithm is often called the
mantissa. The integer portion is called the characteristic.

15.5 Geometric Constructions

The transcendental story really began with the restrictions the ancient Greeks
(Plato) put on their Geometric Constructions. The only tools allowed were an
unmarked straight-edge and a pair of compasses. (Most sources specify a com-
pass, but some constructions require two.) In Geometry we still differentiate between
constructing, drawing, and sketching. In a drawing, rulers and protractors are
allowed, whereas a sketch may be a free-hand representation.

The Greeks quickly mastered many lconstructions, such as for the regular pentagon,
perpendicular bisector,lequilateral triangle | etc., which must still be learned by high
school geometry students. However, try as they might, they came up with four which
defied solution. These four unsolved problems of antiquity remained so until the
1800’s. They are:

1. Squaring a circle (construct a square with area equal to a given circle);
2. Duplicating a cube (construct a cube with twice the volume of a given cube);

3. Trisecting an arbitrary angle;
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4. Constructing a regular heptagon (or actually all regular polygons).

During the 1800’s, advances in mathematics enabled mathematicians to prove
them all unsolvable under the construction rules then in vogue. An important part
of the solution was to couch the problem in terms of algebraic, rather than geometric
terms. One soon discovers that constructions with straight-edge and compass rep-
resent rational operations and square roots, but not cube or higher roots. Thus if
a cube root is unavoidable, the construction is impossible. The algebraic equations
involved have what are known as algebraic roots.

In 1844 the French mathematician Joseph Liouville (1809-1882) proved nonal-
gebraic or transcendental numbers existed. His proof was not simple, but allowed
him to produce several examples, the most famous is known as Liouville’s number
and can be written either as 0.110001000000000000000001 - - - or 10~ 4 1073 +
1069 4+ 10~ 4+ ... Another favorite example is 0.1234567891011 - - -, where the
natural numbers occur in order. Integers of this form are known as Smarandanche
Concatenated Numbers and work on their prime factorization can be viewed hereE

Although it had been already shown in 1737 by Euler that e and e? and in 1768 by
Lambert that m were all irrational, it took many more years before they were proved
to be transcendental.

In 1873, Charles Hermite (1822-1901) proved e was transcendental.

He wrote “I shall risk nothing on an attempt to prove the transcendance of 7 . If
others undertake this enterprise, no one will be happier than I in their success. But
believe me, it will not fail to cost them some effort.”

But in 1882, Ferdinand Lindemann (1852-1939) proved 7 was transcendental and
coined the term.

Transcendental numbers are irrational numbers that are not the roots of alge-

braic equations.

The transcendance of 7 finally solved, all-be-it in the negative, the problem of
squaring the circle. Since 7 is not algebraic, a segment of length the square root of
is impossible to construct.

In 1795 Gauss proved that it is possible to divide the circumference of a circle
into n equal parts when n is odd, if n is either a prime [Fermat number] or a product
of different prime Fermat numbers. He was 18. It was published in 1801 in his major

work Disquisitiones aritmeticae.

In 1837 Wantzel published a proof that no other regular polygons can be con-
structed, thus settling in the negative the question of the constructability of the regu-
lar heptagon. However, the regular heptadecagon (17-gon) is constructable! Wantzel

Zhttp://www.worldofnumbers.com/factorlist.htm
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also proved that the angle of 60° was not trisectable since the equation 423 —3z = 1/2
has no roots which are rational or rational combinations of square roots. Wantzel is
also respomnsible for the developments proving that the cube root of 2 is also not
constructable with the same year usually given.

15.6 Many More Transcendentals

Although 7 and e are the two most famous transcendental numbers, there are
plenty more. Just as the reals can be divided into two disjoints sets, i.e. the rationals
and irrationals, the irrationals (or reals) can be similarily subdivided into algebraics
and transcendentals. Another way to classify the real numbers is as any number
that can be written as a decimal fraction. These decimals are of three types: 1)
terminating; 2) nonterminating but repeating; and 3) nonterminating, nonrepeating.
We explored the terminating and repeating decimals in Numbers Lesson [9 and con-
cluded they were all rational numbers. This last class, however, is another way to
characterize the irrational numbers.

‘There are more irrational numbers than rational numbers. ‘

This is fairly clear since the rational numbers were denumerable, but the real num-
bers, made up of the rational numbers and irrational numbers, were nondenumerable.

Logarithms and the trigonmetric functions are examples of transcendental func-
tions introduced and studied in the high school math curriculum.

‘Algebraic numbers are enumerable! Almost all real numbers are transcendental.

It has been very difficult to prove numbers to be transcendental. David Hilbert
(1862-1943) challenged the mathematical community in 1900 with a list of 23 un-
solved problems in mathematics of utmost importance. In fact, the quote used
to open this lesson came from this speech. The seventh problem was to prove that
for any algebraic number (a # 0 or 1), and any irrational, but algebraic number b,
a’ is always transcendental. The first in 1929 and the second a year later, the Rus-
sian mathematician Gelfond proved Hilbert’s two examples, €™ = i~2 and 2V2 to be
transcendental and in 1934 proved the general case.

The status of many numbers remains unknown: 7™, . Others: 7€, 2¢, and 2™ have
not even been proved to be irrational! The sin 1° isalgebraic, whereas sin(360°/27) =

sin(lrad) = 4 — 4+ 4 — 3 + 5 — 757 - - - Is transcendental.
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15.7 Transcendental Homework

Each problem is worth two points, except as noted.

1.

10.

. Evaluate the following rational number and compare it relative to e”:

58,291
21,444

Evaluate the following rational number and compare it relative to e:

, 158,452
21,444

Find a decimal approximation for the real number halfway between e and .

Find a decimal approximation for the real number halfway between 7¢ and e”.

Find the circumference of a circle with diameter of 7", using the approximation
TR 22/7.

Find the exact and approximate area for a circle with radius 5m. (Be sure
to include proper units!)

Give, to the nearest hundredth square foot, the area that can be irrigated by a
circular sprinkler that spouts water 60’ as it rotates around a fixed point. Give
the circumference of the region to the nearest tenth foot.

. A circle has area 1007 in?. Find the exact radius, diameter, and circumference.

On a 12" pizza, what does the 12" refer to? How many times as much of each
ingredient is needed for a 16" pizza with the same thickness? What is the area
of each slice when a 16" pizza is divided evenly among 6 people? (see textbook
8.9:13).

Eight metal disks equally, but maximally sized, are cut out of a

metal sheet 18" by 36". The rest is not used. What is the area
of the metal that is not used? What percent of the metal is used?

(see textbook 8.9:14).
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Find a can or bottle with a circular base. Measure the diameter (d) as accurately
as possible. Measure the circumference (C') with a tape measure or by rolling
the can on the ruler. Calculate the C'/d ratio to the nearest hundredth. What
number should it approximate? Explain any difference?

A sheik dies with 3 sons and 17 camels. Earlier he had told his steward to give
the youngest son 1/2 his camels; his middle son 1/3 his camels; and his oldest
son 1/9 his camels. Without any fractional camels, how did the steward do it?
How many camels did each son get? (This is a puzzle question.)

Find which ordinal number corresponds to Andrew Jackson’s presidency (as
in which president was he?) and what year he was first elected. Relate this
information to the number e.

Add the first, then second, then third, ... terms in the following sequence:
& + % + % + % + % + % + é + % + --- What transcendental number does the
resulting series appear to approach?

Add the first, then second, then third terms, --- in the following sequence:

4_ 4,4 4,4 4 4 :
1—3tz—=t+t5— 1t 13— - What transcendental number does the resulting

series appear to approach (from above and below! and allbeit very slowly)?
(Three points:) Convert 57° and 196° into radians and 57 /9 into degrees.

(Three points:) Evaluate: logs 81, log;, 100, and logy 3 without using a calcu-
lator.

Convert log, x = 3 into exponential form and solve for .

Read sections 8.8 and 8.9 in your geometry text. See problems 8.8: 3, 5, 12;
8.9: 1,5, 11, and 12.

Bonus: Look up Napier’s Bones or Napier’s Rods in an encyclopedia or
dictionary. What were they? How many were there? What did they look like?
How did they work? What specie bone were they?
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Numbers Lesson 16

Imagine More Complex Numbers

e™ + 1 = 0 is the most remarkable formula in mathematics Feynman

This lesson motivates the complex numbers as solutions to certain polynomials
and introduces them as the cartesian product of the reals and imaginaries. Complex
numbers are added, subtracted, multiplied, divided, and their magnitude found. We
graph them, introduce the polar form, and find roots in that form. We close with a
list of the Greek alphabet and a summary of errata and future improvements.

16.1 Father of Complex Powers: Abraham de Moivre

Abraham de Moivre (1667-1754) was born in France but moved to England while a
teenager for political refuge (after the law protecting protestants was lifted). There he
chanced to met Newton’s Principia Mathematica and supported himself by lecturing
and tutoring. He soon established himself as a respected first-rate mathematician and
was elected to the Royal Society in 1697. He was eventually asked to decide between
Newton and Leibnitz regarding the invention of the calculus, in a process some say
was rigged. de Moivre never obtained a permanent teaching position, although his
research on probability was sought after as a consultant for both life insurance and
gambling. He outlived his friends, dying the relative poverty which plagued his life.
His name lives on in de Moivre’s Theorem given later in this lesson.

16.2 The Complex Numbers

It would seem that with so many real numbers, mathematicians would be satisfied.
However, just as negative numbers allowed us to solve equations such as x+a = 0, so
too do imaginary numbers, or more accurately complex numbers, allow us solutions
to all quadratic and higher degree polynomial equations. The choice of the term
imaginary has been somewhat unfortunate, but with exposure and practice, these
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numbers can become just as meaningful as the reals. Consider the following solution.

2 +1 0
2

r© = -1

r = +v—-1==%2

1 = 4/—1 is termed the unit imaginary—all imaginary numbers can be formed as

multiples thereof.

For most students, the first exposure to complex numbers is in solving quadratic
equations that have no real solutions, such as 2> — 4z + 5 = 0. Using the quadratic
formula, we find that the discriminate (the part of the formula under the radical) is
negative (—4)—but how do we take the square root of —47 Using this new symbol
i = /=1, and our rules for manipulating radicals, it becomes & = v/4i = 2i, and the
solutions to this equation are the complex numbers: 2 4 ¢. The rules for adding and
multiplying complex numbers are given below, but if your calculator is in a+ b mode,
you can check this result on it by typing: (24+4)2+ (2+i)+5or (2—i)2+(2—i)+5
and obtaining the result of zero.

Complex numbers are of the form a + bi, where a € R and b € R.
a is called the real part, and b (not bi) is called the imaginary part.

Real and imaginary numbers are both “small” subsets of the complex numbers.
Real numbers are represented by a, where b = 0. Whereas, when a = 0, a + b
is just bi—the imaginary numbers. The complex numbers are represented by the
symbol C. A common mistake is to refer to the complex numbers as the imaginary
numbers. However, the imaginary numbers are only a very special subset of the
complex numbers. The term non-real complex is often used, since all real numbers
are complex numbers.

Cantor showed the unbelieveable fact that points in a unit square could be mapped
to the points in a unit line segment, as noted earlier in his biography (@.1I). This
procedure can be used to put the complex numbers into a one-to-one relationship with
the real numbers, thus showing their size to be the same non-denumerable infinity!

NcZcQcRccC

The complex conjugate of a + b is a — be.

Complex numbers often appear in conjugate pairs—see the quadratic formula
for why. 7 can be treated just like a variable, such as simplifying powers:

i =1

it =
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2= —1

PP = Yi=—1i=—i
P a— (i2)2:(—1)2:1
v — jnmodd

16.3 Operations with Complex Numbers

Your TI-84-+ graphing calculator will do extensive calculation with complex num-
bers. (Check your MODE and be sure you are in a + bi and not Real or re?.)

16.3.1 Adding or Subtracting Complex Numbers

Add or subtracting complex numbers involves adding /subtracting like terms. (Don’t
forget subtracting a negative is adding!)

(B3—=2i)+(1+3i) = B+1)+(-2i+3i)=4+1li=4+1
(4+450)—(2—4i) = (4—2)+ (5i+4i)=2+9i

16.3.2 Multiplying Complex Numbers

To multiply complex numbers treat them like binomials and use the FOIL method,
but simplify 42.

(B4+20)(2—1) = (3-2)+(3-—i)+(20-2) + (20 - —i)
6 — 3i + 4i — 2
6+1—2(—1)
= 841
240)? = @+))(2+i)=4+4i—1=3+4i
V=9-v/—=16 =iv/9-iv/16 = i* - 3-4 = —12. Notice how our order of operation is

important (exponentiation before multiplication) as commonly the incorrect answer
v/ 144 = 12 is obtained.

If x>0, then /—z = i\/x.

16.3.3 Dividing Complex Numbers

To divide complex numbers, multiply the numerator and denominator by the
complex conjugate of the denominator.

243  (2+30)(3—i) 6-2i+9i—3> 6+7i+3 9+Ti

_ _ _ - — 0.9+ 0.7i.
3vi (Br)B-1) 97 0+ 1 10 0.
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16.3.4 Magnitude

To find the magnitude of a complex number you find its distance to the origin:
13+4i| =32 +42=/9+16=+25=5.

Magnitude is often confusingly referred to as absolute value, since the same

symbol is used. In fact, you must use abs on your TI-84 calculator! Notice how both
are a measure of distance and the Pythagorean Theorem is used here. A common
mistake is to include the ¢ under the radical-—avoid that error.

16.4 Graphing Complex Numbers

Complex numbers are graphed on the complex plane—the cartesian product
of the reals and the imaginaries. As such, it is very similar to the xy-plane. The
familiar z-axis is still the familiar real number line and the y-axis is replaced with
a number line containing the imaginary numbers. This is often termed an argand
diagram. Cantor showed it was possible to construct a one-to-one correspondence
between every point in the plane and the real number line. On a unit square one can
map the ordered pair with decimal expansion (0.ajasag---,0.b1bobs - --) to the real
number 0.a1byasbsa3b3 - - - thus interleaving the decimal expansions. Thus, it would
seem, the complex numbers have the same cardinality as the reals.

16.5 Polar Form

Complex numbers are also often located on the complex plane by their distance
from the origin and angle from the positive z-axis. The angle might be given in either
degrees or radians. What your TI-84+ calculator uses is controlled both on input and
output by mode. However, unlike the trig functions, putting the degree symbol on
an angle does not override radian input! By setting a + bi or re? (polar) format and
inputting the alternate form, it will interconvert for you.

The following relationship named after Euler is often used:

Ke' = K(cos + isin#),

where sin and cos are the trigonometric relationships discussed in Numbers Lesson
Thus if K =1 and § = 7/2 = 90°, the complex number located one unit directly
above the origin is obtained. This is 7, because sin90° = 1 and c0os90° = 0. r is a
much more common choice of variable to represent magnitude, but the author feels
the choice of K will be much more meaningful and memorable for his students!
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16.6 Greek Alphabet

The table of Greek letters below with names and phonetic English equivalents
should be committed to memory by the grade A math and science student.

lower upper name equivalent lower upper name equivalent
Q@ A alpha a v N nu n

16 B beta b 19 = xi X

y r gamma g, n 0 O omicron o

0 A delta d T IT pi p

€ E epsilon e P P rho r, rh
¢ Z zeta z o by sigma S

n H eta e T T tau t

0 © theta th v T upsilon  y, u
L I iota i o) P phi ph
K K kappa k X X chi ch

A A lambda 1 WY v psi ps
i M mu m w Q omega 0

16.7 Finding n'" Roots

de Moivre’s Theorem states that z" = k" cis(nf), where

‘ cis @ is an abbreviation for cos @ 4 i sin 6. ‘

n may be fractional thus z'/" = k" cis([0 + 3604]/n)°, where j is an integer
ranging from 0 to n — 1. We can apply this to the multiplicative identity (1) which
also has a magnitude of 1. It is clear 1 has two square roots: £1. Since —1 has two
square roots, it should now be clear that 1 has four fourth roots: £1 and 4. We can
apply de Moivre’s Theorem to obtain the eight eighth roots as follows.

The Eight Eighth Roots of Unity are £1, +i, +v/2/2 4 i -+/2/2. (This last
expression is generally considered ambiguous as to how many points it represents, but
here represents four distinct points.) Note how they are very symmetrically arranged
(on a circle) on the complex plane. Note also how the radical relates to sin(45°+90°n)
and cos(45° 4 90°n).

16.8 Errata

Students should organize their booklets for stapling now. Check to be
sure you have all your pages in page number order. An occasional funny page sequence
will occur. Lessons 12 and 15 had a odd number of pages and a page will be “missing”
(ix, x, 104, and 134). These were not replaced with something else this year. Various
pages in the appendices (title, activities, quizzes, keys) have been omitted this year.
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This will force homework to be interleaved! You might have additional homework
pages and it is your choice where these are neatly located. Be sure you have the
box (A.5), complex number (A.6), and booklet (A.7) activities, and 1 quiz (B.1). Do
not have your test or test key stapled within the booklet (but the released tests (C.1
and 11 ) ARE part of the booklet).

Several problems were fixed and figures added in this revision—many after print-
ing, however. A summary of recent/future changes follows.

e Consider distributing the lessons as school starts next year.

e Many converted activities (set, dice, factors, magic boxes) remain difficult to
squeeze in. Some remain unconverted (T1-84 intro, calculator fractions, fraction
matchup, calculator slopes, 24, logs) but may have been moved into the lesson
or into summer algebra.

e Lesson 12 could be split between Pythagoras and Fermat and the bios ex-
panded for Diophantus and Goldbach. Galileo’s bio was moved to Stats, perhaps
temporarily—I need his quote! The first part of 13 could go with the new lesson.

e The early lessons were split up in 2008 to add a lesson but at least one homework
question was moved after printing in 2009. We have not yet moved the other
4 Peano Axioms here. The well-ordered axiom/axiom of choice is mentioned
in both lesson 3 and 14. Euclid’s algorithm could be added. Maybe some odd
questions can be repeated as evens in later lessons.

e Lessons 6 and 7 remain at 6 pages but tend to be dense. Breaking this streach
up could help things as well. Pascal’s bio needs a better place near here.

e Odd solutions should be generated from the beamer/pdf work and made avail-
able. The software calculator (TI-SmartView) was used very little.

16.9 Epilogue

This document is not yet a finished product—improvement and corrections are an
ongoing process. With this fourth pdf version the old html version has been removed
from the web, except for the odd solutions. It is, however, a dream come true. Some
work remains to smooth out areas like logic and paradoxes, even out the level of
effort required, and make the homework do what I want it to. It is planned for
Center students to take some responsibility to clarify the less clear and extend the
more interesting aspects. Continued feedback is appreciated.

!Not yet labelled and integrated.
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16.10 Complex Homework

Perform the following operations with complex numbers: (Show work!! Only use
a calculator to check your answer.) Each problem is worth two points, except
for problems 6 and 12 which are 5 points each.

L. (3+51)+(8+9) =

2. (45+3i)+ (3 —1.5i) =

3. (7+13i) — (8 +2i) =

4. (=54 3i) — (3—8i) =

5. (=3i) — (13 + 4i) =

6. Graph the answers to the problems 1-5 on the grid above.

Numbers and Their App.—pdf 4 October 4, 2009 ©MMIX Ke? G. Calkins



142 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERS

7. (1+2i)(1 — 2i) =

8. (2— 3i)(—3+2i) =

9. (34 2i)> =

10. (64 8i) + (1 +3i) =

11. |(3+ 5i)| =

=y

12. Graph the answers to the problems 7-11 on the grid above.

13. Assuming the cube roots of 1 are equally space around the unit circle, you
know the real one (1), and the two complex ones are complex conjugates of each
other; graph them and find approximate values for them.

H

14. Refine your values for the problem above using the exact trigonometric values in
the table on page[I2.4lin Numbers Lesson [[2 and check them on your calculator.
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A.1 Activity: Set Game and Crossword Puzzle

On the back side is a crossword puzzle using the vocabulary words below.
The game of Set is a useful way to explore the meaning of this undefined word in
mathematics.

A set deck consists of 81 cards—
all different. There are 81 cards
because on four different prop-
erties: color, number, shape,
fill, they have three different
states. The colors are: red,
green, and purple. The number
of identical shapes on a card is
either one, two, or three. The
shapes are: diamond, oval, and
squiggle. The fill patterns are:
filled, hashed, and empty. some-
times referred to as solid, liquid,

and gas.
The object of the game is to find three cards which for each of these four charac-

teristics (properties) are either all the same or all different. A good rule to use is: if
there are exactly two of something, it isn’t a set.

Let’s play a little set (available online. In the game of SET, you will form sets of
3 cards as described above.

One person at each table will act as the dealer and deal 15 shuffled cards face up
on the table. Players will initially take turns and after selecting 3 cards, explicitly tell
whether each of the 4 aspects are the same or different. Magic rule: if 2 are the same,
but the third is different, it is not a set. After the card stack is depleted, players
will display their sets and especially call attention to any set with 3 or 4 different

aspects.

Tally points for each set: 1 point for each different characteristic. For example:
If you have three diamonds on each card with each a different color and shade, the
set will be two points. The person with the most points wins. (If all the groups are
competing, the table with no cards unsetted will get an extra five points for their
members.)
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A.1. ACTIVITY: SET GAME AND CROSSWORD PUZZLE

Name

10.

12.

Numbers and Their App.—pdf 4

Across

Homophone of to and too.

Rhymes with jiggle and not quite
oval.

More than 2 and less than 4.

Women'’s best friend.®

Down

11.

145

Score
Ready, , Go.

Red and blue make

is the lonliest number . . ..

State of matter (not gas nor liquid).

What the tree did to the house all
summer.

If the door is not closed . . ..

for the blood we shed.

October 4, 2009

©MMIX Ke? G. Calkins



146 APPENDIX A. ACTIVITIES

A.2 Counting Activity: Skittles

e Divide a 16 ounce (one pound) package of Skittle™; brand candies approxi-
mately equally into 7 paper cups.

e Assign each cup to a group. Each group must tally each color and record their
data on the chart below. PLEASE do not destroy any evidence until you have
double checked your results. Do not contaminate the specimens.

Yellow Orange Red Green Purple H Total

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Total H

In 2002 there was no yellow, but white, a mystery flavor.

e Discuss variations of the data.

e Be sure to turn this sheet in at the end of the class period.

We will assemble this data and you will use it again in a few weeks for statistics.

©MMIX Ke? G. Calkins October 4, 2009 Numbers and Their App.—pdf 4



A.3. FACTOR ACTIVITY 147

A.3 Factor Activity

Open books and open table quiz. Hand in one per table.

Accepted only when the answers are correct. Keep a copy in your notes.

1. Find all the factors of 18.

2. Add all the factors of 18, except for itself.

3. Find all the factors of 30.

4. Add all the factors of 30, except for itself.

5. Find all the factors of 42.

6. Add all the factors of 42, except for itself.

7. Find all the factors of 54.

8. Add all the factors of 54, except for itself.

9. What is the pattern?

10. Does it continue?
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A.4 Magic Boxes (Base 2) Activity

3

5

7

9 11 13 15
17 19 | 21 23
25 27 | 29 | 31
2 3 6 7
10 11 14 15
18 19 | 22 23
26 27 | 30 | 31
1 9 § 7
12 13 14 15
20 21 22 23
28 29 | 30 | 31
8 9 10 11
12 13 14 15
24 | 25 26 | 27
28 29 | 30 | 31
16 17 18 19
20 21 22 23
24 | 25 26 | 27
28 29 | 30 | 31

©MMIX Ke? G. Calkins

Each table must select one person to
be their facilitator. This designation may
persist for several weeks until new seating
or other needs determine a change. The
facilitators leave the room and are given
this instruction sheet. An assistant will
go over with them the instructions on the
back, and have them return to their table.

Each facilitator must ask table mem-
bers in turn to secretly pick any number
between 1 and 31. Table members point
to each box beside in which their num-
ber appears. The facilitator will then tell
them their secret number!

After each person gets at least omne
turn, the facilitator will try to help table
members understand how the trick works.

Solution: Add up the first number in
each of the boxes the person chose.

The number you calculated is the same as
they have chosen.

Reasoning: The first number in each
box is a power of two. 1, 2, 4, 8, and
16. Each box represents the power: box
0 is 2°, box 1 is 2!, box 2 is 22, etc. The
numbers have been arranged in each box
such that the combination of the powers
will correspond to its binary representa-
tion. For example 19 is equal to 16 + 2
+ 1, or 19 = 100115, and you’ll find 19
in what we will call box 0 (2°=1), box 1
(2! = 2), and box 4 (2* = 16).
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A.5 Maximal Box Volume Activity

Task: Given a piece of paper 8” x 107, find all dimensionS of the box (no top)
with the largest volume which can be formed by removing equal squares from each
corner and folding up the resulting tabs on each side.

A.5.1 Method I (scissors and water)

Use scissors and trial and error. (Sorry, no water will be provided.)

A.5.2 Method II (TI-84 graphing calculator)

Volume = height x width x length
V=xx(8—2x)x (10 — 2x)
Press the Y= key and enter the equation (with Y; being V' above).

Press the WINDOW key and enter the following:
Ymin = 0; Xmax = 8; Xscl = 1;Ymin = —20; Ymax = 60,Y scl = 10

Press the GRAPH key.

To find the maximum value in the graph pressing CALC key (2" TRACE). Press
4 for maximum.
Once you request maximum, “LeftBound?” appears on the screen. Arrow over to the
left side of the maximum. Press ENTER. “RightBound?” now appears. Arrow over
to the right side of the maximum and press ENTER. “Guess?” now appears. Arrow
toward the maximum and press ENTER.
The screen shows the maximum volume possible (y =) and the corresponding x value.
Finish by calculating the other dimensions. What is the meaning of the negative
volume?
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AL Flotz Flobz LW THOCOL

W ERCE-ZRa 0182 Al h=H
o mmax=a
“He= Ascl=1
W= Ymin=-2H
wHy= Ymax=5H
wHe= Vezl=1A
W= mres=1

function and window settings

o
Haximum
n=l.472475  Y=EZ EL1zZEOYN

graph of function and maximum

A.5.3 Method III (very simple calculus)

simplify: V' = (80 — 36x + 42?)

V =80z — 3622 + 42°

V' =80 — 72x + 12z (To find the slope of a polynomial at any point, multiply the
exponent by the coefficient and put it down as the new coefficient. Write down your
variable with the exponent reduced by one. If there is no variable, the slope is zero,
so don’t write anything for that term.)

V' = 32? — 182z + 20 = 0 (rearranged order, +4, and set V’ to zero because slope is
zero at a maximum.)

r = (18 £ /324 — 240) + 6 (Use the quadratic formula to solve the resulting
quadratic equation.)
r=3++21/3~1.47247---

Thus the other sides are (8 — 2x) ~ 5.055 and (10 — 2x) &~ 7.055.

Note: factorable quadratics and integer solutions can be obtained by starting with
square paper.

Note also: this is the solution to the third bonus questions (either question number
43 or 83) of the May 1998 semester tests (Geometry, Algebra II, Precalculus). It also
appeared on that year’s Calculus AB final test.
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A.6 Complex Number Activity (Lesson [16])

Please use your TI-84-+ calculator or TI-nspire with TI-84+ keypad for the fol-
lowing activities. How to do many of them without your calculator is illustrated in
the lecture notes.

Find the i key on your calculator (2°¢) and (.) and ENTER The answer should

be i or possibly 1€,

v—1 and ENTER
Don’t be surprised with an error.

MODE set a + bi and ENTRY (2nd ENTER) and ENTER.
The answer should now be i. Real mode may be safest until you understand what
it is trying to do!

MODE re?t \/—1 and ENTER Your answer should be 1%,

Set your MODE back to a + bi.
(3 -2i) + (1 + 3i) ENTER should give you: 4 + i.

(34 2i) % (2 — i) ENTER should give you: 8 +i.
Note: the multiplication sign is optional.

(24 3i)/(3+ i) ENTER should give you: .9 + .7i.

abs(3 + 4i) (MATH NUM 1) should give you: 5.
Note: the calculator uses abs for both absolute value and magnitude.

i ENTER should give you .2078775764!
Amazing! Imaginary to imaginary give you a real number. Actually, this is only
the primary answer, other values are also possible.

i~2 ENTER and ¢ ENTER both should give you 23.14069263.
sin(i) and cos(i) should give you an error on the TI-83 and TI-84, but works
properly on the TI-85 and TI-86.
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A.7 Numbers Booklet Verification/Stapling Activity

Directions: You may work together, but answer each question carefully using your

own Numbers booklet. Take time to put the booklet in THIS order. Make a list

by table of who is missing what (nonbonus) pages.

1. Page ¢ (blue front cover): Full title of booklet.
2. Page 1:1: Title for Section 2.5.
3. Page v: Section number for Accuracy vs. Precision.
4. Page vii: Title for Section A.4.
5. Page xui: “Convey my lifelong for numbers.”
6. Page 2: Q7: Leave textbook home until when?
7. Page 7: John Venn’s year of death.
8. Page 9: Q5. Cost of new toy in clams.
9. Page 12: Another word for axiom (top of page).
10. Page 19: Eratosthenes’ nickname (bottom of page).
11. Page 25: Who said “Ah! I recognize the lion by his paw.”
12. Page 31: Q5. Largest factorial calculated exactly on your TI-84 calculator.
13. Page 35: Restriction on “Anything to the zero power is 1.”
14. Page 41: Q2. Zeroes in a googolplex.
15. Page 43: Latin quote from Decartes.
16. Page 49: Q8. Counterexample to large dangerous bears.
17. Page 56: What I.0U6.(04.05.N06) is equal to (middle of page)?
18. Page 58: Q9. Objects headed toward St. Ives (in base 7).
19. Page 60: Group axiom 1.

20. Page 66: Q20. 22" — 1 in hexadecimal.

21. Page 70: Done when multiplying/dividing inequality by a negative (middle of
page).
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22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

33.

34.
35.
36.
37.

38.

39.

40.

41.
42.

43.

NUMBERS BOOKLET VERIFICATION/STAPLING ACTIVITY 153

Page 76: Q12.13 Repeat length for 1—13

Page 83: Why isn’t 12 am or 12 pm valid (middle of page).

Page 85: Q14. 2.4526 m + 8.4.

Page 89: What Q.E.D. means (middle of page).

Page 93: Q6 (go all the way!).

Page 97: What is special about a 37°,53° 90° triangle (middle of page)?
Page 102: Q6. Length of other two sides in 30°,60°,90° triangle.

Page 106: Number system used to label quadrants (bottom of page).
Page 114: Q16. Domain and range of: y = 22 + 52 + 6.

Page 120: What is the continuum hypothesis?

Page 123: Q8. Counterexample showing negatives are not closed under multi-
plication.

Page 127/129: What decimal place has the first identical digit in the decimal
representations of 7 and e?

Page 133: Q18. Solve for x: log, z = 3.

Page 139: Three pages “missing” page numbers (bottom of page).
Page 142: Q14. Exact/approximate values of complex cube roots of 1.
A.2 Bonus: Page 146: Total skittles for your (original) table group.

A.5 Page 150: Square side length to cut in 8” x 10” corners to maximize volume
(page 2 screen).

A.4 Bonus: Page 148: Which boxes have 31 in them (specify by number in
upper left)?

A.7 Bonus: Page 153: Express 1/(last question number) exactly as a decimal
fraction.

B.1 Page 158: Q9. 100 expressed as sum of two triangular number.
C.1 Released test: Page 161: Q8 LCM(270,600).

C.2 Released test: (page 4): Q17. 4 ancient impossibilities.

Your booklet should now be ready for stapling. Bonus for early.
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A.8 Number/Phrase Association Activity

Complete the phrase identified by these numbers, words, and initial

letters.

1-DataT 1-WonaU

2-TD (and aPina P T)

3-PforaFGinF 3-BM (SHTR) 3-LK

4 - H of the A 4-QinaG 4-TonaCU
5-DinaZC 5-F on the H 6 - W of H the E
7-Hof R 7-W of the AW 7-VofS
7-D (with S W) 7-B M and the E

7-95 7-DS

8-PonNA 8 -P of Sin the E L 8-SonaSS
9-ITinaBG 9-PintheS S 9-Jofthe S C
10 - A in the B of R 10 - C in the D

11-PonaFT 12 - S of the Z 12-D of C
13-Cinas$ 13-Sonthe AF 13-DinaBD
16-OinaP 16 - M on a D M C (YHH and a B of R)
18-HonaGC 18- Wonmy BR

20-Y that RV WS 24-HinaD

26 - L of the A

29-DinFinalLY

30-DHS A Jand N 31 -1 CF at B-R
32 - D F at which W F

36-IinayY

40 - T (with A B) 40 - D and N of the G F

50-Cina HD 50-WtoLYL

54 - Cin a D (with the J)

56 - S of the D of I 57-HV

60 -SinaM 64 -SonaC

66 - B in the B 76 - T in the B P

80 - D around the W 88 -KonaP 90-DinaRA
99 - B of B on the W

101 -D 200 - D for P Gin M

212 - D at which W B
435 - M of the H of R

500 - Hof B C 600 - R in the C of the L B
1000 - W that a P W 1000 - S (that a F L)
1001 - AN

20,000 - L U the S
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Name Score

B.1 Quiz over Numbers Lessons 14

Open books and open group quiz. Hand in one per table.
Be sure answers are correct! Keep a copy in your notes.
1. List table members who do not have their syllabus signed by a parent.

2. Set intersection and union are related to and’s and or’s. Which is which and
why?

3. List one quote by each of the three greatest mathematicians and indicate whose
is which.

4. What is your group’s best answer for Numbers Lesson 1, problem 97

5. What is your group’s best answer for Numbers Lesson 1, problem 107

6. Show work for Numbers Lesson 2, problem 7.

7. What is your group’s best answer for Numbers Lesson 3, problem 8a?

8. What is your group’s best answer for Numbers Lesson 4, problem 77

9. Express the number 100 as the sum of two triangular numbers.

10. List five common Latin terms and what they mean.
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158 APPENDIX C. RELEASED TEST/KEY

Name Score

C.1 Geometry, Test 1, September 24,
2004—Released Test

One 3"x5" notecards and TI-84+ type graphic calculator allowed.
Please place answers on the short underlines provided to the
left of the problem symbol. Each of the 21 question numbers
has equal weight (i.e. 5 points each). Question subparts have
about equal weight. Read the questions carefully. Hand in any
used scratch paper with the test for potential partial credit.

SHOW YOUR WORK

1. Form the best match among the following.

Triangular Numbers A. 0,1,4,9,...
- Squares B. 0,1,1,2,...
Perfects C. 0,1,3,6,...
The Factorials D. 6, 28,496, . ..
The Fibonacci Numbers E. 1,1,2,6,...

__ 2. Perform the following set operation: {B,r,i,t,n,e,y} N{S,p, e, a,r,s}.
(Three bonus points: what is the cardinality of each set?)

3. Perform the following set operation and sketch the corresponding Venn

diagram. {B,r,i,t,n,e,y} U{S,p,e,a,r, s}.

4. Explicitly use the recursive definition of n! to simplify then evaluate: %

5. Give the value of the five smallest Fermat numbers.

Five bonus points for correctly describing the form a Fermat number has in
binary.

Test 1 continued next page.
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6. Form the best match among the following.

5 _ Versus A. make weight
_ mantissa B. about
- circa C. against
_ modulo D. that is
id est E. a small measure

7. Explicitly indicate the prime factorization of 270 and 600. Be sure to use

exponents and list the prime factors in increasing order.
5! Eﬁooue ORDERS LuNeH l

S~
No,No, Y25 no o ey
wﬂq NO,YES...

___ 8. Find LCM(270,600).

D
— 9. Convert 543 into its base 6 value.
(Three bonus points: Convert 5434 into its base 10 value.)
D
10. Depict a Pascal’s triangle with sides of length 6. Two bonus points
for naming the mathematical/calculator function which will give each entry directly.
) Two more bonus points for giving the formula for evaluating this mathematical

function.

Test 1 continued next page.
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11. From the conditional: “If no clouds, then no rain.”; write the:

a. Converse

b. Inverse

c. Contrapositive

e. q.

12,13. You are given a three input logic gate whose output is described com-

pletely as the most common input. Fill in the missing two input and eight output
values in the table below. Four bonus points: how can the output be described
simply by considering separately p =0 and p = 17

D q r most(p, q,r)
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1

14. Solve for x and graph the solution set of —2x + 9 < 1.

15. Express the unit fraction 1—13 as a decimal fraction exactly. How many digits

are there in the portion which repeats? Five bonus points for identifying which
multiples of 1—13 can be represented by starting this repetition at a different point?

Test 1 continued next page.
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16. Form the best match among the following.

Pauca, sed matura A. Archimedes
Book of Nature is written in mathematical characters B. Newton
Cogito ergo sum C. Bernoulli
... playing on the seashore...smoother pebble D. Galileo
Eureka, Eureka E. Gauss
F'. Descartes
1 1
371
—17,18. Show work evaluating by hand: —

— _|_ —
— _19. Express the number representing thé:) diazgonal of a unit square in several
forms (3 points). Be sure to include at least one with a fractional exponent (2 points).

225

__ 20. Rationalize the demoninator and simplify completely: =

Bonus Question, 5 bonus points

— 21. How much does the banana weigh with peel?

" BANANA PEEL WEIGHS | | IF AN UNPEELED BANANA | [* H
1/8 THE TOTAL WEIGHT | | BALANCES A PEELED gﬂ%\ﬁgéu BﬁaSPETa%”
OF A BANANA” BANANA OF THE SAME WEIGHT '
~—— PLUS 7/8 OF AN OUNCE...”

I have been careful to not allow others to see my work and the work on this
examina-
tion is completely Iy OWIl. This examination is returned and associated solutions are provided for my own per-
sonal use only. I may not share them except with concurrent classmates taking the identical course. Other uses are not condoned. I

will dispose of it properly.

signature date
End of Test.—Check your work.—Have a nice day!
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162 PPENDIX C. RELEASED TEST/KEY

Name Score

C.2 Geometry, Test 1, September 24,
2004—Released Test

One 3"x5" notecards and TI-84+ type graphic calculator allowed.
Please place answers on the short underlines provided to the
left of the problem symbol. Each of the 21 question numbers
has eqmal weight (i.e. 5 points each). Question subparts have
about gqual weight. Read the questions carefully. Hand in any
used s?&atch paper with the test for potential partial credit.

SHOW) YOUR WORK

1. Fortithe best match among the following.

_B Triangular Numbers A 0,1,4,9,...
- Squares B 0,1,1,2,...
. Perfects C. 0,1,3,6,...

{ﬂ} The Ffole €aCh; 1 pt E{z} 6.osfROUS: 7, 6, 2
The Fibonacci Numbers E. 1,1,2,6,...

_ 2. Perform the following set operation: {B,r,i,t,n %B D, e,a,r, s}
Three us, peings: what is the@ardinality of each
( {bBi%?%?nE?ﬁ?%%?%j:S?ﬁl?%?é)}

3.1ngrmftcagfo ox around VD

_ owing set operation and sketch the corresponding Venn
2 1Odiagram. {B,r,i,t,n,e,y} U{S,p,e,a,r, s}
70 7654 . _
g— T =42-5=210. |
__ 4. Dxpibsy ®Xplieit dganeell abiipmy ©db cdilge: I pt ans

5. Qe the falue Phefivd spnaB Bt mu@Pers- 1, 22° + 1, 227 4 1
3, 5, 17, 257, 65537, 4294967297; an end optior

Five bonus points for correctly describing the form a Fermat number has in

binary. 115 1015, 100015, 1000000015, etc.
Starts/Besdd waritinded hest Page.l zeroes in betweer

33

25+38
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5
6. Form the be_% match among the following.
5 L Versus A. make weight
E mantissa B about
D circa C against
modulo D. that is
5 id est E a small measure
7. Explicitly indica:ge the prime factorizationg)f 270 andz 600. Be sure to use
expone;&? d:Hstch'e :érinieéactors in%@aﬁgzrdérg ) l
5 |Booce onous i
S Noo Y25, no N Yes
Use TI-8x+ MATH NUM 8 @w
5 8. i 6 wir 'u
— 8 G FEITOREH0) = 30 T
5 Also, 270 =30-9 600 = 30-20-g%

270600 _ 200-600 _ onfiiiery et
LCM = GCF(270,600) 30 o ?7@\3@ 2_
so 5400 =20-270=9-600=2°-3"-5

__ 9. Convert 543y into its base 6 value.
Ot9 (Three bonus points: Convert 5434 into its base 10 value.)
)

543/6=90R3; 90/6=15R0; 15/6=2R3:; so 5H43j) =
Chk: 2-6°+3-62+3-6"=2-216+3-36+3-1 =432+ 108

5436 =5-6°+4-6'+3-6" = 180 4+ 24 + 3 = 207
10.  Depict. alf)a@@l’s giafge @h?lfﬁ (il@g& 620’]?w0 bonus points
for naming the mathematical/ calculgtor function which will give each entry directly.
ok} Two more bonus points for giving the formula for evaluating this mathematical

function.

1 Combination or ,,C, or Choose/Choice

1 1 see MATH PRB 4 on TI-8x+
n!
1 y 1 nCr = T
| 2 T%;zt 1 confmued next page.
39 1 4 § 4 1

D 5 10 10 5 1
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Il:gl. 1’]Fl‘r(b)m 1c:.h%' g-ol;lld’ltlonal eIrl‘lnonc%z)ud(s:, ]t-lgrlfl I?f)slrziin.”; write the:
a. Converse
1T clouds, then rain.

b. Inverse

If rain, then clouds.

c. Contrapositive

no clouds (has if: point)

d. p

no rain (has then: p01nt)

[\DIH [\DlH

q.

12,13. You are given a three input logic gate whose output is described com-

pletely as the most common input. Fill in the missing two input and eight output
values in the table below. Four bonus points: how can the output be described
simply by considering separately p =0 and p = 17

P q r most(p, q, 'r’b
0 0 0 O
0 0 1 O
0| 1|0 1
0o 1|1 0
1 0 0 i
S 1
1 1 0
p=0&gATr p=1&qVr
p select gate type: p=0 1is and; p=1 is

I I
T T T T T
45678910

@ ——

14. 33 betf%r x andﬁr?% t% solugon set of ?$+4 T
pts: direction, open circle

15. Express the unit fraction 113 as a decnnal fraction exactly. How many digits

are there in the portion which repeats?” Five bonus points for identifying which
multiples of i can be represented by starting this repetition at a different point?

——-—()076923 6 digits repeat.
{1 3,4, Jesh 1 gontipued mext page. 7 8 11}

Note the symmetry in these groups.

34

25+9
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16. Form the best match among the following.

Pauca, sed matura A. Archimedes
Book of Nature is written in mathematical characters B. Newton
Cogito ergo sum C. Bernoulli
... playing on the seashore...smoother pebble D. Galileo
Eureka, Eureka E. Gauss
F'. Descartes
1 1
371
—17,18. Show work evaluating by hand: —

— _|_ —
— _19. Express the number representing thé:) diazgonal of a unit square in several
forms (3 points). Be sure to include at least one with a fractional exponent (2 points).

225

__ 20. Rationalize the demoninator and simplify completely: =

Bonus Question, 5 bonus points

— 21. How much does the banana weigh with peel?

" BANANA PEEL WEIGHS | | IF AN UNPEELED BANANA | [* H
1/8 THE TOTAL WEIGHT | | BALANCES A PEELED gﬂ%\ﬁgéu BﬁaSPETa%”
OF A BANANA” BANANA OF THE SAME WEIGHT '
~—— PLUS 7/8 OF AN OUNCE...”

I have been careful to not allow others to see my work and the work on this
examina-
tion is completely Iy OWIl. This examination is returned and associated solutions are provided for my own per-
sonal use only. I may not share them except with concurrent classmates taking the identical course. Other uses are not condoned. I

will dispose of it properly.

signature date
End of Test.—Check your work.—Have a nice day!
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