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Prefa
eThis web-based series of le
tures on Numbers and Their Appli
ation to Math andS
ien
e is the outgrowth of my work sin
e 1993 tea
hing high s
hool math to a sele
tgroup of students with very diverse ba
kgrounds. These students attend the BerrienCounty Math and S
ien
e Center at Andrews University. It is assumed, somewhaterroneously, that all students have su

essfully 
ompleted Algebra in eighth grade.All will be taking Geometry or higher in ninth and are expe
ted to 
omplete APCal
ulus AB by grade 12.Although these students represent about 1% of the area's high s
hool population,they are well distributed from the top 10% of the rural/small town population a
rossBerrien and Cass Counties. This series of le
tures serves to review basi
 number
on
epts, apply these 
on
epts to the mathemati
s and s
ien
e they will be studyingfor four years, and also lay a framework for ISEF/EXPO type proje
ts in mathemati
s,espe
ially during their freshman year. Fundamental 
on
epts essential to doing wellon 
ontests, like 0 being even, 1 not being prime, what 
omplex numbers and bases are,are reviewed/taught. Additional purposes in
lude: for
ing students to study�manybreezed through grade s
hool without 
ra
king a book; separate out the a

eleratedstudents (Algebra II, Pre
al
ulus); provide a referen
e booklet for years to 
ome. Assu
h, some material is here for exposure only and not mastry.Histori
ally, I was their only math tea
her for four years of high s
hool math. Thishad both bene�ts and pitfalls. One of the major bene�ts was the ability to tailor our
urri
ulum's timing and 
ontent to the s
ien
e and te
hnology 
omponents of ourprogram. Another was the opportunity to introdu
e su
h fundamental 
on
epts ofslope, area, bases, proof, et
. in su
h a way as to ease the transition to Cal
ulus.This is still being done by 1) a 
areful sele
tion and use of a variety of textbooks; 2)di�erent modes of homework usage; 3) sele
ted examples whi
h span a wide varietyof sub�elds of mathemati
s.The 
onsolidation of the Berrien County Math and S
ien
e Center at AndrewsUniversity started in 1992�93, 
ontinued in 1997�98, and resulted in a target of 50students at one site, instead of 56�75 per grade level. Expansion to two se
tionsat ea
h grade level was 
ompleted in 2000�01, resulting in multiple mathemati
stea
hers. The s
hedule di
tated grade level se
tions to o

ur 
on
urrently. Assuringuniform delivery and 
overage was also a motivating fa
tor in standarizing this ma-xi

http://www.sciserv.org/isef/
http://www.remc11.k12.mi.us/expo/


xii NUMBERS LESSON 0. PREFACEterial. However, in 2001�02, we started a return to one se
tion of 30 students pergrade level. This resulted in higher SAT s
ores (freshmen average over 1050) andthus emphasized the need to keep these students 
hallenged.Numbers are fundamental to the study of mathemati
s and s
ien
e. Their dis
ov-ery (some insist invention) transformed man into rational beings. Con
epts su
h asratio, 
ontinuity, nth roots, signi�
ant �gures, et
. introdu
ed early in our Introdu
-tion to Statisti
s unit stret
h the ability of many of our students. This unit is thusdesigned to 
omplement the instru
tion given our lowest quartile students in SummerAlgebra and somewhat de
ouple the distra
tion of these number 
on
epts from thestudy of Statisti
s. In addition, students a

elerating faster than our normal (and al-ready a

elerated) program or those joining late (as Freshmen, Sophomores, and evenJuniors or Seniors) need this information whi
h is not well summarized elsewhere.In 2001�02 we stream-lined the homework by removing some arithmeti
 and al-gebra 
on
epts 
overed in Summer Algebra so it better �ts within our 50± minute(55 Tue./Thu.; 45 Fri.) daily 
lass period. In 2006�07 we abandoned the web-pageapproa
h and typeset it in book form. We 
ontinue to 
larify essential 
on
epts andgenerally improve the delivery.
1

I sin
erely hope to 
onvey my lifelong passion for numbers as well. I �rmly believemathemati
s is a �intera
tive� or parti
ipation sport. Although I don't expe
t toinstitute 
yphering mat
hes (like spelling bee's only doing 
al
ulations), lots of othersimilar a
tivities are planned to involve the students. A Chinese proverb states: �Ihear and forget, I see and remember, I do and understand.� Understanding is essentialfor a �rm foundation. Referen
es su
h as Google2 and Dr. Math3 are also essential.Sin
erely, Keiθ or Keith the Complex number1http://www4.stat.n
su.edu/~bmasmith/images/all.gif2http://www.google.
om/.3http://www.mathforum.
om/dr.math.
©MMIX Ke
iθ G. Calkins O
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Numbers Lesson 0
0.1 Homework Graded on Day 21. Fill in the following table (3× 3) with the digits 1�9 (ea
h used and only on
e)in su
h a way that ea
h row and 
olumn totals 15. You will re
eive bonus pointsfor also having the diagonals so sum.

2. Below is a Sudoku but two by two using the digits 1�4 instead of the morepopular three by three version using the digits 1�9. The same rules apply. Nonumber may appear more than on
e in any given row, 
olumn, or two by twosmaller box. For one point ea
h digit, 
omplete the Sudoku below.24 123. Classify the books in your home six di�erent ways (example hard 
over, west-ern, text, et
.) and 
ount or estimate how many (what per
ent) are in ea
h
lassi�
ation. Do they (the per
entage) add up to how many books (100%)? Ifnot, why not.
1



2 NUMBERS LESSON 0. DAY 1 HOMEWORK4. A square number, or perfe
t square, is any number whi
h 
an be expressed asthe produ
t of a number multiplied with itself. For example, 9 = 3 × 3, 9 trees
an be put into a square �gure:
• • •
• • •
• • •Using the set of digits 1, 6, 9, form as many square numbers as possible. Thedigits may be reused, su
h as 11 and 966 (whi
h are not squares), to form largersquare numbers. (Bonus for more than �ve su
h numbers.)Outline for Geometry, Wednesday, Sep. 9, 20091. 8:00: M�F: Geometry in SH100.2. Tea
her: Keith Calkins, known as Dr. Keiθ.3. Pi
tures: not for publi
ation. Wear name tag ABOVE heart, right-side-up.4. Introdu
tions: learn everyone's name soon. Learn to speak loudly AND softly.5. Telephone: share number on list to be redistributed but not published.6. Note
ard: �ll out personal information; return TODAY.7. Textbook: leave at home for referen
e until mid-O
tober.8. Numbers: textbook handed out pie
emeal. Do Homework 0 and read Le
-ture 1 for tomorrow. Keep all and neat for binding.9. Notebook: organize notebook with orange notebook 
he
k sheet at front. Pre-ferred format is 1" 3-ring binder.10. Course Outlines: 
ard sto
k yellow for notebook. Cherry, regular size for home.11. Syllabus: Get parent to sign ASAP. Math Help Sessions 7�9 pm Tuesdays after�rst week. Computer Help Sessions 7�9 pm Tuesdays and Wednesdays after�rst week. Computer helpers are Center graduates or seniors.12. Cal
ulator: Get TI-nSpire or TI-84+ soon. Bring in proof of pur
hase seal.13. Handbooks: Distributed in Computers. Parents sign form.14. Forms: Turn in forms (medi
al, handbook, �eld trip, audio/video), if not donealready. Horseplay is not 
ondoned.
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Numbers Lesson 1All About SetsIn a small town where all the men are 
lean-shaven, the barber shaveseveryone who does not shave himself. Who shaves the barber?Barber's ParadoxIn this lesson we will explore the foundations of mathemati
s, spe
i�
ally, sets,subsets, and their elements. It is di�
ult to explain number without this fundamental
on
ept. First, however, we will have the �rst in our series of biographies of famousmathemati
ians.One of the goals of these le
tures is to provide familiarity with the great math-emati
ians. Below we will make referen
e to Whitehead, Russell, Gödel, Eu
lid,Pythagoras, Venn, and Euler. In this �rst lesson we will start with one of the threegreatest mathemati
ians of all time: Ar
himedes (
 287�212 b.
.). (
. is an abbre-viation for the Latin word 
ir
a, meaning around.) Newton (1642�1727) and Gauss(1777�1855) will await subsequent lessons. Note that if there were a fourth greatestmathemati
ian, it would be Euler. Learning 
ommon Latin (and Greek) terms isanother goal.1.1 One of the Greatest Mathemati
ians: Ar
himedesAr
himedes was born, lived, and died in Syra
use, Si
ily but studied at Alexandria(Egypt)�at that time the 
enter of learning. He is known as a mathemati
ian,s
ientist, and inventor, but his greatest 
ontributions were in geometry, su
h as therelationship between the surfa
e area and volume of a sphere and its 
ir
ums
ribing
ylinder. He found lower and upper limits for pi: by ins
ribing and 
ir
ums
ribing a
ir
le with a regular 96-gon. He invented engines of war (mirrors, 
atapults, et
.) andthe water s
rew. The prin
iple of bouyan
y named after him helped him determinewhether or not a 
rown was pure gold�he streaked from the publi
 bath shouting�Eureka, Eureka,� or literally I found it, I found it. He is quoted as saying: �Give3



4 NUMBERS LESSON 1. ALL ABOUT SETSme a pla
e to stand and I will move the earth��meaning levers 
an do great feats.His methods of 
al
ulating areas in several 
ases were equivalent to 
al
ulus inventedmu
h later. Some of his works were lost and not all the stories and books attributedto him are ne
essarily his. The author has done extensive resear
h on his 
attleproblem.1 Ar
himedes was drawing geometri
 �gures in the sand when a Romansoldier, approa
hed. Ar
himedes' last words were: �Do not disturb my 
ir
les," whenagainst spe
i�
 orders, the soldier fatally stru
k him.1.2 Sets, Elements, and SubsetsOne di
tionary has, among the many de�nitions for set, the following:Set: a number of things naturally 
onne
ted by lo
ation, formation, or order intime.Although set holds the re
ord as the word with the most di
tionary de�nitions,there are terms mathemati
ians 
hoose to leave unde�ned, or a
tually, de�ned byusage. Set, element, member, and subset are four su
h terms whi
h will be dis
ussedin today's lesson. Today's a
tivity will also explore the 
on
ept of a set.Ea
h item in or inside a set is termed an element.The bra
e symbols �{� and �}� are used to en
lose the elements in a set.Ea
h element is a member of the set (or belongs to the set).The symbol for membership is �∈�. It 
an be read �is an element of� and looksquite similar to the Greek letter epsilon (ǫ). Thus ǫ ∈ {α, β, γ, δ, ǫ}.A subset is a portion of a set.The symbol for subset is �⊂�. Some books allow and use it reversed (⊃)�we willnot.A superset is a set that in
ludes other sets.For example: If A ⊂ B, then A is a subset of B and B is a superset of A.A subset might have no members, in whi
h 
ase it is termed the null set or emptyset.The empty set is denoted either by {} or by ∅, a Norwegian letter. The null setis a subset of every set.Note: a 
ommon mistake is to use {∅} to denote the null set. This is a
tually aset with one element and that element is the null set. Sin
e some people slash their1 http://www.andrews.edu/~
alkins/profess/
attle.htm.
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1.2. SETS, ELEMENTS, AND SUBSETS 5zeroes, it is safest when handwriting to always use the notation {} to denote theempty or null set.A singleton is a set with only one element.A subset might 
ontain every member of the original set.In this 
ase it is termed an improper subset.A proper subset does not 
ontain every member of the original set.Sets may be �nite, {1, 2, 3, . . . , 10}, or in�nite, {1, 2, 3, . . .}. The 
ardinality ofa set A, n(A), is how many elements are in the set. The symbol �. . .� 
alled ellipsesmeans to 
ontinue in the indi
ated pattern. There are 2n subsets of any set, where nis the set's 
ardinality.Example: How many subsets does a set with three elements have?Solution: 23 = 8. Let the set be {A,B,C}. Then the subsets are: {}, {A}, {B},
{C}, {A,B}, {A,C}, {B,C}, and {A,B,C}. We will dis
uss the pattern made bythe number of subsets of ea
h 
ardinality in a later lesson.2The power set of a set is the 
omplete set of subsets of the set.For any set its power set is at least as big, if not bigger than the original set. Thatis, 2n > n for all n ≥ 0. We will have reason to explore this later when we dis
usslevels of in�nity.Example: for the set {A,B,C}, the power set would be:
{

{}, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}
}.In this 
lass we will 
onsider only safe sets, that is, any set we 
onsider shouldbe well-de�ned. There should be no ambiguity as to whether or not an elementbelongs to a set. That is why we will avoid things like the village barber who shaveseveryone in the village that does not shave himself. This results in a 
ontradi
tion asto whether or not he shaves himself. See also Titus 1:12 in the Bible: �A Cretan said:all Cretans are liars.� Also 
onsider Russell's Paradox: Form the set of sets that arenot members of themselves. It is both true and false that this set must 
ontain itself.These are examples of ill-de�ned sets.Sometimes, instead of listing elements in a set, we use set builder notation:

{x | x is a letter in the word �mathemati
s�}. The symbol �|� 
an be read as �su
hthat.� Sometimes the symbol �⊂� is reserved to mean proper subset and the symbol�⊆� is used to allow the in
lusion of the improper subset. Compare this with the useof < and ≤ in Se
tion 9.4 to ex
lude or in
lude an endpoint. We will make no su
hdistin
tion. A set may 
ontain the same elements as another set. Su
h sets are equalor identi
al sets�element order is unimportant. A = B where A = {m, o, r, e} and
B = {r, o,m, e}, in general A = B if A ⊂ B and B ⊂ A. Sets may be termed2Hint: use Pas
al's Triangle.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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6 NUMBERS LESSON 1. ALL ABOUT SETSequivalent if they have the same 
ardinality. If they are equivalent, a one-to-one
orresponden
e 
an be established between their elements.The universal set is 
hosen arbitrarily, but must be large enough to in
lude allelements of all sets under dis
ussion.Complementary set, A′ or A, is a set that 
ontains all the elements of the universalset that are not in
luded in A. The symbol � ′� 
an be read �prime.�For example: if U = {0, 1, 2, 3, . . .} and A = {0, 2, 4, . . .}, then A′ = {1, 3, 5, . . .}.Su
h paradoxes as those mentioned above, parti
ularily involving in�nities (dis-
ussed in the next lesson), were well known by the an
ient Greeks. During the 19th
entury, mathemati
ians were able to tame su
h paradoxes and about the turn of the20th 
entury Whitehead and Russell started an overly ambitious proje
t to 
arefully
odify mathemati
s. Set theory was developed about this time and serves to unify themany bran
hes of mathemati
s. Although in 1931 Kurt Gödel showed this approa
hto be fatally �awed, it is still a good way to explore areas of mathemati
s su
h as:arithmeti
, number theory, [abstra
t℄ algebra, geometry, probability, et
.Geometry has a long history of su
h systemati
 study. The an
ient Greek Eu
lidsimilarily 
odi�ed the mathemati
s of his time into 13 books 
alled The Elements.Although these books were not limited to Geometry, that is what they are bestknown for. In fa
t, up until about my grandfather's day, The Elements was thetextbook of 
hoi
e for the study of Geometry! The Elements 
arefully separated theassumptions and de�nitions from what was to be proved. The 
on
ept of proof datesba
k another 
ouple hundred years to the an
ient Greek Pythagoras and his s
hool,the Pythagorean S
hool.1.3 Interse
tion and UnionOn
e we have 
reated the 
on
ept of a set, we 
an manipulate sets in usefulways termed set operations. Consider the following sets: animals, birds, and whitethings. Some animals are white: polar bears, mountain goats, big horn sheep, forexample. Some birds are white: dove, stork, sea gulls. Some white things are notbirds or animal (but birds are animals!): snow, milk, wedding gowns (usually).The interse
tion of sets are those elements whi
h belong to all interse
ted sets.Although we usually interse
t only two sets, the de�nition above is general. Thesymbol for interse
tion is �∩�.The union of sets are those elements whi
h belong to any set in the union.Again, although we usually form the union of only two sets, the de�nition aboveis general. The symbol for union is �∪�.
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1.4. PICTURES OF SETS (EULER/VENN DIAGRAMS) 7For the example given above, we 
an see that:{white things} ∩ {birds} = {white birds}{white animals}∪ {birds} = {white animals and all birds}{white birds} ⊂ {white animals} ⊂ {animals}Another name for interse
tion is 
onju
tion. This 
omes from the fa
t that anelement must be a member of set A and set B to be a member of A ∩ B. Anothername for union is disjun
tion. This 
omes from the fa
t that an element must bea member of set A or set B to be a member of A ∪ B. Conjun
tion and disjun
tionare grammar terms and date ba
k to when Latin was widely used.I should note the very mathemati
al use of the word or in the senten
e above.Common usage now of the word or means one or the other, but not both (ex
ludesboth). Mathemati
ians and 
omputer s
ientists on the other hand mean one or theother, possibly both (in
luding both). This ambiguity 
an 
ause all kinds of problems!Mathemati
ians term the former ex
lusive or (EOR or XOR) and the latter in
lusiveor. We will see ands & ors again in Numbers Lesson 7 on truth tables.1.4 Pi
tures of Sets (Euler/Venn Diagrams)John Venn (1834�1923) extended the use of diagrams �rst developed by LeonhardEuler (1707�1783), the great Swiss mathemati
ian, to give pi
tures of sets. Venndiagrams are often used to visualize set operations.A superset does not have to be the universal set. The above example has whitethings as a superset of white birds, while the set 
ontaining both animate and inani-mate obje
ts is another possible universal set. A re
tangle should be used to en
losethe universal set, and other sets under dis
ussion are en
losed inside. Relationshipsare indi
ated by overlapping regions.
a,e,i,o,u y,w

b,c,d,f,g,h

j,k,l,m,n,p,q

r,s,t,v,x,z

Here, the English alphabet is our universal set. Vowels and 
onsonants are nondis-joint subsets thereof. Disjoint would mean their interse
tion was empty.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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8 NUMBERS LESSON 1. ALL ABOUT SETS
1.5 List of Greek/Latin TermsSeveral di�erent Greek and Latin terms and other abbreviations are purposefullyused in this series of le
tures. Most are listed here for referen
e.

• See Se
. 1.6: aka, also known as
• See Se
. 1: 
, 
ir
a, around
• See Se
. 2.3 
f, 
onfer, 
ompare
• See Se
. 6.1 Cogito ergo sum, I think, therefore I am.
• eg, exempli gratia, for example
• See Se
. 2.3: et
., et 
etera, and so forth
• See Se
. 1: i.e., id est, that is (to say)
• juxtaposition, pla
ed side-by-side
• See Se
. 10.5: lb, libra, pounds (weight), s
ales
• See Se
. 10.4 and 15.4: mantissa, mantissa, makeweight
• See Se
. 2.10: mod, modulo, a small measure
• See Se
. 6.4: Modus Ponens, Law of Deta
hment.
• See Se
. 6.4: Modus Tollens, Law of indire
t reasoning.
• nb, nota bene, note well
• See Se
. 11.4: Q.E.D., quod erat demonstrandum, that whi
h was to beshown/demonstrated
• See Se
. 8.7: vi
e versa, order opposite
• See Se
. 15.1: viz, videli
et, namely
• See Se
. 10.2: vs, versus, against or fa
ing
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1.6. SET HOMEWORK 91.6 Set HomeworkThis homework was originally designed to motivate some le
ture topi
s and setup some information for later referen
e (problems 1�7). Also, it 
an take a week ormore for su
h matters as buying or borrowing a graphing 
al
ulator to be resolved.Ea
h problem is worth two homework points unless otherwise noted.1. (4 points) Count to ten by ones.(a) Write these numbers down in order both with names (words) and in sym-bols (digits).(b) What number did you start with? Why?(
) What number 
omes next after ten?(d) How many numbers 
ome before ten?2. (3 points) Suppose you have two re
tangular egg 
artons ea
h �lled with adozen eggs. However, the egg 
artons are not the same shape�i.e. one is longand skinny, the other is short and fat. (i.e. is an abbreviation for the Latin termid est meaning that is (to say).)(a) What are the two most likely 
on�gurations of eggs in these 
artons?(b) What is another possible, but unlikely 
on�guration?(
) What are two ways to show that ea
h 
arton has the same number ofeggs?3. Repeat problem 1, part (a), but instead of assuming Arabi
 numbers, writeyour results using Roman numerals (no words needed).4. Begin with the number two (in Arabi
 numerals).
• Double the 
urrent number either by multiplying by two or adding itself.
• Repeat this pro
ess a total of ten times. Be sure to show your work.5. Suppose a new toy 
osts a hundred 
lams, but you only have eighty-nine 
lams.After you buy the toy, how many 
lams do you have (i.e. you may have bor-rowed)? Show your work.Numbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke
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10 NUMBERS LESSON 1. ALL ABOUT SETS6. By long division and showing your work, determine how many times six goesinto one million. If it did not go evenly, what is the remainder?7. Preferably using the pro
ess of long division and showing your work, determinehow many times seven goes into one million. If it did not go evenly, what is theremainder?8. Name a 
ounting song. (Consider bringing it, if really spe
ial.)For problems 9�11: Given A = {m, a, t, h} and B = {e, a, s, y}.9. Find A ∪ B.10. Find A ∩ B.11. Find A′ (also known as (aka): A).12. (3 points) Are these statements true or false. Venn diagrams may be helpful.(a) (A ∪ B) = A ∪B?(b) (A ∪ B) ∪ C = A ∪ (B ∪ C)?(
) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)?13. (Future test points) In your Geometry textbook, read se
tion 2.5 and look
arefully at problems 5�10, 15, and 16. Note the appli
ation of unions andinterse
tions to geometri
 �gures.14. (0 points) Learn the game of Set R© and prepare for a double elimination Set R©tournament!
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Numbers Lesson 2God Invented The IntegersGod invented the integers. All the rest is the work of man. Krone
kerThere is a philosophi
 question as to whether man dis
overed or invented num-bers. This lesson title and quote are part of that debate. Although we dis
uss thenatural numbers in this lesson, we defer into the next lesson the development of themusing the Peano axioms and mathemati
al indu
tion. Of 
ourse, there is an impor-tant 
hoi
e as to where to start: zero or one. Where to stop is another importantquestion! Alternate methods of developing sequen
es are noted whi
h lead to Trian-gular Numbers, Fibona

i Numbers, the Integer, and Fa
torials. Integer division (aninteger divided by an integer yielding an integer quotient and an integer remainder)is dis
ussed. First we dis
uss a se
ond great mathemati
ian.
2.1 One of the Greatest Mathemati
ians: GaussJohann Carl Friedri
h Gauss was German, born the only son of poor parents.However, his early genius was re
ognized as dis
ussed later in this lesson at a youngage. In his do
toral thesis at age 22, he developed the 
on
ept of 
omplex numbersand the Fundamental Theorem of Algebra. He applied mathemati
s to gravitation,ele
tri
ity, and magnetism, thus his name is 
losely tied into modern physi
s. Some ofhis important quotes are �Mathemati
s, the queen of the s
ien
es, and arithmeti
, thequeen of mathemati
s� and �Pau
a, sed matura (few, but ripe).� Gauss is perhapsmost famous for what I like to rather redundantly 
all the bell-shaped, gaussian,normal 
urve whi
h we will study later. He is also known for his method of leastsquares to obtain the best regression line whi
h we will study mu
h later.11



12 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS2.2 The Development of Mathemati
s via Axioms,De�nitions, and ProofAn axiom is a statement assumed to be true.Postulate is another word for axiom.Axioms and logi
al reasoning together enable mathemati
ians to prove things. Inthis se
tion we will present and dis
uss 
ertain axioms from whi
h all the properties ofthe natural numbers may be proved. Later lessons will develop the 
on
ept of logi
alreasoning and proof. First, we will present groups of axioms to help us understandthe di�erent number systems we will en
ounter.Unde�ned words in today's lesson in
lude the following: equal, su

essor, andnumber. The terms addition, multipli
ation, subtra
tion, and division will also notbe rigorously de�ned, but must satisfy the group and �eld axioms presented in Lesson8 and lesson 14. You were taught rudimentary algorithms in grade s
hool whi
h wewill review very brie�y.2.3 Natural or Counting Numbers and Whole Num-bersThe natural or 
ounting numbers are the familiar set: 1, 2, 3, 4, 5, . . .The ellipses symbol . . . (often read as dot dot dot) is often abbreviated et
., whi
his an abbreviation for the Latin term et 
etera meaning and so forth.There is a
tually no uniform agreement as to whether or not zero (0) is a naturalnumber. Popular usage indi
ates that it is not, whereas books on number theorywill often de�ne it to be one! Computer s
ientists and some popular programminglanguages su
h as C and C++ also often treat it as a 
ounting number. The di�eren
e
an be summarized by where we point or index (
f your index �nger). 
f is anabbreviation for the Latin 
onfer meaning 
ompare.Most books de�ne whole numbers as the union of the 
ounting numbers with zero.2.4 Zero and One IndexingZero Indexing a
knowledges zero as the number we start 
ounting with.One Indexing a
knowledges one as the number we start 
ounting with.In this 
lass we will be �exible, but try to spe
ify when zero indexing is to be
©MMIX Ke
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2.5. THE COUNTABLE INFINITY, ℵ0 13used. The symbol N or N is used to denote the set of natural numbers.2.5 The Countable In�nity, ℵ0The set of natural numbers is an in�nite set. There is always a next larger number.The perhaps misguided 
on
ept of �biggest number� is usually 
onveyed by the termin�nity and symbol∞. A
tually, this symbol is most 
ommonly used in the 
ontext ofthe real numbers. For integers, the symbol ℵ0 is 
ommonly used. ℵ is the �rst letterof the Hebrew alphabet and is 
alled aleph, mu
h like α or alpha. The subs
riptis usually termed null instead of zero, hen
e aleph-null. The 
on
epts of in�nity,in�ntesimal, and 
ontinuity were the root 
ause of several an
ient Greek paradoxeswhi
h we will explore further in Lesson 14.2.6 Addition and Triangular NumbersWhen we add two numbers together, they are termed addends. The result istermed the sum.An interesting subset of the natural numbers generated by addition are 
alledTriangular Numbers. These are so 
alled be
ause these are the total number of dots,if we arrange the dots in a triangle with one additional dot in ea
h layer.
•

• •
• • •

• • • •The triangular numbers thus are: 0, 1, 3, 6, 10, 15, 21, . . . (Not everyone 
onsiders0 to be triangular.)The following example has a ri
h history dating ba
k to the early 
hildhood ofGauss. To keep his 
lass busy for a long time, the tea
her told them to add the
ounting numbers up to one hundred. Gauss �nished very qui
kly thus revealing hisearly genius. This is what he did:
T100 = (1 + 100) + (2 + 99) + (3 + 98) + . . .+ (50 + 51) (2.1)

= 101 × 50 (2.2)
= 101 × 100

2
(2.3)Numbers and Their App.�pdf 4 O
tober 4, 2009 
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14 NUMBERS LESSON 2. GOD INVENTED THE INTEGERSNote how the equal signs are aligned verti
ally, a form we will strongly en
ourageto redu
e mistakes.This 
an be generalized to: Tn =

n
∑

1

i =
n(n + 1)

2
, where mathemati
ians use the
apital Greek letter ∑ (sigma) to represent summation. One of your tea
hers hasa parti
ular fondness for this symbol sin
e the �rst 
omputer he had mu
h a

ess tohad that ni
kname.2.7 Fibona

i NumbersAnother way to add numbers together generates the Fibona

i Numbers. A biog-raphy for this early Italian mathemati
ian will 
ome in a later lesson.1 Histori
ally,this sequen
e was asso
iated with the number of progeny a pair of rabbits produ
edgiven a month to mature and a monthly reprodu
tive 
y
le. However, it appears insu
h diverse pla
es as sun�ower spirals and 3" by 5" 
ards.Fibona

i Numbers, represented here by Li, 
an be de�ned as follows.Let L0 = 0 and L1 = 1. For all other Li, let Ln+1 = Ln−1 + Ln.This de�nition is re
ursive,2 i.e. ea
h term is de�ned in terms of the previoustwo. The �rst few Fibona

i numbers are 0, 1, 1, 2, 3, 5, 8, 13, ... (Not everyone
onsiders 0 to be a Fibona

i number.)2.8 Fa
torialsWe multiply a multipli
and by a multiplier, and 
all the result a produ
t.Fa
torials 
an be de�ned re
ursively as n! = n× (n− 1)! where 1! = 1.By de�nition, 0!=1. (Don't ask, it just works best!)For example, 5! = 5 × 4 × 3 × 2 × 1 = 5 × 4 × 3 × 2 = 5 × 4 × 6 = 5 × 24 = 120.In general, n! =

n
∏

i=1

i. The symbol Π is the 
apital Greek letter pi (π) andrepresents produ
t. The expression is termed a pi produ
t.1See http://www.engineering.sdstate.edu/~fib for more information.2We used the symbol L in honor of Fibona

i's �rst name Leonardo, for the general Lymansequen
es of whi
h the Fibona

i sequen
e is most famous, and to avoid 
onfusion with Fermatnumbers.
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2.9. SUBTRACTION AND THE REST OF THE INTEGERS 152.9 Subtra
tion and the Rest of the IntegersEarly in life, most of us en
ounter negative numbers, for example, when something
osts more than what we have. Perhaps, we are able to get an advan
e on ourallowan
e and thus en
ounter debt.When you subtra
t a subtrahend from a minuend, the result is termed thedi�eren
e.The integers are the 
ounting numbers together with their opposites and zero.Opposite in this 
ase refers to the 
on
ept of additive inverse (a �eld axiom). Itwould seem that we have doubled the size of the number system, but in a
tuality itis still a 
ountably in�nite set.The symbol Z or Z is used to denote the set of integers.It 
omes from the German word zahlen, meaning to 
ount.2.10 Integer Division or Division with Remainder,Modulo, Congruen
eEven: An integer is even if it is an integer multiple of 2.Odd: An integer is odd if it is not an integer multiple of 2.Hen
e, the even numbers are 0,±2,±4, . . . and the odd numbers are±1,±3,±5, . . .Zero is even.Although division will be presented again later, a spe
ial form will be introdu
edhere. Often the remainder obtained in a division is more important than the quotient.When a dividend is divided by a divisor, the results are termed the quotientand remainder, where quotient is the number of times the divisor went into thedividend and the remainder is how many were left over.When doing long division, it looks like this:
Divisor

Quotient R Remainder
|Dividend

.The 
on
ept of even and odd introdu
ed above 
an be expressed as whether theremainder was 0 or 1 when divided by 2. This 
an be expressed as 0 mod 2 or 1 mod 2where mod is an abbreviation for the Latin term modulo meaning a small measure.The same syntax is often used to ask the question: What is 121 mod 2? Answer:121 is 1 mod 2, or an odd number. We also say, 121 ≡ 1(mod 2) Where ≡ is readequivalent to. A later homework problem will extend this 
on
ept to your every dayNumbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke
iθ G. Calkins



16 NUMBERS LESSON 2. GOD INVENTED THE INTEGERSexperien
e su
h as telling time.Modulo is the remainder when dividing by a divisor.Numbers whi
h have the same remainder when divided by another are termed
ongruent. Congruen
e will have other uses in geometry to indi
ate two obje
tshave both the same shape and measure.
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2.11. COUNTING HOMEWORK 172.11 Counting HomeworkEa
h problem is worth three points.1. Complete the following addition table.+ 0 1 2 3 4 5 6 7 8 9 10 11 1201234567891011122. Use the information above to 
omplete the following table about even and oddnumbers. Even or odd should be used to �ll in the blanks.+ even oddevenodd3. Write out the �rst 15 Fibona

i Numbers.4. Consider ea
h Fibona

i Number as either even or odd. What is the pattern?How does this follow from the above even/odd addition table?5. Find up to �ve Fibona

i Numbers whi
h are Triangular Numbers.6. Find six numbers whi
h satisfy the expression (are 
ongruent to): 1 mod 5.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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18 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS7. Find the sum of all the integers from 1 to 50, in
lusive.8. Complete the following multipli
ation table.
× 0 1 2 3 4 5 6 7 8 9 10 11 1201234567891011129. Use the information above to 
omplete the following table about even and oddnumbers.

× even oddevenodd

10. Bonus points: (An easy version of a Fibona

i 
lassi
) A snail landedat the bottom of a 30 foot well. It 
limbs up 3 feet every day, but slides ba
kdown 2 feet ea
h night. How long will it take the snail to get out of the well?
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Numbers Lesson 3The Peano Axioms
As far as the laws of mathemati
s refer to reality, they are not 
ertain;and as far as they are 
ertain, they do not refer to reality.Albert Einstein

This lesson allows us to slow down here in the early lessons and take a look athow the 
ounting numbers are developed (Peano Axioms), make referen
e to a 
ouple
ontroversial axioms (Well-ordered, and Least Cardinal), and list the mathemati
ianswe well be studying.
3.1 Father of Geography: EratosthenesEratosthenes was a Greek mathemati
ian, poet, athlete, geographer, and as-tronomer (276�194 b.
.) In mathemati
s, he is perhaps best known for his sievealgorithm for obtaining prime numbers whi
h bears his name and is developed in thenext lesson.Eratosthenes made remarkable dis
overies, inventions, and measurements. Forexample, he developed the system of latitude and longitude, �rst 
al
ulated the 
ir-
umferen
e of the earth, tilt of the earth's axis, the earth-sun distan
e, and inventedthe leap day. His 
ontemporaries ni
knamed him �Beta,� meaning two or se
ond,be
ause he was se
ond best, but in so many di�erent �elds.Eratosthenes was the 
hief librarian of the Great Library in Alexandria, studiedfor a time in Athens, and was a friend to Ar
himedes.19



20 NUMBERS LESSON 3. THE PEANO AXIOMS3.2 Dedekind-Peano Axioms and Mathemati
al In-du
tion
• 1 is a member of the set N.
• If n is a member of N, then n+ 1 belongs to N (where n+ 1 is the �su

essor�of n.
• 1 is not the su

essor of any element in N.
• If n + 1 = m+ 1, then n = m.
• A subset of N whi
h 
ontains 1, and whi
h 
ontains n+1 whenever it 
ontains
n, must equal N.In general, we don't emphasize the above axioms in this 
lass, but they are pre-sented here to assure you the natural numbers were dis
overed, exist, and/or 
an be
reated (just in 
ase you had any doubt). Some additional Peano Axioms are listedin Lesson 14.4.Axiom 5 above is the basis formathemati
al indu
tion whi
h will be developedlater (Geometry, Chapter 11).

3.3 Well-Ordering AxiomWell-Ordering Axiom: Any nonempty set of positive integers 
ontains a leastelement.The minimum is another term for least element. The largest element is themaximum. An important note to remember is that the integers do have an order(but no minimum or maximum)! Also, the Well-Ordering Axiom is at the 
enter ofsome 
ontroversy. It is equivalent to the Axiom of Choi
e and thus the root of theContinuum Hypothesis. See Numbers lesson 14 for more details.
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3.4. CARDINAL VS. ORDINAL NUMBERS 213.4 Cardinal vs. Ordinal NumbersCardinal Numbers are positive integers (
ounting numbers) that represent �howmany?�Ordinal Numbers are numbers that des
ribe position: �rst, se
ond, third,fourth,... lastAn example: There are nine innings (�how many?�) in a baseball game. Rightnow in the ninth inning (position), there is a man on �rst and third with two outs.We also saw the term 
ardinality in se
tion 1.2 where it was used to indi
ate the sizeof a set, as in how many elements a set had.In this last 
ontext, the 
ardinality or size of a set, is where 
ontroversy arises. It iswell known that not all in�nite sets are the same size and thus there arises a heirar
hyof 
ardinals, possibly well-ordered. This relates to the 
ontinuum hypothesis and ahost of related axiom proposals whi
h some think should be a

essible to the giftedhigh s
hools student.3.5 List of Mathemati
iansMany di�erent mathemati
ians are referen
ed in this series of le
tures. There aretwo lists provided here. First are those for whom a short biography is provided andfor whi
h the student should make a 
ons
ious e�ort to learn about this semester.Freshmen will do presentations about these mathemati
ians during the se
ond nineweek period. The se
ond list is of those of a more in
idental nature whose names areatta
hed to an important 
on
ept and the 
on
ept should be learned. Sophomoreswill do presentations about these mathemati
ians in their fall semester.3.5.1 Mathemati
ians/S
ientists with Short Biographies
• Se
. 1.1: Ar
himedes (c. 287�212 b.
.), one of greatest mathemati
ians/physi
ists.
• Se
. 9.1: Georg Cantor (1845�1918), set theory, trans�nite numbers.
• Se
. 16.1: Abraham de Moivre, (1667�1754), 
omplex root �nding theorem.
• Se
. 6.1: René Des
artes (1591�1650), Fren
h, analyti
 Geometry.
• Se
. 3.1 and 4.6: Eratothenes (about 200 b.
.), Greek, prime sieve, earth's
ir
umferen
e.
• Se
. 7.1: Eu
lid (about 300 b.
.), Greek, Father of Geometry, Even Perfe
ts.
• Se
. 13.1: Leonard Euler (1707�1783), (225

+ 1)/641=integerNumbers and Their App.�pdf 4 O
tober 4, 2009 
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22 NUMBERS LESSON 3. THE PEANO AXIOMS
• Se
. 5.1: Pierre de Fermat amateur mathemati
ian, early 1600's, 22n

+ 1, xn +

yn 6= zn, n > 2 = FLT.
• Se
. 12.1: Fibona

i, 13th 
entury Italian; 0, 1, 1, 2, 3, 5, · · ·; rabbits, arabi
 al-gorithms.
• Se
. 2.1: Carl Friedri
h Gauss (1777�1855), one of greatest mathemati
ians/physi
ists.
• Se
. 7.3 and 14.1: Kurt Gödel (1906�1978), 1931 Gödel's In
ompleteness The-orem.
• Se
. 15.6: David Hilbert (1862�1943), 23 problems of 1900, Foundations ofGeometry.
• Se
. 4.8 and 8.1: Marin Mersenne, (1588�1648), Fren
h monk, numbers/primesof form 2n − 1.
• Se
. 15.1: John Napier, (1550�1617), S
otland, logs, slide rule, de
imal point.
• Se
. 4.1: Sir Isaa
 Newton (1642�1727), invented 
al
ulus, three laws of motion,universal gravitation, one of greatest mathemati
ians/physi
ists.
• Se
. 5.10 and 10.1: Blaise Pas
al (1623�1662), triangle, pressure gauge, 
al
u-lator.
• Se
. 11.1: Pythagoras (c. 500 b.
.), Greek s
hool, a2 + b2 = c2 i� △ABC isright.3.5.2 Mathemati
ians Noted More in Passing
• Se
. 14.3: Niels Henrik Abel (1802�1829), abelian=
ommutative.
• Se
. 7.3: George Boole (1815�1864), Boolean Algebra.
• Se
. 15.4: Henry Briggs (1561�1631), log tables.
• Se
. 14.1: Paul Cohen (1934�present), 1963 showed independen
e of CH andAC.
• Se
. 14.7: John Conway, (1937�present), surreal numbers, game of life.
• Se
. 15.2: Ri
hard Dedekind (1831�1916), German, Dedekind Cut de�nes realnumbers.
• Se
. 7.3: Augustus De Morgan (1806�1871), DeMorgan's Law.
• Se
. 12.6: Diophantus of Alexandria (about 250 a.d.), integer solutions.
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3.5. LIST OF MATHEMATICIANS 23
• Se
. 12.10: Christian Goldba
h (1690�1764), 
onje
ture: all evens=sum of twoprimes.
• Se
. 15.4:: Johannes Kepler (1571�1630), three laws of planetary motion.
• Se
. 14.7: Donald E. Knuth (1938�present), TeX, LaTeX, MetaFONT, Art of CP.
• Se
. 4.1: Leibnitz, (1646�1716), German, 
oinventor of 
al
ulus.
• Se
. 3.2: Guiseppe Peano (1858�1932), Axioms, indu
ed the natural numbers.
• Se
. 1.4: John Venn (1834�1923), set union/interse
tion diagrams.
• Se
. 12.6: Andrew Wiles (1953�), proved Fermat's Last Theorem.
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24 NUMBERS LESSON 3. THE PEANO AXIOMS3.6 Peano HomeworkEa
h problem is worth 3 points.1. Given A = {−2, 0, 4, 7} and B = {−4,−2, 0}, show both A∪B and A∩B usingVenn diagrams.2. Given A = {x | x > 4} and B = {x | x < 3}, �nd A ∪ B and A ∩ B using realnumber lines.3. Given M = {residents of Mi
higan} and N = {residents of Niles, Mi
higan},des
ribe in words M ∪N and M ∩N .4. Given B = {youths attending BCYF} and C = {BCM&SC students}, des
ribein words B ∪ C and B ∩ C.5. Draw a Venn diagram for the previous exer
ise. What might the Universal setbe?6. Given: X = {1, 3, 5, 7, 9}, Y = {1, 6, 11, 16, . . .}, Z = {0, 2, 4, 6, 8, . . .}. Find:(a) (X ∩ Z) ∩ Y(b) (X ∪ Y ) ∩ Z7. Simplify exa
tly: a. 9! b. 6! ÷ 3! 
. 8! × 8! ÷ (10! × 5!)

8. Evaluate the sum of the following: a. 5
∑

k=0

(k + 2) b. 4
∑

k=2

(2k + 3)9. Cal
ulate the powers of 11 from 110 up to 116. Write ea
h one 
entered belowthe previous one.
10. Examine the fa
tors of 231 and express it in a form relating it to the triangularnumber formula.
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Numbers Lesson 4The Naturals as Prime or CompositeCheby
hev said it and I'll say it again,There's always a prime between n and 2n! Nathan FineThe natural numbers have been studied intensely for millenia. Several fas
inatingproperties relate to their fa
tors. We will explore these properties su
h as number offa
tors and sum of fa
tors in this lesson.4.1 One of the Greatest Mathemati
ians: NewtonSir Isaa
 Newton, tiny, weak, and not expe
ted to survive his �rst day, was bornin England on Christmas day (old style) 1642. He is known not only as one ofthe greatest mathemati
ians, but also one of the greatest physi
ists as well. He
ulminated (to 
limax) the s
ienti�
 revolution and authored Prin
ipia, the mostimportant single work in the history of modern s
ien
e. Newton attended TrinityCollege, then laid the foundation of 
al
ulus and extended his ideas on 
olor. Heexamined planetary motion and derived the inverse square law 
ru
ial to his theoryof universal gravitation. The three laws of me
hani
s were named after him. Hewas also warden, then later master, of the mint. There he oversaw a great re
oinagewhi
h in
luded reeded edges on 
oins and tra
king down a master 
ounterfeiter. Twoimportant quotes attributed to Newton are �If I have seen a little farther than othersit is be
ause I have stood on the shoulders of giants� and �I do not know what I mayappear to the world; but to myself I seem to have been only like a boy playing onthe seashore, and diverting myself in now and then �nding a smoother pebble or aprettier shell than ordinary, whilst the great o
ean of truth lay all undis
overed beforeme.�Returning home from work at the Mint, Newton solved a mathemati
al problemthat was given to European mathemati
ians to solve; he turned in his work the nextday anonymously. Upon re
eiving the solution, John Bernoulli ex
laimed, �Ah! I re
-ognize the lion by his paw.� Newton was knighted for his s
ienti�
 dis
overies rather25



26 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITEthan deeds on the battle�eld�a �rst. Newton was buried like a king in Westmin-ster Abbey. Late in Newton's life a battle raged between the English and Germansregarding whether Newton was the sole inventor of 
al
ulus or if Leibnitz had alsoplayed an important role.4.2 Fa
tors, Prime, Composite, 1 is UniqueA fa
tor is a natural number whi
h divides another natural number evenly (as inwithout a remainder).The word fa
tor will be used later in a less restri
ted sense as in x− 1 and x+ 1are fa
tors of x2−1. Divisor is essentially a synonym of fa
tor and is also 
ommonlyused inter
hangeably.A prime number only has fa
tors of itself and one.The �rst few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,47....Twin primes are primes whi
h di�er by 2.Examples of twin primes are: 3 and 5, 5 and 7, 11 and 13, 17 and 19, . . .. The twinprime 
onje
ture states there are an in�nite number of twin primes. It is believed tobe true but a re
ent proof was found �awed.A 
omposite number has fa
tors in addition to itself and one.One (1) is unique in that it is 
onsidered neither prime nor 
omposite.Example: The number 12 has the following fa
tors: 1, 2, 3, 4, 6, and 12. Anumber su
h as 12 
an also be fa
tored into prime fa
tors: 12 = 22×31. For integers,if arranged in order, su
h fa
toring is unique.A prime fa
tor is a fa
tor that is prime.There is a relationship between the prime fa
tors and the number of fa
tors; itinvolves the exponents. We will examine this in the homework.
12

2 6

2 3

A fa
tor tree is a 
ommon way to �nd fa
tors and I'm sure a TI-84+
al
ulator program is also �oating around. An example of a fa
tor treeis given to the left.Example: Consider fa
toring 180 and 210. There are a wide variety of ways to
onstru
t a fa
tor tree, but the �nal fa
torization remains the same.Solution: 180 = 10·18 = 2·5·2·32 = 22·32·5 and 210 = 10·21 = 2·5·3·7 = 2·3·5·7.
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4.3. PRIME FACTORIZATION, GCF, LCM 274.3 Prime Fa
torization, GCF, LCMOn
e a natural number has been fa
tored into prime fa
tors, we 
an write itsprime fa
torization (also known as prime de
omposition). When we do this, we listea
h prime fa
tor in in
reasing order and indi
ate how many times it is repeatedby using a supers
ript as an exponent. For example: 60 = 22 × 31 × 51. Whendone this way, the prime fa
torization for the natural numbers is unique. The asso
i-ated prime fa
torization theorem (or Fundamental Theorem of Arithmeti
) 
ould beproved, but not here.We 
an use prime fa
torization to �nd Greatest Common Fa
tors and Least Com-mon Multiples. Another method is Eu
lid's Algorithm (a pro
edure) whi
h weintend to link to here eventually.GCF: Greatest Common Fa
tor (or GCD) is the greatest number that dividestwo given numbers.Example: The fa
tors of 30 are {1, 2, 3, 5, 6, 10, 15, 30} and the fa
tors of 12are {1, 2, 3, 4, 6, 12} and so the fa
tors 30 and 12 have in 
ommon are {1, 2, 3, 6}.The GCF would then be 6.Two numbers are relatively prime if they have no 
ommon fa
tors (ex
luding 1).In other words, two numbers are relatively prime if their GCF is 1. Examples are:15 and 16, 20 and 21.LCM: Least Common Multiple is the smallest (positive) number whi
h is amultiple of two numbers.The de�nitions of GCF and LCM 
ould be extended to more than two numbers. Infa
t, sin
e the 
al
ulator will only do pairs, su
h an extension gives more meaningfultest questions!Example: The multiples of 4 are: {4, 8, 12, 16,...} and 6 has multiples of {6, 12,18, 24, 30, ...}. The interse
tion of these sets is {12, 24, 36...}, so the LCM is 12.Example (Using Prime Fa
torization): 30 = 21 × 31 × 51 and 12 = 22 × 31. Thusthe GCF(12, 30) is 21×31 = 6 and the LCM(12, 30) is 22×31×51 = 60. Noti
e how forGCF we 
hoose the smallest exponent for ea
h prime fa
tor and for LCM we 
hoosethe largest. It might help to note that 12 = 22 × 31 × 50 and remember that anythingto the zero power is 1. Note how GCF(12, 30) × LCM(12, 30) = 6 × 60 = 12 × 30.Example: 25 = 52 × 170 and 85 = 51 × 171. The GCF(25, 85) is 51 × 170 = 5(
hoosing the smallest exponents) and the LCM(25, 85) is 52 × 171 = 425 (
hoosingthe largest exponents).Numbers and Their App.�pdf 4 O
tober 4, 2009 
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28 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE4.4 Number of Fa
torsWe 
an tell how many fa
tors a number has using only the exponents from itsprime fa
torization. Suppose pq1

1 · pq2

2 · pq3

3 is the prime fa
torization of some number
N . There are (q1 + 1)(q2 + 1)(q3 + 1) fa
tors sin
e ea
h pi to all powers from 0 to qiand whether or not ea
h prime is a fa
tor is independent.Example: 180 = 22 · 32 · 51, There are 3 · 3 · 2 = 18 fa
tors, namely:
{1, 180, 2, 90, 3, 60, 4, 45, 5, 36, 6, 30, 9, 20, 10, 18, 12, 15}.Example: 210 = 2 · 3 · 5 · 7. There are thus 24 fa
tors of 210.4.5 Primes Form an In�nite SetIt 
an easily be shown that the set of prime numbers is in�nite. This proof, whi
hdates ba
k to Eu
lid, (link) is as follows. Suppose, on the 
ontrary, that there are only�nitely many primes denoted p1, p2, . . . pn. Form the produ
tN = p1×p2×p3×. . .×pn.Then, the number N +1 is not divisible by any pi and so must be divisible by a primeother than these (in
luding possibly only N + 1 itself). This 
ontradi
ts our originalhypothesis that we listed all the (�nite set of) primes, hen
e this hypothesis is false.Hen
e there must be in�nitely many primes. This is a 
lassi
 proof by 
ontradi
tion.It remains an open question whether or not there are an in�nite number of twinprimes. Using the well-ordering axiom, we 
an also prove all numbers are interesting!4.6 Sieve of EratosthenesHaving established the fa
t that there are in�nitely many primes, we might wantto generate a list of primes, or determine if a given number is prime. Eratosthenes,a Greek mathemati
ian around 200 b.
., 
reated a simple algorithm1 to �nd primes.The pro
edure represents a sieve, or devi
e used for sifting out grains, sin
e he a
tuallypun
hed holes. The method is simple:1. Write down the numbers from 1 to 100 (or any desired range).2. Start with two (the �rst prime number).3. Eliminate all its multiples.4. Move to the next prime (the next number on the list whi
h you have not elim-inated).5. Go ba
k to step 3 and repeat as many times as ne
essary.1 http://en.wikipedia.org/wiki/Eratosthenes has a link to a java s
ript.
©MMIX Ke

iθ G. Calkins O
tober 4, 2009 Numbers and Their App.�pdf 4

http://www.wordsmith.demon.co.uk/paradoxes/#interesting
http://en.wikipedia.org/wiki/Eratosthenes
http://en.wikipedia.org/wiki/Eratosthenes


4.7. DIVISION RULES 29Note that anything above √100 = 10 does not eliminate any more numbers, sin
efa
tors 
ome in pairs of a big and a small.1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99 1004.7 Division RulesHere are some useful rules for qui
kly 
he
king for divisibility of natural numbersby small fa
tors.Divisibility by 2: If an integer is even, that is ends in 0, 2, 4, 6, or 8, it is divisibleby 2.Divisibility by 3: If the sum of the digits of an integer is divisible by 3, then theinteger is divisible by 3.Example: 729 → 7 + 2 + 9 = 18 → 1 + 8 = 9. Thus 729 is divisible by 3. Notehow this was done re
ursively.Divisible by 4: If the last two digits of the integer are divisible by 4, then the integeris divisible by 4.In general, an integer is divisible by 2n if the last n digits are divisible by 2n.Divisibility by 5: If the last digit is 0 or 5, the integer is divisible by 5.If the last n digits are divisible by 5n, then the integer is divisible by 5n.Divisibility by 9: If the sum of the digits of an integer is divisible by 9, then thenumber is divisible by 9.A 
ommon method taught in days past for �nding 
omputational mistakes was
alled Casting Out 9. This is really a form of modulo arithmeti
. In other bases, thisNumbers and Their App.�pdf 4 O
tober 4, 2009 
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30 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITEmethod extends to �Casting Out base - 1.�Divisibility by 11: If the sum of the digits in the even powers of 10 positions di�erfrom the sum of the digits in the odd powers of 10 positions by a multiple of 11, theinteger is divisible by 11.Example: 1, 234, 508 → 1+3+5+8 = 17 and 2+4+0 = 6, thus sin
e 17−6 = 11,1,234,508 is divisible by 11.In general, determining if a large number is prime or 
omposite is a di�
ult task.Substantial resear
h 
ontinues in this �eld due to the fa
t that many en
ryptions
hemes are dependent on this di�
ulty.4.8 Perfe
t Numbers and Mersenne PrimesA perfe
t number is equal to the sum of its fa
tors, ex
luding itself.The �rst two perfe
t numbers are:
6 = 1 + 2 + 3 = 1 × 6 = 2 × 3 = 22−1 × (22 − 1) and
28 = 1 + 2 + 4 + 7 + 14 = 1 × 28 = 2 × 14 = 4 × 7 = 23−1 · (23 − 1).The an
ients 
onsidered these numbers perfe
t partly due to their 
lose proximityto the number of days in a week (whi
h is not 
elestial!) and the lunar/menstral
y
le.Mersenne Numbers are of the form 2n − 1.Mersenne Primes are primes of the form 2n − 1.A biography for Mersenne is found at the beginning of Lesson 8. Marin Mersennewas a 17th 
entury monk who studied the numbers 2n − 1. These 
an only be primeif n is prime, but that is no guarantee of primality as seen in the homework.Eu
lid showed the known perfe
t numbers were of the form 2p−1 × (2p − 1). Eulerproved even perfe
t numbers 
ould only be in this form. It remains an open questionwhether or not there are any odd perfe
t numbers. Another perfe
t number is gener-ated, whenever a Mersenne prime is found. The 47th Mersenne primes was reportedApril 12, 2009. The exponent is n = 42643801. The largest known prime is usually aMersenne prime. GIMPS2 involves the author and some students in this sear
h.Prime numbers have been used extensively in 
ryptology used to hide messages.Some numbers have be
ome restri
ted or illegal to possess, utter, or propagate by thegeneral publi
, su
h as those used to en
ode musi
 and videos on DVDs.3In addition to the sear
h for perfe
t numbers, the GIMPS proje
t also helps in�nding small fa
tors for Mersenne numbers using the Ellipti
al Curve Method (ECM).2http://www.utm.edu/resear
h/primes/mersenne.shtml3See: http://en.wikipedia.org/wiki/Illegal_number
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4.9. PRIME HOMEWORK 314.9 Prime HomeworkEa
h problem is worth three points.1. What is the sum of the proper divisors of 24 × (25 − 1) and 26 × (27 − 1)? Arethese numbers perfe
t?
2. For the number 220, �nd all the fa
tors; add the fa
tors (ex
ept itself); 
ountall the fa
tors; �nd the prime fa
torization.
3. For the number 284, �nd all the fa
tors; add the fa
tors (ex
ept itself); 
ountall the fa
tors; �nd the prime fa
torization.
4. Extend the Sieve of Eratosthenes to �nd the prime numbers between 101 and200. Bonus points for de�ning and identifying any prime de
ades.101 102 103 104 105 106 107 108 109 110111 112 113 114 115 116 117 118 119 120121 122 123 124 125 126 127 128 129 130131 132 133 134 135 136 137 138 139 140141 142 143 144 145 146 147 148 149 150151 152 153 154 155 156 157 158 159 160161 162 163 164 165 166 167 168 169 170171 172 173 174 175 176 177 178 179 180181 182 183 184 185 186 187 188 189 190191 192 193 194 195 196 197 198 199 200
5. How large a fa
torial 
an you 
al
ulate exa
tly using a TI-84 
al
ulator? ATI-nspire 
al
ulator?
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32 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE6. Add the �rst few odd numbers together. Initially, just the �rst one. Write itdown as sequen
e member number one. Then add the �rst and se
ond (1 + 3).Write it down as sequen
e member number two. Then the �rst three, et
. untilyou have added the �rst �ve together. Symbolli
ally this 
an be expressed as:
n
∑

i=0

2i+1 for n ∈ {0, 1, 2, 3, 4}. What pattern is there in the resultant sequen
e?
7. Prime fa
tor 2047 otherwise known as 211 − 1.
8. For both parts, write out the prime fa
torization of the original numbers.Bonus points for Venn diagrams!(a) Find the GCF(156,182).(b) Find the LCM(496,8128).
9. Find the least 
ommon multiple and the greatest 
ommon fa
tor of:a) 60, 72 b) 12, 20, 36 
) 9, 12, 14
10. Prime fa
tor 1001.
11. bonus: Bob has every sixth night o� from work. It happens that tonight hashis favorite shows that only 
ome on on
e a week and he is o� to wat
h them.How long until he gets to wat
h his shows again?
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Numbers Lesson 5Powers, Bases/Conversion,Pas
al's TriangleThe taxi
ab number of 1729 = 7 × 13 × 19 was dull.1729 is a very interesting number. It is the smallest integer whi
h is thesum of two 
ubes multiple di�erent ways.Paraphrase of Hardy and RamanujanIn this lesson we will examine ways to express the natural numbers, bases, powers,and some other important 
atagories of natural numbers. We will also explore somerelated topi
s su
h as parity, Fermat numbers, and Pas
al's triangle.5.1 The Prin
e of Amateur Mathemati
ian: FermatPierre de Fermat was an amateur mathemati
ian living in the early 1600's (1601�1665) who had a profound in�uen
e on mathemati
s for the last four 
enturies. Byamateur we mean Fermat earned his living by doing other work and mathemati
swas purely a hobby. Fermat was a jurist, whi
h means he had a law degree andpra
ti
ed law. In his job he was supposed to avoid so
ial 
onta
t and this probablygave him more time to devote to mathemati
s. With Pas
al he developed the theoryof probability and independent of Des
artes he developed analyti
 geometry. He alsodeveloped many important 
on
epts whi
h led into the development of 
al
ulus. Inthis lesson we will explore the numbers whi
h were named after him.Perhaps Fermat's most famous lega
y is known as Fermat's Last Theorem. AfterFermat died his son found written (about 1637) in the margin of his textbook byDiophantus the equation xn + yn 6= zn, where n > 2 along with the statement:�I have dis
overed a truly marvelous proof of this, whi
h, however, the margin isnot large enough to 
ontain.� This is a generalization of the Pythagorean Theorem(where n = 2). This be
ame known as Fermat's Last Theorem (now FLT) be
ause it33



34 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLESremained after all his other theorems had been solved. The theorem part of the namewas also a misnomer until it was a
tually proved in 1993/4. More on both theoremsis in Lesson 12.There is also an important theorem known as Fermat's Little Theorem whi
hforms the basis of some primality testing: If p is a prime number, then for any integer
a, ap − a is evenly divisible by p (ap ≡ a (mod p).
5.2 Powers, Exponents, Base 10The expression xn is 
alled a power where, n is the exponent and x is the base.Example: 210 = 1024, 1024 is a power of 2, spe
i�
ally it is 2 multiplied by itself10 times: 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2. Exponentiation is a shorthandnotation for su
h repeated multipli
ation.Most people have 5 digits (��ngers�) on ea
h hand and 2 hands. This has led tothe use of the de
imal system of notation with 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Weexpress our numbers using pla
e value where ea
h position to the left is weighted10 times the position to its right. Thus 1331 = 1×103 +3×102 +3×101 +1×100 =

1000+300+30+1. This system of writing numbers is the Hindu-Arabi
 NumberSystem or Arabi
 Numerals.
5.3 Roman NumeralsWe already en
ountered in the homework for Numbers Lesson 1 the Roman Nu-meral System. We wish to formalize here some information about them and make
ertain you are familiar with them.The following symbols have the following values: I=1; V=5; X=10; L=50; C=100;D=500; and M=1000. Lower 
ase 
an also be used, espe
ially for small values: i=1;v=5; x=10; l=50. Smaller values go to the right unless they represent subtra
tion.The restri
tions for subtra
tion are: 1) you 
an subtra
t no more than one symbol;2) that symbol 
an not be more than an order of magnitude less; and 3) it must alsobe a power of ten. Thus 49 = XLIX, but not IL and 45 = XLV, but not VL.
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5.4. PROPERTIES OF EXPONENTS 355.4 Properties of Exponents�Anything� to the zero power is 1: x0 = 1 (x 
annot equal 0.)Anything to the �rst power is itself: x1 = x.Properties of Exponents:1. Produ
t of two powers with like bases: xa × xb = xa+b.2. Quotient of two powers with like bases: xa/xb = xa−b.3. Power of a power: (xa)b = xab.4. Power of a produ
t: (xy)a = xaya.5. Power of a quotient: (x/y)a = xa/ya.Noti
e how the pla
e value system was not possible before zero was invented (someinsist dis
overed!).One order of magnitude means one power of ten.A Keiθ term is order of bagnitude, or binary order of magnitude, whi
h meansone power of two.Some powers have spe
ial names like xn where n = 2 are 
alled squares and for
n = 3 are 
alled 
ubes. Some times the term perfe
t square or prefe
t 
ube is usednot in the sense of perfe
t number but in the sense of being the square of a rationalnumber, like 22 = 4 and not the square of an irrational number, like √

5 ·
√

5 = 5.Five is not 
onsidered a �perfe
t square.�5.5 Base 11, Base 12, Converting from Base 10The number above (1331) 
ould just as easily be expressed in base 11 as 100011 =

1 × 113 + 0 × 112 + 0 × 111 + 0 × 110. Note: when no base is indi
ated (usuallyvia a subs
ript afterwards), base 10 is assumed. Maybe you prefer base 12, where
92E12 = 9×122 +2×121 +E×120, and T represents the digit �ten� and E represents�eleven� in our duode
imal system. The following example also illustrates how to
onvert from base 10 to another base by repeated division and use of the remainders.9 R 212| 110 R 11 or �E�12|1331Numbers and Their App.�pdf 4 O
tober 4, 2009 
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36 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES5.6 Base 2, Base 4, Base 8, and Base 16; Convertingto Base 10The 
omputer revolution has expanded the use of bases 2, 8, and 16 espe
ially. Atypi
al base 2 number might be (the 
hara
ter �6� in EBCDIC):
111101102 = 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 128 + 64 + 32 + 16 + 0 + 4 + 2 + 0

= 246Base 2 is also 
alled binary. Base 8 is known as o
tal. Hexade
imal, ora�e
tionately 
alled hex for short, refers to base 16.Sin
e 4, 8, and 16 are powers of 2, it is an easy matter to 
onvert su
h a numberfrom base 2 to base 2n. You regroup bits n at a time from the right. For example:
111101102 = 33124 = 3668 = F616.In base 16, we need names for our 6 additional ��ngers� (I mean digits). The usual
hoi
es are A, B, C, D, E, and F. Below is a table of how the numbers are representedin the 
ommon bases.Ea
h binary digit is 
alled a bit.Ea
h hexade
imal digit (or 4 bits) Keiθ 
alls a hit (hex digit).It is more 
ommonly 
alled a nibble.8 bits make a modern byte.1 (Hen
e the term nibble above for half a byte.)Among the many de�nitions of bit is another important histori
 and mathemati
almeaning. The US dollar originated out of the Spanish-Ameri
an peso or pie
e of eight,whi
h 
ould be broken into eight parts 
alled bits. Hen
e 2 bits is the equivalent ofa modern US quarter and 8 bits is a dollar.Note how 
lose in magnitude 103 = 1000 and 210 = 1024 are.The term kilo (see Numbers Lesson 10) whi
h really is 103 now often means 210(1024).The term mega whi
h really is 106 now often means 220 (1,048,576).The term giga whi
h really is 109 now often means 230 (1,073,741,824).The term tera whi
h really is 1012 now often means 240 (1,099,511,627,776).1Histori
ally a byte ranged from 6 to 12 bits.
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5.7. PARITY 37Base 16 Base 10 Base 20 0 00001 1 00012 2 00103 3 00114 4 01005 5 01016 6 01107 7 01118 8 10009 9 1001A 10 1010B 11 1011C 12 1100D 13 1101E 14 1110F 15 1111For a good demonstration of adding binary numbers see the video athttp://www.woodgears.
a/marbleadd/index.html
5.7 ParityParity is a term now 
ommonly used in 
omputer storage and 
ommuni
ations.The word is related to par as in golf where �he hit under par� and 
onnotes equivalen
e.In 
omputers, it relates to base 2 and there are several types: even, odd, mark, andno. Even parity typi
ally means a bit will be appended to ea
h byte (or word) to for
ean even number of bits. For example, the 
hara
ter �1� in the ASCII 
ommuni
ation
ode is 3116 or 001100012. If transmitted or stored with even partiy, this byte wouldhave an additional bit appended and that bit would be set (=1) for there to be aneven number of bits set. Odd parity would mean the appended bit would be reset(=0). Errors 
an then be dete
ted if the re
eived or re
alled value does not have the
orre
t parity. More advan
ed en
oding s
hemes (LRC, CRC, Hamming, et
.) allowerror 
orre
tion as well, but require additional storage. Mark indi
ated the parity bitis always set (=1). No parity indi
ates the parity bit is either not present or equal tozero.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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38 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES5.8 Other BasesAn interesting appli
ation of base 3, known as ternary, 
an be read about inan arti
le in the Ameri
an S
ientist, July�Aug. 1998, pg 314�9. There is no reasonthe base has to be positive. A homework problem will deal with base −3. Base 60was developed by the an
ient Babylonians. We still use it for time (60 se
onds = 1minute; 60 minutes = 1 hour) and angle (60 se
onds = 1 minute, 60 minutes = 1degree; 6 × 60 = 360 degree = 1 
ir
le) measurements. A fun base 
an be base 26and will also be dealt with in the homework. The letters of the English alphabet arean obvious 
hoi
e for �digits.�
5.9 Fermat NumbersFermat noted that 220

+ 1 = 21 + 1 = 3 = F0 was prime as was 221

+ 1 = 5 = F1,
222

+1 = 24+1 = 17 = F2, 223

+1 = 28+1 = 257 = F3, and 224

+1 = 216+1 = 65537 =

F4. He 
onje
tured that 22n

+ 1 = Fn was always prime. In 1732, Leonard Euler,another famous mathemati
ian, showed that 225

+ 1 = 232 + 1 = F5 = 4294967297was divisible by 641. The sear
h for prime fa
tors of larger Fermat numbers 
ontinuesand is another potential EXPO Proje
t.In 1796, Gauss used Fermat numbers in his proof that a regular heptagon (7-sidedpolygon) was not 
onstru
tible, whereas the regular heptade
agon (17-sided polygon)was. Please note that Fn usually refers to Fermat numbers whi
h is why we used Lnfor Fibona

i numbers in Numbers Lesson 2. (Note also: Most 
al
ulators pro
esssta
ked exponents left to right and not right to left as mathemati
ians would expe
t,thus parentheses are highly re
ommended.) Before the 1977 Fortran standard Fortran
ompilers were notoriously s
hizophreni
 on how this was interpretted. The TI-82/3/4series of 
al
ulators still is, with a di�erent order used depending on whether the ∧or −1 symbols is used! (Compare 3∧3∧(−1) with 3∧3−1.)
5.10 Pas
al, Pas
al's TriangleBlaise Pas
al was yet another famous mathemati
ian 
ontemporary with Fermatwith whom he shares the honor of inventing probability. His biography is lo
ated inSe
tion 10.1. Pas
al's Triangle is useful in many diverse �elds of mathemati
s and isdisplayed below:
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5.11. GOLDEN RULE, FOIL/BOX 391 row 01 1 row 11 2 1 row 21 3 3 1 row 31 4 6 4 1 row 41 5 10 10 5 1 row 5. . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . row nNoti
e how ea
h entry is the sum of the numbers diagonally above it to the leftand to the right�where missing numbers on the sides 
an be assumed to be zero.Noti
e how we already saw the �rst few rows in the homework as the powers of 11!Ea
h entry in Pas
al's triangle 
an also be found as: nCr = n!
r!(n−r)!

, where n is the rownumber and r goes from 0 to n for ea
h position in the row. An alternate notationfor these binomial 
oe�
ients is:
(

n+1
r

)

=
(

n
r

)

+
(

n
r−1

) or n+1Cr = nCr + nCr−1.Pas
al's Triangle was well known to the Chinese 300 years before Pas
al where itwas used to extra
t nth roots. However, Pas
al was the �rst to apply it to games of
han
e between two people.Example: The re
ursive de�nition of fa
torials is useful for simplifying 
ombina-tions or nCr. 9C6 = 9!
6!3!

= 9·8·7·6!
6!·3! = 9·8·7

3·2 , where we have expli
itly show the re
ursivede�nition of fa
torial and the 
ommon fa
tor of 6! has been 
an
elled.5.11 Golden Rule, FOIL/BoxAlthough we will formally de�ne binomial in Numbers Lesson 13, a qui
k reviewof algebra will be in
luded here. First, when dealing with equations, it is importantto always follow the �golden rule:� �what you do to one side, always do to the other.�This is partially formalized as two axioms as follows:Additive Property of Equality: If a = b, then a+ c = b+ c.Multipi
ative Property of Equality: If a = b, then ac = bc.Also, noti
e what happens when 23 is multiplied by 12:
(12)(23) = (10 · 20) + (10 · 3) + (2 · 20) + (2 · 3)

= 200 + 30 + 40 + 6

= 276Numbers and Their App.�pdf 4 O
tober 4, 2009 
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40 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES23 12
× 12 × 2346 36+ 23 + 24276 276This is an important algorithm to remember when multiplying binomials su
h as

(x+ 1)(x + 1) = x2 + x+ x + 1 = x2 + 2x+ 1, and is often referred to as the FOILmethod, an a
ronym for First, Outer, Inner, Last. However, the box methodgeneralizes to higher order polynomials.
2x −3y

x 2x2 −3xy

−2y −4xy 6y2So, (2x− 3y)(x− 2y) = 2x2 − 7xy + 6y2.5.12 Binomial Theorem or FormulaThe Binomial Theorem or Formula using Pas
al's Triangle 
an be useful for eval-uating binomials raised to powers:
(x+ y)n =n C0x

ny0 +n C1x
n−1y1 +n C2x

n−2y2 + . . .+n Cnx
0ynExample:

(3x+4)5 = 1 ·(3x)5(4)0+5 ·(3x)4(4)1+10 ·(3x)3(4)2+10 ·(3x)2(4)3+5 ·(3x)1(4)4+

1 · (3x)0(4)5Of 
ourse, 40 = (3x)0 = 1, (3x)1 = 3x, and 41 = 4 so this might be written asfollows before simpli�ng further.
(3x+4)5 = 1 ·(3x)5 +20 ·(3x)4 +10 ·(3x)3(4)2 +10 ·(3x)2(4)3 +5 ·(3x)(4)4 +1 ·(4)5However, it has now lost the obviousness of the pattern, where ea
h 
oe�
ient
omes from a line in Pas
al's Triangle, one set of exponents are de
reasing, while theother set is in
reasing. For any term, the exponents sum to the power, in this 
ase 5.


©MMIX Ke
iθ G. Calkins O
tober 4, 2009 Numbers and Their App.�pdf 4



5.13. BASE HOMEWORK 415.13 Base HomeworkEa
h problem is worth two points.1. Write out the de�nition of googol from a good di
tionary.2. Write out the de�nition of googolplex from a good di
tionary.3. Compare the Ameri
an, Fren
h, British, and German number systems for theterm billion and milliard. (See next problem.)4. When we think of large numbers, we think of thousands, millions, billions, andtrillions. Find a good di
tionary that extends the 
on
ept of numbers beyondtrillion and write a few down.
5. Solve for x and z: 22 × 23 = 2x and (22)3 = 2z.6. Clearly apply the FOIL method to expand (x+ 1) × (x+ 1).7. Write a huge number using ONLY three 9's (and nothing else).8. Use Pas
al's Triangle to expand (x+ 1)3.9. Cal
ulate 220 and 230. Compare (the relative or per
ent di�eren
e) with 106and 109, respe
tively.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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42 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES10. Knowing that the number of dominoes in a set is a triangular number, andthat there are 28 dominoes in a double 6 set, 
al
ulate the number of dominoesin a double 9, double 12, double 15, and double 16 set.11. Madam I'm Adam. Name no one man. Some numbers are palindromes.(Look it up in di
tionary). Write at least �ve of the �fteen, prime, three digitpalindromes. (Use Homework 3, problem 4 for referen
e.)12. Convert 11012 into base 10.13. Convert 27 into base 2.14. Consider $1.17 as 117 pennies and 
onvert it into the smallest number of quar-ters, ni
kels, and pennies. Write this as a base 5 number of pennies.15. Convert 2345 (2 quarters, 3 ni
kels, 4 pennies) into a base 10 number of pennies.16. Change 38 days into weeks and days.17. Change 210 hours into days and hours.18. Change $2.69 into the smallest number of 
oins 
onsisting of quarters, dimes,ni
kels, and pennies.19. Change A3B516 into base 10.20. Multiply and simplify: a) (2x− 5)(3x+ 2) b) (x+ 3)(x− 7).21. Bonus: How many what is a 
rore? What is its value in US dollars?22. Bonus: How mu
h modern Ameri
an 
hange 
an you have and not be able tomake 
hange for a dollar?
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Numbers Lesson 6This is a Lie!Cogito ergo sum.1 René Des
artesIn this lesson we give an overview of the �eld of logi
. We introdu
e if-thenstatements, logi
al shorthand, negation, 
onverses, inverses, and the 
ontrapositive.Dedu
tive and indu
tive reasoning are introdu
ed along with dire
t and indire
t proof.First we have to think our way into existen
e.6.1 Father of Modern Mathemati
s: René Des
artesRené Des
artes, the early Fren
h mathemati
ian (1591�1650) spent 
onsiderabletime philosophizing about mathemati
s and its very existen
e. To get started he hadto assume his very own existen
e in his famous quote (in Latin): �Cogito ergo sum,�whi
h means, �I think, therefore I am.�Des
artes studied law but never pra
ti
ed it, 
hoosing instead to travel Europeas a mer
enary soldier. In this way he met lots of people and had many usefulexperien
es. There is spe
ulation he a
ted as a spy in this way. When Galileo was
ondemned by the Catholi
 Chur
h, Des
artes abandoned plans to publish a greatwork he had written.Des
artes was also a key �gure in the s
ienti�
 revolution. He invented analyti
geometry with the 
artesian 
oordinate system whi
h is named after the latinizedversion of his name. This invention revolutionized mathemati
s by forming a strong
onne
tion between geometry and algebra. Des
artes also spent 
onsiderable time inbed, rarely getting up before noon. It has been said he developed the 
artesian 
oor-dinate system while lying in bed wat
hing a �y on the 
eiling and trying to des
ribeits movements. Des
artes also 
reated exponential notation, the use of supers
riptsto indi
ate repeated multipli
ation.1I think, therefore I am. 43
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44 NUMBERS LESSON 6. THIS IS A LIE!Des
artes died in Sto
kholm, Sweden while tutoring the queen there. Althoughhe died of pneumonia, the fa
t of having to get up early and ride a
ross town to tutorthe queen in that 
old environment is said to have been the major 
ause.6.2 Hypothesis, Con
lusion, Conje
tureA premise (also known as an ante
edent or hypothesis) is a tentative assumptionmade in order to draw out and test its logi
al or empiri
al 
onsequen
es.A 
onsequen
e or 
on
lusion is the ne
essary result of two or more propositionstaken as premises.Sentential logi
 or propositional logi
, 
onsists of a sentential language, a semanti
interpretation of that language, and a sentential derivation system. Predi
ate logi
goes further and builds on sentential logi
. We give here the merest overview of thisbroad �eld.6.3 Dedu
tive vs. Indu
tive ReasoningAs stated in the �rst two lessons, Geometry often deals with proofs. Proofs arebased on logi
al reasoning whi
h follow two basi
 types.Dedu
tive (or logi
al) Reasoning is the pro
ess of demonstrating that if 
ertainstatements are a

epted as true, then other statements 
an be shown to follow fromthem.Indu
tive Reasoning is the pro
ess of observing data, re
ognizing patterns, andmaking generalizations from the observations.Both are important to mathemati
s in general and to Geometry spe
i�
ally.The generalization used in indu
tive reasoning is 
alled a 
onje
ture.A statement is a de
larative senten
e whi
h is either true or false, but not both.Proposition is often used inter
hangely with the term statement. A paradox is asenten
e whi
h is both true and false, su
h as �I am lying� (
f Titus 1:12). A simplestatement is a statement 
ontaining no 
onne
ting words. Compound or 
omplexstatements are formed from simple statements using basi
 
onne
tion. The basi

onne
tions are: and, or, if... then..., if and only if, not. Often, other 
onne
tingwords su
h as unless, be
ause, either/or, neither/nor, although, nevertheless, ex
ept,but (save), only, as, sin
e, et
. are used whi
h 
an be restated using the basi
 ones.Examples:�Unless he is 
areful, he will 
rash.� means the same as �If he is not 
areful, then he
©MMIX Ke
iθ G. Calkins O
tober 4, 2009 Numbers and Their App.�pdf 4

http://www.iep.utm.edu/p/prop-log.htm


6.3. DEDUCTIVE VS. INDUCTIVE REASONING 45will 
rash.��Whenever I tell a joke, my students laugh.� is equivalent to �If I tell a joke, then mystudents laugh.� ex
ept for some 
ir
umstan
e of time.This de�nition of statement is based on an axiom of Aristotle (an
ient Greekphilosoper (
. 384�322 b.
.)) 
alled the law of ex
luded middle. Symbolli
ally, p∨
p. (This is very similar to the prin
iple of bivalen
e whi
h states every propositionis either true or false, but not equivalent! There are logi
s with one and not theother.) If we reje
t this axiom, fuzzy logi
 involving probability is the result. Inre
ent years, fuzzy logi
 has started to invade your 
ars and homes (washing ma
hines,et
.), and is �the rage.�When translating de
larative statements into logi
al form it is 
ommon to re
astthings in the present tense. This assumes that time relationships are not importantto the argument. As noted above, whenever 
ertain 
ommon words are, used thesenten
e should be re
ast using the standard if-then syntax of logi
.The following statements may be equivalent and useful for this task:

• If apples are on sale, then I buy apples.
• Whenever apples are on sale, I buy apples.
• Be
ause apples are on sale, I buy apples.
• I buy apples sin
e they are on sale.
• I buy apples unless apples are not on sale.
• I buy apples ex
ept when apples are not on sale.
• I buy apples save when they are not on sale.
• I buy apples as they are on sale.
• I buy apples until they are not on sale.The following statements may be somehow di�erent and you might try your handat re
asting them in standard form.
• I buy apples only if they are on sale.
• Although apples are not on sale, I buy apples.
• I buy apples whether or not they are on sale.
• I buy apples either if they are on sale or if they are not on sale.
• I buy apples neither when they are on sale, nor if they are not on sale.
• Apples are not on sale, nevertheless I buy apples.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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46 NUMBERS LESSON 6. THIS IS A LIE!6.4 Logi
al ShorthandShort hand notation is often used when writing logi
al arguments. Statementssu
h as �I have a job.� may be repla
ed by p and the 
onditional statement, �If Ihave a job, then I must work.� might be repla
ed by p → q, where q in this 
aseis equivalent to �I must work.� A 
onditional is also known as an impli
ation. Anif-then statement 
an be rewritten using the word implies, and in fa
t, the symbol →is often read that way. Some reasoning is valid, in that it gives 
orre
t or truthfulresults whereas some is faulty or invalid. You may think the old adage: �Wat
hyour p's and q's� is derived from the extensive usage of these symbols. However, ita
tually is drinking advi
e to wat
h ones pints and quarts!A theorem is a statement that has been proven, or 
an be proven, from the postu-lates.A 
orollary is a result whi
h follows naturally, or a spe
i�
 appli
ation of atheorem. A lemma is a mathemati
al statement proven not for its own sake, but foruse in proving a more important statement 
alled a theorem.Modus Ponens (MP) says that if p→ q is true and p is true, then q must be true.This prin
iple is also known as the Law of Deta
hment (LD).Modus Tollens (MT) says that if p → q is true and q is false (not true), then pmust be false. MT is essentially equivalent to the Law of indire
t Reasoning(below) and is the basis for proof by 
ontradi
tion.Example: 
onsider the following 
onditional statement: If the weather is beauti-ful, then we'll go for a walk. MP implies that if p is true (The weather is beautiful.)
q is also true (We'll go for a walk.). MT implies that if p→ q is true (If the weatheris beautiful, then we'll go for a walk.) and q is false (It is not the 
ase that we'll gofor a walk.) then p is false (The weather is not beautiful.).It is a good thing when a system of axioms is 
onsistent, sound, and 
omplete.Consistent means none of the theorems 
ontradi
t one another.Soundness means the system's rules of proof will never allow a false inferen
e froma true statement.Complete means all true statements 
an be proved within the system.Unfortunately, no useful system of arithmeti
 
an be both 
onsistent and 
omplete(Gödel's In
ompleteness Theorem).
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6.5. NEGATION/DOUBLE NEGATION, CONVERSE, ETC. 47
6.5 Negation/Double Negation, Converse, et
.The negation, symbolli
ally ∼ p, p, or -p, of a statement is very useful. If p is �Ihave a job,� then ∼ p is �I do not have a job.�The double negation, as taught in English (not Spanish!) gives ba
k the originalstatement! ∼ (∼ p) is equivalent to p. If it is not true, that �I do not have a job.�Then it must be true �I have a job.�The Converse of p→ q is q → p.The Inverse of p→ q is ∼ p→∼ q.The Contrapositive of p→ q is ∼ q →∼ p.Law of Contrapositive (LC) states that if a 
onditional is true, so is its 
ontra-positive.Continuing the weather example above, the 
ontrapositive would be �If we'll notgo for a walk, then the weather is not beautiful.� LC tells us this is true if the originalstatement is true. It should be easy to see that the 
onverse of the inverse is the
ontrapositive.Whether the 
onditional is true does not a�e
t whether the 
onverse is true.A 
ounterexample is an example of a 
onditional statement being false.Sometimes, instead of writing a long proof to determine something is true, manywill try to �nd a 
ounterexample.An �if and only if� (often abbreviated i�) statement is 
alled a bi
onditionaland 
ombines the statements p→ q and q → p into p↔ q. To prove a bi
onditional,one proves the 
orresponding two 
onditionals.A syllogism is 
omposed of amajor premise, aminor premise, and the resulting
on
lusion.A syllogism has three parts. Therefore, this is not a syllogism. (ha ha ha).The 
onsequen
e is often pre
eeded by the word therefore whi
h is also oftenabbreviated by three dots arranged in a triangle pointing up (∴).The Law of Syllogism is also 
alled the Law of Transitivity (see also NumbersLesson 14) and states: if p→ q and q → r are both true, then p→ r is true.Reasoning and also de�nitions are sometimes said to be 
ir
ular.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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48 NUMBERS LESSON 6. THIS IS A LIE!6.6 Dire
t vs. Indire
t ProofMathemati
al proofs 
ome in two basi
 �avors known as dire
t and indire
t. Wealready saw an example of an indire
t proof in Numbers Lesson 4 when we proved by
ontradi
tion that primes form an in�nite set. Proof by 
ontradi
tion is also knownas using the law of indire
t reasoning.Law of Indire
t Reasoning:If valid reasoning from a statement p leads to a false 
on
lusion, then p is false.Any proof using the Law of Contrapositive (above) or the Law of Ruling outPossibilities (below) are also 
lassi�ed as indire
t proofs.Law of Ruling out Possibilities:When statement p or statement q is true, and q is not true, then p is true.We will see further examples of these �ve laws of logi
 in Chapter 11 of ourGeometry textbook and my asso
iated supplement.6.7 Model Theory and Mathemati
al ModelsTraditionally logi
 was a part of philosophy and one of the three subje
ts studiedtogether: grammer, logi
, and rhetori
. Sin
e the mid-1800's it has been studied asa part of the foundations of mathemati
s. It is important for a full understandingof falla
ies and paradoxes. Set theory has largely repla
ed the role of logi
 in thedevelopment of mathemati
s.There are variations on logi
 and extensive dis
ussions whi
h link logi
 with vari-ous s
hools of philosophy. The �eld has 
hanged extensively within the last 100 yearswith the development of �rst order logi
. First order logi
 extends propositional logi
by allowing quanti�
ation over individuals in a universe of dis
ourse. The symbolsused are: ∀ meaning �for all� and ∃ meaning �there exists.� Se
ond order logi
allows quanti�
ation over sets. Se
ond order logi
 is required for full use of realnumbers (least upper bound).We 
an 
ombine axioms with a logi
 system to develop model theory. This use ofthe word model in mathemati
s is di�erent and more re
ent than the mathemati
almodels one might 
onstru
t to des
ribe some s
ienti�
 phenomenon.
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6.8. LOGIC HOMEWORK 496.8 Logi
 HomeworkEa
h problem is worth two points, ex
ept as noted.Given p = �This is a frog.�, q = �It should 
roak.� Write out in words thefollowing:1. Conditional (p→ q).2. Inverse (∼ p→∼ q).3. Converse (q → p).4. Contrapositive (∼ q →∼ p).5. Bi
onditional (p↔ q).6. (6 points) Write out in words the indi
ated 
onditional statements for thefollowing senten
e: �If I get my allowan
e today, I'm going to buy my favoriteDVD.�(a) Inverse:(b) Contrapositive:(
) What 
an you 
on
lude if you are told, �I bought my favorite DVD.�?7. Given a 
ompound statement: My sister, who 
ooks whenever she 
an, loves
ooking for people as long as they are appre
iative of her labors. Write thisstatement in shorthand, symboli
ally identifying ea
h pie
e.8. Give a 
ounterexample of: �Bears are large and dangerous to approa
h.�9. Lots of advertising tries to appeal to a human need to belong. Write one
ounterexample for ea
h of the following suggestive advertisements. �You'll be
ool if you buy Converse shoes.� �Buy a Lexus automobile, then everyone willbe dripping with envy.�Numbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke
iθ G. Calkins



50 NUMBERS LESSON 6. THIS IS A LIE!10. Rewrite the senten
e as 
onditional statement: All squares are rhombi.11. Write the 
onverse and state if it is true: If you are a driver, then you are atleast 16.12. Form the 
onverse to: �We'll go to the fair if they announ
e square-dan
ing overthe radio.�13. �If you go �shing, you are sure to hook a trout.� You bring home a trout forsupper. Did you 
at
h it? Explain your answer.14. Given: �If a golfer has won the U.S. Open Tournament, then [s℄he is in themajor leagues.� What 
an you 
on
lude about these two people? Tiger Woodswon the U.S. Open Tournament. Bernhard Langer has not won a U.S. OpenTournament.15. What 
an be 
on
luded from: �If a nail is lost, then a shoe is lost. If a shoe islost, then a horse is lost. If a horse is lost, then a rider is lost. If a rider is lost,then a battle is lost. If a battle is lost, then a kingdom is lost.�?16. See Se
tion 2.2 of your geometry textbook for further examples. Several prob-lems from prior editions were assigned in the past.17. Base 26 
an be fun. Convert your �rst name/ni
kname from base 26 into base10. Try to restri
t your �rst name to 6 letters to avoid 32-bit integer over�ow.Let A = 1, B = 2, ..., Y = 25, Z = 0, ignore upper/lower 
ase.18. Bonus: Express the numbers 8 through 12 in base −3. Use 0, 1, and −1 asyour digits. Che
k out the arti
le Third Base in the Nov./De
. 2001 issue ofAmeri
an S
ientist.
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Numbers Lesson 7To Tell the TruthA theorem a day Means promotion and pay!A theorem a year And you're out on your ear! Paul ErdösWe have already seen in Numbers Lesson 1 the relationship between union (dis-jun
tion) and or as well as interse
tion (
onjun
tion) and and. Here we will alsointrodu
e various symbols used when drawing logi
 diagrams, give truth tables in twodi�erent forms for a few other 
ommon operator, and explore how and and or aresimilar to swit
hes in series and parallel 
ir
uits.Ex
lusive or is dis
ussed along with DeMorgan's Law, tautology, and 
ontradi
-tion. We 
lose after tou
hing on nands, nors, �ip-�ops, and logi
 equations. First wedis
uss a mathemati
ian world-reknown for his logi
al development of Geometry.7.1 The Father of Geometry: Eu
lidEu
lid of Alexanderia was an important Greek mathemati
ian living around 300b.
., his exa
t lifespan is unknown. Eu
lid was born in Gree
e but spent mu
h of hislife near the great library in Alexandria, Egypt.Eu
lid wrote the 13 volume series of books known 
olle
tively as the Elements. Itbe
ame the most su

essful mathemati
al textbook ever. Several online versions1 ofthe Elements exist, in
luding a wonderful 
olor version2 from the early 1800's. In theElements Eu
lid assumes �ve axioms and develops the whole of eu
lidean geometryfrom them. Eu
lid's �fth postulate (or variations thereof su
h as �through a pointoutside a line one and only one line 
an be drawn parallel to the given line.�) be
amevery 
ontroversial by the early 1800's. In addition to geometry, many number theoryideas are explored and proven in the Elements. These in
lude the form of even perfe
tnumber and the in�nitude of primes, An algorithm to �nd the greatest 
ommon fa
toralso bears his name. Eu
lid summarized mu
h of the known mathemati
s of his time.1http://aleph0.
larku.edu/~djoy
e/java/elements/elements.html2http://www.math.ub
.
a/people/fa
ulty/
ass/Eu
lid/byrne.html51

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://www.math.ubc.ca/people/faculty/cass/Euclid/byrne.html
http://www.math.ubc.ca/people/faculty/cass/Euclid/byrne.html


52 NUMBERS LESSON 7. TO TELL THE TRUTH
Figure 7.1: 2 × n Truth Tables for And, Or, Eor, and Not.

∧ 0 1 ∨ 0 1 eor 0 1 p p0 0 0 0 0 1 0 0 1 0 11 0 1 1 1 1 1 1 0 1 07.2 Truth TablesNumbers Lesson 6 introdu
ed the 
on
ept of logi
al statements and 
onne
tivesused to joined them into 
ompound statements 
alled arguments. Here we explorethe 
on
lusion of these arguments as the input statements take on various valuesof true or false. Sin
e the 
onne
tives we are studying (and, or, if-then, i�) andnegation (not) are truth-fun
tional (its truth value 
an be �gured out solely on thebasis of its 
omponents), we 
an evaluate these arguments by exhaustively listing allpossible values these inputs may take on. If there are n 
omponents, there will be 2nrows in the 
orresponding truth table.Parentheses should be used when 
ombining multiple 
ompound statements to-gether with 
onne
tives. If parentheses are omitted, the following order of oper-ation should [generally℄ be assumed: bi
onditional (highest), 
onditional, 
onjun
-tion/disjun
tion, and negation (lowest).Given in Figure 7.1 are truth tables in the form of multipli
ation and additiontables. You might 
ompare these with those found in the homework for lesson 2 formultiplying and adding even numbers.
7.3 Ands, Ors, Ex
lusive OrsSin
e the and and or tables above are so similar to the multipli
ation and addi-tion tables seen earlier, and is often symbolized by • or ∧ (similar to interse
tion)and or is often symbolized by + or ∨ (similar to union). | is also often used for or. Bevery 
areful when programming sin
e 
onventions vary widely between programminglanguage! Languages su
h as C and C++ introdu
e additional 
onfusion by di�eren-tiating between bitwise (operating on ea
h bit in a string) and logi
al operators (onlytreating the value as zero or not zero).Augustus De Morgan's (1806�1871) major 
ontribution to mathemati
s was re-forming logi
 and establishing symbolism for algebra. He was the one to de�ne andintrodu
e mathemati
al indu
tion, whi
h up to that point was still un
lear. One ma-
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7.3. ANDS, ORS, EXCLUSIVE ORS 53
Figure 7.2: Contingen
y Table for Two Variables and Many Operators.

p q p q p ∧ q p | q p eor q p→ q p↔ q p ∧ q p ∨ q p eor q p ∧ p p ∨ p0 0 1 1 0 0 0 1 1 1 1 1 0 10 1 1 0 0 1 1 1 0 1 0 0 0 11 0 0 1 0 1 1 0 0 1 0 0 0 11 1 0 0 1 1 0 1 1 0 0 1 0 1jor result known as De Morgan's Law is summarized below in two di�erent formats.De Morgan's Law: (A ∩B)′ = A′ ∪ B′ and (A ∪B)′ = A′ ∩ B′.De Morgan's Law: A ∧B = A ∨B and A ∨B = A ∧ B.The major author debugged a signi�
ant number of COBOL programs by 
he
kinglogi
 of this form.Around the same time, George Boole (1815�1864) was also establishing logi
 sym-bolism. Boolean Algebra, whi
h is a foundation for 
omputers, is an algebra of setswith the operators of union and interse
tion. Equivalently it is an algebra with thenumbers 0 and 1 and operators of and and or. More details are available in NumbersLesson 14.As noted above, truth tables appear in two basi
 forms: 1) as multipli
ationor addition style tables; and 2) as an exhaustive list of possible values. Take amoment and 
ompare these truth tables with those obtained in the homework inNumbers Se
tion 2.11 regarding the addition and multipli
ation of even numbers.Then, 
ompare the format used in Figure 7.2 with the format used in Figure 7.1 inthis lesson.Often in a truth table the symbol T for true is used for 1 and the symbol F forfalse is used for 0.Note how neor and the bi
onditional are the same.Another 
ommon name for the bi
onditional is equivalen
e.If a proposition 
ontains only 1's (T's) in the last 
olumn of its truth table, it is atautology. (See p ∨ p in the table above.)If a proposition 
ontains only 0's (F's) in the last 
olumn of its truth table, it is a
ontradi
tion. (See p and ∼ p in the table above.)An argument is valid if it has good logi
al stru
ture, otherwise it is invalid. Anargument is sound if and only if it is valid and has true premises, otherwise it isNumbers and Their App.�pdf 4 O
tober 4, 2009 
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54 NUMBERS LESSON 7. TO TELL THE TRUTHunsound. One also uses the following terms to identify statement requirements inA implies B: ne
essary: (B 
annot be true unless A is true, or su�
ient: A 
an-not be true unless B is true. A falla
y uses a false premise, invalid reasoning, orvague/ambiguous language. One also 
alls a set of statements either in
onsistent ifthey lead to a 
ontradi
tion or 
onsistent if not. A set of statements is 
ompleteif one 
an determine for any 
ombination of statements a result (i.e. prove it) or elsein
omplete. Kurt Gödel, whose biography appears in Se
. 14.1, in 1931 showed thatno 
omplete system that admits the natural numbers (Peano axioms) 
an be 
onsis-tent, whi
h is now known as Gödel In
ompleteness Theorem. Thus any usefullogi
al system must either be in
onsistent or in
omplete. This derailed attempts toaxiomize all of mathemati
s.If a proposition 
ontains both 1's and 0's (T's and F's) in the last 
olumn of itstruth table, it is a 
ontingen
y.Forming truth tables like this is a 
ommon way to 
ompare the validity of twodi�erent statements. A
tually, few of the 16 possible 
ombinations of 0's and 1'sare missing in the table above. A former tea
her of the major author added a letoperator to 
omplete the list�those were his initials!7.4 Logi
al SymbolsGiven below are three symbols 
ommonly used to represent inverters (nots) inele
troni
 diagrams. Note the little 
ir
le on the two on the left. The absen
e of thelittle 
ir
le on the one on the right 
an leave some ambiguity sin
e the same symbol
an be used to represent a non-inverting bu�er (gate expander).
Given below are the 
orresponding symbols for ands, and ors. An and-gate isequivalent to a series 
ir
uit as illustrated in the diagram below right, whereas anor-gate is equivalent to a parallel 
ir
uit also illustrated below right.
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7.5. NANDS, NORS, ETC. 55

7.5 Nands, Nors, et
.(Earlier we noted p nand q as p ∧ q and p nor q as p ∨ q. In the table below wehave used the symbol ∧∼ for nand, and the symbol ∨∼ for nor.) Compare the nand'sand nor's in the table above with those below. Sin
e nand's and nor's 
an serve asinverters (a not), (by tying both inputs to the sour
e), any logi
 
an be generatedusing one of them ex
lusively.
∧∼ 0 1 ∨∼ 0 1 neor 0 10 1 1 0 1 0 0 1 01 1 0 1 0 0 1 0 1

7.6 Logi
 EquationsEle
troni
 logi
 was implemented as va
uum tubes (�valves�) in the early 
om-puters (1950's, generation 1), and with diodes/transistors (DTL, 1960's, generations2 and 3, with generation 3 being pa
kaged in integrated 
ir
uits (ICs)). The 1970'swere dominated by TTL (transistor-transistor) logi
. In DTL the nor-gate was basi
whereas in TTL the nand-gate was basi
. A typi
al basi
 nor gate and a nand-gatebased Set-Reset �ip-�op are shown below. Many di�erent kinds of �ip-�ops exist:
lo
ked, D-type, J-K type, J-K master-slave, edge triggered, et
.. (Add link here togood ele
troni
 site.)Numbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke
iθ G. Calkins



56 NUMBERS LESSON 7. TO TELL THE TRUTH

Basi
 TTL nor gate Nand-gate Set-Reset �ip-�opToday, 
omplex mi
ropro
essors utilizing millions even billions of logi
 gates areroutinely et
hed onto sili
on 
hips. However, these basi
 logi
 gates 
omposed ofseveral transistors (invented in 1947) are still an important part of the fundamentaldesign. These logi
 gates are built up into more 
omplex stru
tures su
h as �ip-�ops, memory elements, [shift℄ registers, 
ounters, de
oders, multiplexors, adders,et
. Often many su
h mi
ropro
essors are et
hed at the same time on one big sili
onwafer. The Pentium 4/D and Core 2 by INTEL now running at speeds of about4 GHz! demonstrate amazing te
hnologi
al progress.Some 
omputers of the 1960's and 1970's (SDS/Xerox Sigma) were do
umentedusing logi
 equations. A typi
al logi
 equation might read as follows: NFARWD=I. OU6.(O4.O5.NO6) (This 
an be interpret to say that the negation of the signalrepresenting the family of read/write dire
t instru
tions (hexade
imal operation 
odes.6C or .6D) is generated by the upper nibble being a 6 and the lower nibble being.C (lowest order bit being ignored). Here, hex is indi
ated by the leading period.)A logi
 diagram is also shown below right. Note how in diagram form this takes upadditional spa
e and uses graphi
 symbols. The logi
 equation format is very 
ompa
tand was easily printed using 1960's te
hnology.
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7.7. TRUTH HOMEWORK 577.7 Truth HomeworkEa
h problem is worth two points. For problems 1 and 2 assume these aresyllogisms and the major and minor premises are true.1. Determine whether ea
h argument is valid or invalid. If invalid, determine theerror in reasoning.(a) If I inherit $1000, I will buy you a 
ookie. I inherit $1000. Therefore, Iwill buy you a 
ookie.(b) All 
ats are animals. This is not an animal. Therefore, this is not a 
at.2. Determine whether ea
h argument is valid or invalid. If invalid, determine theerror in reasoning.(a) If Ali
e drinks the water, then she will be
ome si
k. Ali
e does not drinkthe water. Therefore, she does not be
ome si
k.(b) If Ron uses Valvoline Motor oil, then his 
ar is in good 
ondition. Ron's
ar is in good 
ondition. Therefore, Ron uses Valvoline Motor oil.3. Form a valid 
on
lusion from the following statements.(a) If I am tired, then I 
annot �nish my homework. If I understand thematerial, then I 
an �nish my homework.(b) Everyone who is sane 
an do logi
. No lunati
s are �t to serve on a jury.None of your sons 
an do logi
.4. Form a valid 
on
lusion from the following statement: No kitten that loves �shis untea
hable. No kitten without a tail will play with a gorilla. Kittens withwhiskers always love �sh. No tea
hable kitten has green eyes. No kittens havetails unless they have whiskers.5. Help Keith �nd the sugar addi
t from a truth table of the following statements:Keith: Three of you are always right. Who took my oatmeal pie 
ookies?Aurora: It was either Rita or Shirleen.Rita: Neither Jenny nor I took it.Shirleen: Both of you are wrong.Jamie: No, one is wrong; the other is right.Jenny: No, Jamie, that's not right.6. Fill in the truth table:
p p p∧∼ p p∨∼ p p0 01 1Numbers and Their App.�pdf 4 O
tober 4, 2009 
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58 NUMBERS LESSON 7. TO TELL THE TRUTH7. Constru
t a truth table for: a) p ∧ q b) p ∧ q
p q p q p ∧ q p ∧ q0 00 11 01 18. Constru
t a truth table for: [(p | q) ∧ r] ∧ r.

p q r p | q r (p | q) ∧ r [(p | q) ∧ r] ∧ r0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1Use the following variation on the 
lassi
 nursery rhyme for the next four ques-tions: When I was 
oming from St. Ives, I meet a man with 7 wives. Ea
hwife had 7 sa
ks. Ea
h sa
k had 7 
ats. Ea
h 
at had 7 kits. Kits, 
ats, sa
ks,and wives, how many were going to St. Ives. (A similar problem dates ba
k toFibona

i.)9. Express this quantity in base seven.10. Cal
ulate the quantity in base ten.11. Convert the base 7 quantity into base 10.12. How does this 
ompare with the answer to the traditional wording (going to).13. Constru
t a �truth table� for the multipli
ation of positives and negatives.14. Draw Venn diagrams illustrating DeMorgan's Laws.15. See Se
tion 2.3 of your geometry textbook for further examples. See espe
iallyproblems 2.3: 10�13.16. Bonus: Relative to 
rore, �nd out what numbers the following Hindu termsrefer to: lakh, neel, padma, shankh.
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Numbers Lesson 8Beyond the Integers: Fra
tionsFive out of every four Ameri
ans has problems with fra
tions!Seen on a tee shirtThis lesson moves us beyond the integers by introdu
ing the rational numbers.We explore the axioms whi
h make groups before exploring the parts of a fra
tionand every type of fra
tion imaginable. We 
ontinue with a review of the addition,subtra
tion, multipli
ation, and division of fra
tions before tou
hing on ratios, pro-portions, and 
ross multipli
ation. First we talk about a mathemati
ian previouslyintrodu
ed.8.1 Father of A
ousti
s: Marin MersenneMarin Mersenne (1588�1648) was a 17th 
entury Fren
h monk best known forhis studies of numbers of the form 2n − 1. Mersenne was a well-edu
ated theolo-gian, philosopher, and musi
 theorist. He edited works of Eu
lid, Ar
himedes, andother Greek mathemati
ians. His more important 
ontribution to the advan
ement oflearning was his extensive Latin 
orresponden
e with mathemati
ians and s
ientistsin many 
ountries. S
ienti�
 journals had not yet 
ome into being so Mersenne wasthe 
enter of a network for ex
hange of information.Mersenne 
ompiled a list of Mersenne numbers he thought to be prime. His listwas only partially 
orre
t. It in
ludedM67 andM257 whi
h are 
omposite and omitted
M61,M89,M107 whi
h are prime. Here we are referring to the number 2p−1 asMp. Ittook two 
enturies to resolve these issues and even yet many fundamental questionsabout these numbers remain. Questions su
h as if there is a largest Mersenne primeremain unanswered although it is suspe
ted there are an in�nite number of Mersenneprimes. 59



60 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS8.2 Group AxiomsIt is useful at this time to introdu
e and dis
uss the group axioms.1. Closure: if {a, b} ∈ G, then a • b ∈ G and is unique.2. Asso
iativity: if {a, b, c} ∈ G, then a • (b • c) = (a • b) • c.3. Existen
e of unit element (identity): i ∈ G, i • a = a • i = a, ∀a ∈ G.4. Existen
e of inverses: ∀a ∈ G, ∃ an element denoted a−1 ∈ Gsu
h that a • a−1 = a−1 • a = i.Groups are an important mathemati
al stru
ture whi
h form the basis of thestudy of abstra
t algebra, known to mathemati
ians as just algebra. The axiomsabove depend of the 
on
ept of a set G with elements a, b, c, et
. and one operation(• above) su
h as addition, multipli
ation, re�e
tion, et
.Note how the familiar set of natural numbers are 
losed under both addition andmultipli
ation (axiom 1). Both multipli
ation and addition are asso
iative (axiom 2),and ea
h has an identity element (axiom 3). The additive identity element is zero(0), whereas the multipli
ative identity element is one (1).Group axiom 4 requires inverses. We have seen our number system �grow� fromnatural numbers to integers when the operation of subtra
tion (additive inverses)was introdu
ed. When the operation of multipli
ation is used and the 
on
ept ofmultipli
ative inverses is required, the 
on
ept of division is the result and the numbersystem must now in
lude fra
tions.An important restri
tion, the fa
t that 0 has no multipli
ative inverse, will bedeveloped later in Numbers Lesson 9. We thus see that the integers form a groupunder addition, but not under the operation of multipli
ation!
8.3 Parts of Fra
tionsWe introdu
ed division in Numbers Lesson 2, but only in the 
ontext of integersand remainders.If you have ever shared an apple with someone, the 
on
ept of half should bewell developed. Former president George Bush (number 41) was ni
knamed �Havehalf� early in life for this reason. In su
h a situation, we are dividing one integer by
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8.4. TYPES OF FRACTIONS 61another, often larger, integer.A rational number is a number whi
h 
an be expressed as the ratio of two integers.The set of rational numbers is denoted by Q, as in quotient.A vin
ulum is an overhead line as is used for fra
tions, radi
als, and for repeatingde
imal fra
tions. The plural is vin
ula.The numerator is the portion of a fra
tion above the vin
ulum.The denominator is the part of a fra
tion below the vin
ulum.Per
entage is the numerator of a fra
tion with a denominator of 100.Millage or permille is the numerator of a fra
tion with a denominator of 1000.Per
entages are written with a per
ent sign (%) and permille are written with apermille sign (%� or ppk). Similar higher order fra
tions are parts per million (ppm),parts per billion (ppb), and parts per trillion (ppt). Note: there is some ambiguityasso
iated with ppt�it may o

asionally represent ppk. These are espe
ially usefulfor spe
ifying tra
e amounts or small relative un
ertainties.Example: Lead is a heavy metal whi
h 
an a

umulate in the body. The EPA(Environmental Prote
tion Agen
y) has set a limit of 15µg/liter in water whi
h 
or-responds to 15 ppb sin
e a liter of water has a mass of 1Kg=1000 g.Example: Calkins reported in Physi
al Review A 73, 032504 in Mar
h 2006the value 335 116 048 748.1(2.4) kHz for the D1 
entroid for 
esium. His un
ertaintywas thus 2.4/335 116 048 748.1 = 7.2 × 10−12 or about 7 ppt. When 
ombined withother measurements it gave a QED-free value for the �ne-stru
ture 
onstant α−1 =

137.036 0000(11) or about 8 ppb.8.4 Types of Fra
tionsA unit fra
tion is a fra
tion with a numerator of 1.Histori
ally, unit fra
tions were the �rst to be developed. An
ient Egyptians wouldadd long series of unit fra
tions to generate other values. It was a histori
 event when2/3's 
ame into usage! An appli
ation of unit (Egyptian) fra
tions will be examinedin the homework. Today, fra
tions 
ome in many forms: mixed numbers, improperfra
tion, de
imal fra
tions, et
.An improper fra
tion has a numerator larger (in magnitude) than the denomina-tor, a proper fra
tion does not.An interpretation of improper fra
tions is that the denominator says how ea
hNumbers and Their App.�pdf 4 O
tober 4, 2009 
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62 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONSwhole pie
e is divided, and the numerator says how many total pie
es we have. Im-proper fra
tions are quite a

eptable in high s
hool and beyond and are, in fa
t, oftenthe preferred form of answer. Too bad elementary/middle s
hool tea
hers always
onsider them wrong! However, in their defense, for those less numeri
ally in
lined,
onverting to a mixed number may give a better sense of the number's magnitude.(Converting to a de
imal approximation doesn't ne
essarily do that so 
learly!)A mixed number has an integer part and proper fra
tion part.A mixed number is generated by dividing the denominator into the numerator todetermine how many whole parts there are. The remainder is the numerator of thefra
tional part.A 
omplex fra
tion has fra
tions in the numerator or the denominator.Partial fra
tions des
ribes a te
hnique for splitting a fra
tion into pie
es.This te
hnique will be more formally introdu
ed in Algebra II and is often usedin Cal
ulus to simplify a 
omplex expression for ease in integration.
5

63
=

−49 + 54

63
=

−7

9
+

6

7
and 5x− 1

x2 − x− 2
=

2

x+ 1
+

3

x− 2
.Here is an example of a 
ontinued fra
tion: 2 +

1

2 + 1
2+ 1

2+...Continued fra
tions 
an arise due to re
ursive de�nitions. Consider the exampleabove as the solution to the equation: x = 2 + 1/x or x2 − 2x− 1 = 0 or x = 1 +
√

2.Early methods of expressing and extra
ting square roots depended on this method soit was well developed. It 
an also be useful for �nding integer solutions.8.5 Operations with Fra
tions8.5.1 Simplifying (or Redu
ing) Fra
tionsSome examples on how NOT to simplify fra
tions are as follows:
19

95
=

1

5
or 13

130
=

1

10
.Yet this, perhaps in a slightly more 
ompli
ated situation, is a very 
ommonmistake. Our Algebra II book 
alls it �freshman 
an
ellation!� Consider what disasterhappens when this was done to the examples below. If in doubt, try letting x = 2 and
ompare the before and after results. You 
an only 
an
el out fa
tors, where a fa
tormultiplies everything, not terms, where terms are parts of expressions 
onne
ted by
©MMIX Ke
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8.5. OPERATIONS WITH FRACTIONS 63addition and subtra
tion.
2x

x+ 1
or x+ 3

x− 5
.8.5.2 Addition and Subtra
tionWhen adding and subtra
ting fra
tions, the �rst step is to get a 
ommon denom-inator. After that the numerators are 
ombined. To get a 
ommon denominator,determine the Least Common Multiple. Then multiply ea
h respe
tive fra
tion's nu-merator and denominator by a spe
ial form of 1 (our multipli
ative identity) to getthe LCM.

2

3
+

4

5
.The LCM = 15, so multiply ea
h fra
tion by 1 so the denominator be
omes 15.

2

3
· 5

5
+

4

5
· 3

3
.Then you add or subtra
t the numerators, depending on the operation.

10 + 12

15
=

22

15
= 1 7

15
.8.5.3 Multiplying Fra
tionsTo multiply fra
tions, the rule is to multiply the numerators together and thedenominators together. Ea
h produ
t is put in its 
orresponding lo
ation.

10

11
· 22

5
=

220

55
= 4.Of 
ourse, after you are done multiplying (or adding, et
.), you should alwayssimplify!!! Another way to do it is to redu
e as you go:

10 2

11 1
• 22 2

5 1
=

4

1
= 4.8.5.4 Dividing Fra
tionsIn order to divide fra
tions, re
ipro
als are useful.The re
ipro
al of a number is it's multipli
ative inverse.For fra
tions, this 
an be obtained by ex
hanging the numerator with the de-nominator. The x−1 key on the 
al
ulator does this as well. Whole numbers arenonnegative fra
tions with a denominator of 1. (Thus unit fra
tions are the re
ipro-
als of whole numbers.) Division is equivalent to multiplying by the re
ipro
al. Onmany very early 
omputers, this was the only form of division implemented!Numbers and Their App.�pdf 4 O
tober 4, 2009 
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64 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS
Example: 2

3
divided by 1

6
. 2

3
÷ 1

6
=

2

3
· 6

1
= 4The reason 
an be seen by simplifying the 
omplex fra
tion.

2
3
1
6

=
2·6
3·1
1·6
6·1

=
2·6
3·1
1

=
2 · 6
3 · 1 = 48.6 Ratios and ProportionsRatios are two numbers with the same units 
ompared. Sometimes they arewritten like 2:1 or 6:3 where the 
olon symbolizes that the 2 is 
ompared with 1.Most frequently, ratios are written as division: 2/1 or 6/3. When there are morethan two numbers involve it is 
alled an extended ratio. Here are some examplesen
ountered using ratios:

• An o
ean has more water than a lake.
• Enlarging a pi
ture.
• Peter and Paul drove equally fast, but Mary drove twi
e as far.
• The Tigers are better hitters than the Cubs.
• Tasha is for the metri
 system be
ause she will be taller in 
entimeters than inin
hes.
• The triangle has side length ratios of 3 : 4 : 5.Proportions are two or more ratios set equal: 2

6
=

1

3
=

12

36
. When there aremore than two ratios, it is usually 
alled an extended proportion. If a proportionhas a missing term, we 
an simply 
ross-multiply and solve for the missing term.Example: x

16
=

1

4
be
omes 4x = 16 whi
h gives x = 4.8.7 Cross-multipli
ationCross-multipli
ation is a
tually a short-
ut for multiplying ea
h ratio by aspe
ial form of 1 involving the other denominator. In other words, you multiply thenumerator of one fra
tion by the denominator of the other and vi
e versa (Latin fororder opposite; then set these produ
ts equal to ea
h other. (See example justabove.)
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8.8. FRACTION HOMEWORK 658.8 Fra
tion HomeworkEa
h problem is worth two points. SHOW WORK, espe
iallyon problems 2�6.1. Use Pas
al's Triangle and the Binomial Theorem to expand (2x+ 3)6 by exam-ining (2x+ 3)2, (2x+ 3)3, . . .2. Simplify 
ompletely using a 
ommon denominator: 1

7
+

1

11
.3. Simplify 
ompletely using a 
ommon denominator: 1

7
+

1

13
.4. Simplify 
ompletely using a 
ommon denominator: 1

11
+

1

13
.5. Simplify 
ompletely using a 
ommon denominator: 1

7
+

1

11
+

1

13
.6. Simplify 
ompletely using a 
ommon denominator: 9

143
+

18

77
+

8

91
.7. Find 25% of 16.8. Find 250% of 16.9. The owner of a house with a state equilized value of $50,000 (the value used fortax 
omputation purposes and whi
h should not ex
eed half the market value)must 
al
ulate how mu
h a proposed 2 mill road improvement tax will 
ost him.Help him!10. Express the number 2.7 as: a) an improper fra
tion; b) a mixed number.11. Divide 50 by 1

2
then add 3.12. Convert 22

7
exa
tly into a de
imal fra
tion.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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66 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS
13. Simplify 
ompletely: 2

3
+ 1

2
5
12

− 1
4

.14. Simplify 
ompletely (fa
tor and 
an
el 
ommon terms): 6

35
× 15

22
× 77

9
.15. Simplify 
ompletely: 35

17
÷ 15

34
× 6

7
.For problems 16�18:Egyptian fra
tion is another name for unit fra
tion. In an
ient Egypt, thesewere the only fra
tions allowed. Other fra
tions between zero and one werealways expressed as a sum of distin
t Egyptian fra
tions. The greedy algo-rithm was 
ommonly used to render fra
tions, su
h as 3

5
, into unit fra
tions.The algorithm begins by �nding two 
onse
utive unit fra
tions that the givenfra
tion is between (1

2
< 3

5
< 1

1
). Using the smallest fra
tion, subtra
t it fromthe given fra
tion. This new number plus the smaller fra
tion is the result. Thegreedy Egyption number for 3

5
is 1

2
+ 1

10
(3

5
− 1

2
= 6

10
− 5

10
= 1

10
). Of 
ourse, thereis no guarantee the result is a unit fra
tion, so more than 2 fra
tions may wellbe required. (See MMPC 1996, part II, problem 1.)16. Expli
itly show how 1

2
+

1

10
=

1

3
+

1

4
+

1

60
.17. Find the greedy representation for 2

13
.18. Find the greedy representation for 9

10
.19. Using your 
orre
ted list of the �rst 15 Fibona

i Numbers from homework2 problem 3, �nd the approximate de
imal ratio of 
onse
utive pairs. Bonus:what is the exa
t limiting value this approa
hes?20. Write the word name for the number whi
h 
orresponds to 225 −1. Express thisnumber in binary, hexade
imal, and base 10.21. Read se
tion 11.2 of your geometry textbooks for further examples for Lesson7. See espe
ially problems 12�17.
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Numbers Lesson 9More on Fra
tionsNo one shall expel us from the Paradisethat Cantor has 
reated. David HilbertThis lesson presents order of operation for arithmeti
, number lines, rules forsolving inequalities, and long division. The lesson 
ontinues with a dis
ussion ofde
imal fra
tion, 
on
entrating further on what makes a fra
tion repeat or terminate.A se
tion on �nding exa
t rational expressions for repeating de
imals is followedwith a dis
ussion on division by zero. We 
on
lude the lesson with a proof that therationals are 
ountably in�nite. This proof dates ba
k to Cantor who is featured ina biography.9.1 Father of Set Theory: Georg CantorGeorg Ferdinand Ludwig Philipp Cantor (1845�1918) was a German mathemati-
ian best known for 
reating set theory. We will introdu
e those axioms in Lesson 14.Cantor developed a one-to-one 
orresponden
e between various sets but not others.In this way Cantor proved the real numbers un
ountable or nondenumerable via adiagonalization argument we will also present in Lesson 14.Cantor's work raised many philosophi
 questions and met with serious obje
tionsby his fellow mathemati
ians. Cantor su�ered from depression after about age 40,depression likely bipolar in nature, but at the time blamed on the ridi
ule from his
olleagues. In
onsistent proofs due to un
lari�ed assumptions has also been 
ited as a
ontributing fa
tor. The philosophi
 di�eren
es espe
ially with Krone
ker (See quoteat the beginning of Lesson 2) lead to a paradigm shift in mathemati
s toward usingset theory as foundational. The harsh 
riti
ism of his work gave way to internationala

olades by age 60. Long periods of depression limited Cantor's work during thelater years of his life with World War I for
ing poverty and malnutrition before hedied in a sanitarium (mental institution).67



68 NUMBERS LESSON 9. MORE ON FRACTIONSCantor established an unending sequen
e of larger in�nities. Power sets play akey role in this development. He believed his work on trans�nite numbers to havebeen 
ommuni
ated to him by God. Cantor established a one-to-one 
orresponden
ebetween the points on the unit line segment and all the points in an n-dimensionalspa
e about whi
h he said: �I see it but I don't believe it!� Cantor is also known forthe 
ontinuum hypothesis, also dis
ussed in Lesson 14, that no set has more membersthan the natural numbers and less members than the real numbers.9.2 Order of OperationsWe have already assumed that multipli
ation o

urs before addition and exponen-tiation before that in Numbers Lesson 5 on bases: 314 = 3× 102 + 1× 101 + 4× 100.We will summarize these rules here as follows.1. Operations within symbols of in
lusion are done �rst.2. Exponentiation is done next right to left if sta
ked.3. Multipli
ation and Division are then performed in order left to right.4. Addition and Subtra
tion are next performed in order left to right.The most 
ommon symbols of in
lusion are 
alled parentheses ( ), but bra
kets[ ℄, bra
es { }, vin
ula (plural of vin
ulum), and others (absolute value, radi
als) arealso en
ountered. Some dis
ussion regarding order of exponents is in order. Althoughmathemati
ians for 
enturies have 
learly intended 223

= 28 = 256 and not 43 = 64,programming languages su
h as Fortran and C and graphing 
al
ulators have notbeen as 
onsistent. The same 
al
ulator may be s
hizophreni
 and do it both ways,depending on the 
ir
umstan
es. (Compare 4 ∧ 2−1 using the x−1 key on the TI-84with 4 ∧ 2 ∧ −1!)Be sure to use parentheses whenever en
ountering sta
ked exponents.The rules above are often remembered via the mnemoni
 (from the Greek meaningamemory aid): PEMDAS� Please Ex
useMyDearAunt Sally or Please EatMissDaisy's AppleSau
e. Pink Elephants May Dan
e And Sway.Rule number 3 above deserves a little more ink sin
e really only purists, 
omputers
ientists, algebrai
 
al
ulators, and perhaps high s
hool tea
hers seem to rigorouslyadhere to it. Consider expressions su
h as 3/2π or 3/2 π where impli
it multipli
a-tion might o

ur. Some textbooks, espe
ially those beyond the high s
hool level, andmost high-level math/physi
s journals assume the 2 is �rst multiplied by the π in the�rst example, but not in the se
ond. It is for this reason that I highly re
ommend
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9.3. NUMBER LINE 69against the use of a solidus (/) and for the use of a vin
ulum (�) espe
ially whenhandwriting fra
tions. �No authority de
rees this, ...[but℄ this one rule [multipli
ationindi
ated by juxtaposition is 
arried out before division℄ is not universal agreementat the present time, but probably is growing in a

eptan
e.�1 When a student answeris an order of magnitude too large I qui
kly 
he
k to see if a π in the denominatorwandered �upstairs� due to the la
k of parentheses. One 
an add to this the la
k ofagreement beyond the high s
hool level in evaluating −1n. Are we exponentiatingnegative one, or negating one raised to the n. If n is even, these will di�er! Again,purists and 
al
ulators following the pros
ribed order of operations will exponentiatebefore negating, whereas the other may be intended in some 
ir
umstan
es. Thisproblem originates be
ause the negative symbol (−) serves three fun
tions (subtra
-tion, negation, and additive inverse).9.3 Number LineA 
ommon 
onvention for organizing sets of numbers is to use a number line.Some number line 
onventions will be noted as follows:1. A number line has larger numbers to the right and smaller numbers to the left.At its 
enter is zero.2. The integers are usually marked o� with ti
k marks and labelled.3. Sin
e numbers go on forever, but paper doesn't, arrows are put on ea
h end.Number lines 
an be used to show the solution set to 
ertain problems, espe
iallythose with in�nite solution sets. A sample number line is diagrammed below.
-5 0 59.4 InequalitiesMathemati
s deals not only with equality (=) but also with �ve inequalities <, ≤,

6=, ≥, and > known respe
tively as less than, less than or equal to, not equal, greaterthan or equal to, and greater than. The big end or opening points toward the biggerquantity. (The alligator is eating the big one, some of my students tell me.) Two ofthese (<,>) are known as the stri
t inequalities, be
ause they do not in
lude theend points. All inequalities but 6= are 
alled order inequalities. Number lines areuseful to 
onvey su
h ideas as x > 2. To do this, another number line 
onventionshould be noted.1Dr. Math: http://www.mathforum.org/library/drmath/vie/57021.htmlNumbers and Their App.�pdf 4 O
tober 4, 2009 
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70 NUMBERS LESSON 9. MORE ON FRACTIONS4. If a point is to be ex
luded at the end of a group of numbers on the numberline, an open 
ir
le is used. Thus, a 
losed 
ir
le indi
ates in
lusion of theendpoint. Alternatively, a parenthesis is used to indi
ate ex
lusion and a bra
ketto indi
ate in
lusion. This 
onvention is rooted in the pra
ti
e of spe
ifyingintervals as open, 
losed, or even half-open, su
h as 2 < x ≤ 5 as (2,5℄ shownbelow.
-5 0 5It should always be 
lear from 
ontext whether an expression su
h as (3, 5) refersto an ordered pair (See Numbers Lesson 13) or the open interval 3 < x < 5.Inequalities are algebrai
ally treated mu
h like equalities (what you do to oneside, do also unto the other).When an inequality is multiplied or divided by a negative number, thedire
tion the inequality points is reversed.

1 − x > 2

−x > 1

x < −1

subtra
t 1 from both sidesmultiply by −1 both sides and reverse the inequality9.5 Long DivisionDivision is usually the last of the four basi
 operations (+,−,×,÷) to be mastered.Division is the inverse operation of multipli
ation, but has an important ex
eption asdis
ussed below.The division of one number by another 
an be represented as a fra
tion with thedividend as the numerator and the divisor as the denominator. One 
an simplify thefra
tion before doing the long division involved.(Reminder: The divisor is out in front of the �box�, the dividend is under it andthe quotient is on top of the �box�).
Divisor

Quotient R Remainder
|Dividend

.An example of a division problem is 441÷ 12. After redu
ing, this is the same as
147 ÷ 4 or the fra
tion 147

4
. To �nd the quotient (or to �nd its mixed number), wedivide thusly.
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9.6. DECIMAL FRACTIONS 71
36.75 (or 36 R3 or 36 3/4)

4 |147.00
12
27
24
3 0
2 8

20
20
0

9.6 De
imal Fra
tionsFra
tions are often expressed with fairly arbitrary denominators: 1
2
, 3

4
, 2

3
. To 
om-pare them in magnitude, it is helpful to line them up on a number line: 1

2
< 2

3
< 3

4
.To quantify the di�eren
e between them, it is helpful to 
hange the denominator tobe 10 or a power of ten. Su
h fra
tions are 
alled de
imal fra
tions or often justde
imals.

1

2
=

5

10
= 0.5

2

3
= 0.66666 . . .

3

4
=

7.5

10
=

75

100
= 0.75So 2

3
is 
loser to 3

4
than to 1

2
. Of 
ourse, if we obtained a 
ommon denominatorof 12, that would have been 
lear as well: 6

12
< 8

12
< 9

12
. The 
hoi
e of base 10 isvery 
ommon, although basimal fra
tions related to powers of two are 
ommonlyen
ountered with 
omputers. In fa
t a marvelous algorithm2 for 
al
ulating π wasre
ently dis
overed, but involves hexade
imal fra
tions only.9.7 Repeating/Terminating De
imalThe number of digits in the repeating unit of a nonterminating but repeatingde
imal fra
tion is an area of interesting study. The biggest unit fra
tion (i.e. smallest2 http://www.mathsoft.
om/asolve/plouffe/plouffe.htmlNumbers and Their App.�pdf 4 O
tober 4, 2009 
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72 NUMBERS LESSON 9. MORE ON FRACTIONS
denominator) with mu
h interest is 1

7
= .142857 142857 · · ·. As 
an be seen in thetable below, all multiple of 1

7
have the same digits in the same order, just a di�erentstarting point.

1
7

0.142857
2
7

0.285714
3
7

0.428571
4
7

0.571428
5
7

0.714285
6
7

0.857142In an earlier homework, you already did the equivalent of �nding the de
imalfra
tion for 1/7 (7 into 1,000,000; NL1). Note how there 
an be seven di�erentremainders (0�6) when dividing something by 7. However, if the remainder of 0 isobtained, the fra
tion terminates (i.e. 7

7
= 1.0). This is part of the reason the 
y
lelength is six for the fra
tion 1

7
. In today's a
tivity you will derive the exa
t de
imalfra
tions for 1

17
and 1

19
whi
h ex
eed the 
al
ulator's a

ura
y. Of 
ourse you 
ouldalso attempt this by long division like your tea
her did sin
e 
al
ulators were not
ommon until he was in high s
hool.Terminating de
imals are de
imals that have an ending. These numbers do not goon forever or repeat. They are 
learly rational numbers sin
e you 
an express them asthe ratio of two integers: the de
imal values over the power of ten (what the last digitof the de
imal represents). Don't forget to redu
e, be
ause this result is not unique.For example, you 
ould multiply the numerator and denominator by 2. It shouldbe 
lear that fra
tions with denominators 
ontaining only powers of 2 and5 (the prime fa
tors of our base 10) terminate, whereas those 
ontainingother prime fa
tors do not.

0.115 =
115

1000
=

23

200

43.336 = 45
336

1000
= 45

42

125

0.14641 =
14641

1000009.8 Finding Integer Ratios for Repeating De
imalsKnowing all repeating de
imals are rational numbers, or the ratio of two integers,leaves us with the task of �nding these integers when presented with an arbitrary
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9.9. DIVISION BY ZERO 73example.Suppose you are asked to �nd two integers whose ratio is 0.586586 · · · = 0.586.One way is to use the FRAC key on your 
al
ulator, but another involves just a littlealgebra.Let
1000 = 103 was 
hosen sin
e thereare three repeating digits.Subtra
ting o� the originalWe are left with thisor

1000x = 586.586586 · · ·

1x = 0.586586 · · ·

999x = 586.000 · · ·
x =

586

999For fun, you might try this method on 0.143434343 . . . = 0.143 = 142
990

!9.9 Division by ZeroWe stated in Numbers Lesson 8 that zero does not have a multipli
ative inverse.This is equivalent to the 
on
ept that zero multiplied by anything is always zero. Ifwe examine this further, we dis
over that sometimes things are not quite exa
tly zeroand if multiplied by something big enough, unity will result. Examine the sequen
e of
0.1×10 = 1; 0.01×100 = 1; 0.001×1000 = 1; . . . Next examine the same thing but as adivision problem: 1÷0.1 = 10; 1÷0.01 = 100; 1÷0.001 = 1000; .... The denomonatorapproa
hes zero and the quotient approa
hes ∞. However, if we approa
h zero fromthe other side: 1 ÷ −0.1 = −10; 1 ÷ −0.01 = −100; 1 ÷ −0.001 = −1000; . . . theresult is at the other �end� of our number line. For this reason, it is usual to 
alldivision by zero unde�ned (ill-de�ned). For some appli
ations, it is useful to join ournumber line at the two in�nities, thus 
losing our unbounded interval! Thus the
omplete number line (interval between plus and minus in�nity) is termed both openand 
losed.9.10 The Rationals are CountableAnother important 
onsideration is how many rational numbers are there? Theanswer may surprise you. Start by listing the natural numbers with one as a de-nominator. For every su

essive row, in
rease the denominator. Then you will have
ompleted a 
hart 
ontaining all the positive rational numbers.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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74 NUMBERS LESSON 9. MORE ON FRACTIONS1/1 2/1 3/1 4/1 5/1 · · ·1/2 2/2 3/2 4/2 5/2 · · ·1/3 2/3 3/3 4/3 5/3 · · ·1/4 2/4 3/4 4/4 5/4 · · ·1/5 2/5 3/5 4/5 5/5 · · ·1/6 2/6 3/6 4/6 5/6 · · ·... ... ... ... ... . . .Some of them appear more than on
e (1/2 = 2/4 = 3/6 = · · ·). We then 
ountthe fra
tions in this order: 1/1, 2/1, 1/2, 1/3, 2/2, 3/1, · · ·. Sin
e we have put the nat-ural numbers into a one-to-one 
orrespondan
e with the positive (unsigned) rationalnumbers, they are 
ountable or there are �just as many� as natural numbers. This is
ommonly re
ognized as the lowest order of in�nity, or ℵ0 or aleph null. There areother arrangements possible, su
h as sorted by �height� (numerator plus denomina-tor) then by numerator, for example. However, fra
tions 
annot be put in a stri
tlyin
reasing order, be
ause in between ea
h pair is always another! The rational num-bers are thus termed dense. However, we will see in Lesson 11 there are still gapsbetween them!
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9.11. PEMDAS HOMEWORK 759.11 PEMDAS HomeworkEa
h problem is worth two points, ex
ept as noted for problem 121. Compare in magnitude the de
imal representations for: 22/7, 355/113, and π.2. Put in order from least to greatest: 0.1958, 0.1958, 0.1958, 0.1958, 0.1958.3. Convert 468.468468 · · · into the ratio of two integers.4. Find a rational number between 2
7
and 1

3
.5. Simplify: 3 × 15 + 2 × 6.6. Simplify: 2 × 6 + 32 ÷ 42 + 5.7. Simplify: 4 × [2 − 3(x+ 1)2] × (2 − 10 ÷ 5).8. Solve for x and graph on a number line: 14 − 3x < 13.9. Solve for x and graph on a number line: 2x− 4 > −11(x− 2).10. Expand and simplify: (2x− 3y)(2x+ 3y).11. Fa
tor 
ompletely: a) x2 + 9x+ 20; b) x2 + 8x− 20.

Numbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke
iθ G. Calkins



76 NUMBERS LESSON 9. MORE ON FRACTIONS12. Cal
ulate the exa
t de
imal representation of the unit fra
tions (See Se
tion8.4) with denominators 2 through 21. Clearly indi
ate the length of the partwhi
h repeats or whether it terminates (rep.len.=0). Can you �nd any patternto the repeat lengths? This problem is worth 17 points.Fra
tion De
imal Value Terminates Non-rep. Len. Repeat Len.1/2 0.5 yes 1 01/3 0.3333 · · · no 0 11/41/51/6 0.1666 · · · no 1 11/71/81/91/101/111/121/131/141/151/161/171/181/191/201/21
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Numbers Lesson 10S
ienti�
 Notation, Signi�
antFigures, et
.An approximate answer to the right question is worth a greatdeal more than a pre
ise answer to the wrong question. John TukeyThis lesson is devoted to a

ura
y, pre
ision, s
ienti�
 notation, signi�
ant �gures,and the importan
e of rounding vs. trun
ating. It ends with se
tions on 
ommon unitof measurement and unit 
onversions with an emphasis on metri
/English equivalents.Our biography for this lesson is on Pas
al.10.1 Miserable Infant Prodigy: Blaise Pas
alPas
al was born, lived, and died in Fran
e (1623�1662). He is 
onsidered a Fren
hphilosopher, mathemati
ian, and physi
ist and one of the greatest minds in westernintelle
tual history. He was the only son of a judge with some s
ienti�
 ba
kground.His early training was restri
ted to languages and mu
h of his later life was devotedto religious exer
ises. By age 12 he dis
overed geometry, read Eu
lid's Elements, and
ame up with some original proofs. By age 14 he was attending weekly meetings offamous mathemati
ians, by age 16 he wrote a paper on 
oni
 se
tions, and by age18 started work on a me
hani
al adding ma
hine. In 
orresponden
e with Fermat heestablished the theory of probability. This 
ontributed greatly to the developmentof the �elds of a
tuary, mathemati
s, so
ial statisti
s, and physi
s�not to mentionhelping his friends with their gambling!Pas
al did resear
h on pressure and invented the syringe. He advo
ated empiri
alexperimentation and the a

umulation of s
ienti�
 dis
overies. Analyti
, a priorimethods were the norm in those days. A run-away horse 
arriage a

ident at age31 further destablized his deli
ate health and lead him toward religion and awayfrom s
ien
e and math. The triangle of binomial 
oe�
ients, a 
omputer language, apressure law, and the SI unit of pressure are all named after Pas
al.77



78 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.
X X

X
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Figure 10.1: A

ura
y versus Pre
ision Targets. Left: no a

ura
y, nor pre
ision.Left Middle: a

urate and pre
ise. Right Middle: pre
ise, but not a

urate. Right:a

urate, but not pre
ise.10.2 A

ura
y vs. Pre
isionA

ura
y is a measure of rightness. Pre
ision is a measure of exa
tness.Versus (vs.) is Latin for against or fa
ing. A

ura
y and pre
ision, although sim-ilar in meaning, have a very subtle di�eren
e important to mathemati
s and s
ien
ein general and statisti
s spe
i�
ally. You 
an have one without the other, neither, or,best of all, both together. As you 
an see below, pre
ision has to do with repeatabil-ity, how well your results 
an be reprodu
ed. Here is an example involving e. It isan important number we will study further in Numbers lesson 15. It is also on yourgraphing 
al
ulator is several pla
es.e= A

urate? Pre
ise?27 no no2.18281828 no yes2.72 yes within 1 ppk no2.718281828 yes within 1 ppb yesFigure 10.1 illustrates what a

ura
y and pre
ision might mean in the 
ase of adart board with darts. The table below illustrates the same ideas with words.Darts A

urate? Pre
ise?Randomly spread far from the bull's eye no noClustered inside the bull's eye yes yesClustered outside the bull's eye no yesUn
lustered but inside the bull's eye yes noA 
ommon measure of pre
ision is the standard deviation or un
ertainty. We willdis
uss standard deviation more in the up
oming Statisti
s le
tures. Un
ertainty isthe magnitude of error that is estimated to have been made in the determination ofresults. It is now 
ommon to state results in the form: measurement (un
ertainty)units. Pre
ision 
an also be thought of in terms of repeatability.
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10.3. SCIENTIFIC NOTATION 79Example: Consider the results from the author's dissertation available athttp://etd.nd.edu, 
li
k on sear
h, enter Calkins as last name, and 
li
k now on thesear
h button below. We reported there our 2005 results of the 
esium D1 transition
entroid frequen
y as: 335 116 048 748.2(2.4) kHz. Basi
ally, the 2.4 kHz is sayingwe are about 68% 
on�dent that the true value is with ±2.4 kHz of the reported valueof 335.116 048 7482 THz (about 894.5 nm or in the infrared).10.3 S
ienti�
 NotationIn s
ien
e, numbers large and small are 
ommonpla
e and a shorthand notation
all s
ienti�
 notation was developed to simplify their spe
i�
ation and utilization.It is based on pla
e value and base ten. Re
all that 101 = 10; 102 = 100; 103 = 1000and 3 × 100 = 300 = 3 × 102 or 103 × 81 = 8.1 × 104.A number is in s
ienti�
 notation if it is in the form: Mantissa ×10characteristic,where the mantissa (Latin for makeweight) must be any number 1 through 9.9, andthe 
hara
teristi
 is an integer indi
ating the number of pla
es the de
imal moved.The manissa might sometimes be 
alled a 
oe�
ient. The term mantissa is more
ommonly applied to the de
imal fra
tional portion of a logarithm.Examples of s
ienti�
 notation:92,900,000 miles be
omes 9.29 × 107 miles (earth-sun distan
e).Plan
k's Constant: .000000000000000000000000000000000663 Js is 6.63 × 10−34 Js3141592653 is approximately 3.1416 × 109.6,600,000,000,000,000,000,000 tons is 6.6 × 1021 (6.6 sextillion) tons or the �mass� ofthe earth.Note the use of the EE key on 
al
ulators and an E on 
omputer printouts inreferen
e to s
ienti�
 notation. 3.14E9 is the same as 3.14 × 109. D may also beseen indi
ating use of double pre
ision (typi
ally 64 instead of 32 bits of pre
ision).An easy way to remember when 
hanging number into s
ienti�
 notation is: if themantissa is a smaller number in magnitude than your de
imal value, then the 
har-a
teristi
 will be a positive number. If the mantissa is a larger number than yourde
imal value, then the 
hara
teristi
 will be negative. Keep this hint in mind as you
hange from s
ienti�
 to de
imal notation.Example: 5.43 × 10−3 = 0.00543, sin
e the 
hara
teristi
 is negative, you knowthe de
imal number is smaller than 5.43, so you move the de
imal left. Anotherexample: −0.000002 = −2 × 10−6.10.3.1 Operations with S
ienti�
 NotationWhen adding numbers in s
ienti�
 notation, the 
hara
teristi
s must be the same.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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80 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.
2.3 × 105 + 4.55 × 103

230 × 103 + 4.55 × 103 = 234.55 × 103

2.3455 × 105 ≈ 2.3 × 105

The easiest way is to de
rease the larger
hara
teristi
 by rewriting the mantissa!After rewriting and adding, rewrite ins
ienti�
 notation.Results rounded a

ording to rules givenbelow.Noti
e what happens when you add the following together: 8.23×1017, 4.67×1012,and −1.05 × 10−12!The same method is used when subtra
ting numbers in s
ienti�
 notation! Here,however, if they are 
lose in value loss of signi�
an
e may result�the answer maybe nonsense! When multiplying numbers in s
ienti�
 notation, add the 
hara
teristi
sand multiply the mantissas. Division is similar, divide the mantissas and subtra
t thedenominator's 
hara
teristi
 from the numerator's 
hara
teristi
. Always 
onvertthe answers ba
k into proper s
ienti�
 notation form.Example: 8.1 × 10−3 × 2 × 105 = 16.2 × 102 = 1.62 × 103.Example: 1.08 × 1017 ÷ 1.2 × 1010 = 0.9 × 107 = 9 × 106.A variation on s
ienti�
 notation is engineering notation. In engineering nota-tion the exponent is a multiple of three, re�e
ting the fa
t that the standard multi-plier in the metri
 system is 103 = 1000. It is thus more 
ommon to speak of meters,kilometers, millimeters, nanometers, and femtometers than is to speak of de
imetersand dekameters. Unfortunately, some units su
h as 
entimeters and Angstroms areentren
hed whi
h 
ompli
ates our 
onversion to SI (see below).Numbers written in s
ienti�
 notation are assumed to be measurements, thusapproximations. Therefore, the rules outlined below must be applied.10.4 Signi�
ant Figures, Rounding and Trun
atingThe signi�
ant �gures (digits) in a measurement in
lude all the digits that 
an beknown pre
isely plus a last digit that is likely an estimate.The rules for determining whi
h digits in a measurement are signi�
ant are:1. Every nonzero digit in a re
orded measurement is signi�
ant. 24.7m, 0.743mand 714m all have three signi�
ant �gures.2. Zeroes appearing between nonzero digits are signi�
ant. The measurements7003m, 40.79m, and 1.503m all have four signi�
ant �gures.3. Zeroes in front of (before) all nonzero digits are merely pla
eholders; they arenot signi�
ant. 0.0000099 only has two signi�
ant �gures.
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10.4. SIGNIFICANT FIGURES, ROUNDING AND TRUNCATING 814. Zeroes at the right end of the number if a de
imal point is present andalso zeroes to the right of the de
imal (unless leading) are signi�
ant. Themeasurements 1241.20m, 210.100m, 0.00123456m, 5600.00m, and 123000000mall have six signi�
ant digits.5. Zeroes at the end of a measurement and to the left of an omitted de
imal pointare ambiguous. They are not signi�
ant if they are only pla
e holders: 6,000,000live in New York�the zeroes are just to represent the magnitude of how manypeople are in N.Y. But the zeroes 
an be signi�
ant if they are the result ofpre
ise measurements. A vin
ulum over the least signi�
ant zero is often used.Examples: tell how many signi�
ant �gures ea
h of the following has: 9027.0,9027, 9270, 9270., 0.9270, 9270, and 0.00927.Solution: 9027.0 has 5 signi�
ant digits, 0.00927 has 3. 9270 also has 3 but thereis room for doubt. All the rest have 4.The signi�
ant �gures in a number in s
ienti�
 notation is the number of digitsin the mantissa. The number 4 × 105 has only one digit in the mantissa, so it hasone signi�
ant �gure. 9.344 × 105 has 4 signi�
ant �gures. Thus the number 1200whi
h is un
lear as to how many signi�
ant �gures it has is more 
learly expressed as
1.200 × 103 as having 4 signi�
ant �gures or as 1.2 × 103 as having 2.When 
al
ulating with signi�
ant �gures, an answer 
annot be more pre
ise thanthe least pre
ise measurement.This means for...

• Addition and subtra
tion: the answer 
an have no more digits to the right ofthe de
imal point than are 
ontained in the measurement with the least numberof digits to the right of the de
imal point.Example: 12.21m + 324.0m + 6.25m = 342.46m, but the answer must berounded to 342.5m, or 3.425 × 102 m. Spe
i�
ation of units is also ex-tremely important.
• Multipli
ation and division: the answer must 
ontain no more signi�
ant�gures than the measurement with the least number of signi�
ant �gures (theposition of the de
imal point is irrelevant).It is very important to round rather than trun
ate your results: π ≈ 3.1416 not

π ≈ 3.1415, You are often instru
ted to round to so many signi�
ant digits or to su
hand su
h a level of pre
ision. There are variations, but the standard rule would roundanything from $0.50 up to $1.49 all to $1. One variation would round $0.50 downand $1.50 up based on the evenness/oddness of destination digit. A 
ommon mistaketo be avoided is �double rounding,� for example, rounding 1.46 �rst to 1.5 and thento 2. More on that will be dis
uss in the Introdu
tion to Statisti
s, lesson 3.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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82 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.10.5 Various Common UnitsThe National Institute of Standards and Te
hnology, formerly the National Bu-reau of Standards, is our nation's o�
ial sour
e of standard weights and measures,as well as other standards, su
h as for programming languages. The metri
 system(Systéme International or SI) has a long, interesting history and is in use the worldover. A notable ex
eption is in 
ommon (non-s
ienti�
) uses in the United States.SI di�erentiates between basi
 and derive units and hen
e is often 
alled the MKSsystem for meter (length), kilogram (mass), se
ond (time), the fundamental threeof the seven basi
 units. The other four basi
 units are: K (temperature), ampere(
urrent), 
andela (illumination), and mole (amount of substan
e). Listed below is ahodge-podge of units and the most important 
onversions.1. English units of volume:3 teaspoons=1 tablespoon (useful for 
hild medi
ine dosage, not just 
ooking)8 tablespoons per sti
k of butter�4 sti
ks per pound (Histori
ally, a pound was
ut in quarters.)2 
ups per pint, 2 pints per quart, 4 quarts per gallon, 16 � oz per pint (a pint'sa pound the world round�works only for water. That is, a �uid oun
e of waterweights about a oun
e.)231 
u in per gallon (US liquid�there are also Brit and US dry gallons).There are 160 Brit oz per Brit Gal., 0.9607594 Brit �uid oz per US �uid oz.There are 1.16 US liquid gallons per US dry gallon. 8 US dry gallons per bushel,4 pe
ks per bushel. 42 US gallons per US petro barrel (31.5 US gallons per USliquid barrel). 2 US liquid barrels per hogshead. A 
ord is 4'x4'x8'�be sure toget that and not a third of that (�ri
k�) when buying wood!Con
rete is spe
i�ed in 
ubi
 yards (27 
u ft per 
u yard�why?).There are many more �English� units of volume, with a ri
h history but mostare fortunately falling into disuse. I have never had to use: Grains, S
ruple (20grains), Minim (20 s
ruples), Dra
hm/Dram (60 minims; 1/8 or 1/16 oz), Gill(5 Brit oz), Bu
ket (4 Brit gallons), Firkins (9 Brit gallons), Bag (3 bushels),Seam (8 bushels), or Butt (2-4? barrels or 2 hogsheads). Sin
e fresh water onships was stored in a butt, and people 
ongregated and gossiped there, the terms
uttlebutt now refers to gossip, not just the fountain!Note: 33.8 ml/� oz and 3.785 liters per gallon are useful 
rossovers.2. Common �English� units of weight in
lude: 
aret (200 mg), oun
e (12 apothe-
aries/troy or 16 avoirdupois per pound!), pound, and ton (2000 pounds pershort ton, 2240 pounds per long ton, 2204 pounds per metri
 ton). Mostlyfallen into disuse are: pennyweight (20 per troy oz), slug (32.174 avdp. pounds),
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10.5. VARIOUS COMMON UNITS 83hundredweight (20 per ton). Pounds are, of 
ourse, abbreviated as lb!28.349523 grams per oun
e and 2.20 pounds per kilogram are useful 
rossovers.Also, a ni
kel weights exa
tly 5 grams and a post-1982 penny half that.3. Common units of time are: the pi
o-, nano-, mi
ro-, milli-, se
onds. There are60 se
onds per minute (angle or time!), 60 minutes per hour (or degree), 24hours per day, 7 days per week, 14 days make a fortnight, 365.24 days per yearmore or less. There are sidereal, 
alendar, and tropi
al years as well as 
alendarand lunar months. We also speak of de
ades, 
enturies, millenia, age of theearth (4.5 billion years), or universe (about 13.7 billion years=a Hubble time).NIST is responsible for de�ning the se
ond, 
urrently via the 
esium fountain
lo
k and 
ooperates internationally to generate world time known as Coordi-nated Universal Time (UCT). However, the US Navy is responsible for main-taining and distributing this time and uses several dozen 
esium 
lo
ks andabout one dozen hydrogen masers to do this. They are resear
hing the use of a
esium fountain 
lo
k to help stabilize and steer the hydrogen masers. The se
-ond is metri
. The 21st 
entury/3rd millennium started January 1, 2001. Also,the designations 12 am (te
hni
ally noon, Chi
ago style midnight) and 12 pmshould not be used.4. You are responsible to know and understand the metri
 pre�xes of: Giga, Mega,Kilo, milli, mi
ro, nano, and pi
o. You should be very aware that giga(G),mega(M), and kilo(K) 
an have slightly di�erent meanings espe
ially when usedin a 
omputer related 
ontext. There K refers not to 1000, but to 1024 = 210.M might refer to 1,000,000; 1,024,000 (3.5" �oppies!); or 1048576 = 220. Gmight refer to 1,000,000,000; 1, 073, 741, 824 = 230; or possibly some number inbetween! The terms Kibi(Ki), Mebi(Mi), Gibi(Gi) have been suggested.5. Common �English� units of length in
lude the in
h, foot (12 in
hes per foot),yard (36 in
hes per yard), mile (5280 feet per statute mile�a nauti
al mile isabout 6076 feet (Int) or 6080 feet (Brit)). My father still speaks in rods (16.5feet), whi
h is also a pole or per
h. Physi
ists speak of lightyears (5.8785 ×
1012 miles or 9.46 × 1012 km). This is the distan
e light travels in one year.Light in va
uum travels exa
tly 299,792,458 meters per se
ond (about
3×108 m/s). This value is c. When 
ombined with the de�nition of the se
ond,this de�nes the meter. Hands (4"), mil (.001"), and points (about 1/72") arestill 
ommonly used. Falling into disuse are furlongs (8 per mile), leagues (3Numbers and Their App.�pdf 4 O
tober 4, 2009 
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84 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.naut. miles), fathom (6 feet), 
hains (80± per mile), and 
ables (720 feet).More metri
 
rossovers: Exa
tly: 2.54 
m/in= 39.37 in
hes per meter.Approximately 1.609 km per mile or 0.62 miles per km.Feet are often abbreviated as single quotes and in
hes as doublequotes. (I am 5'6".) These same quote symbols are used for angle measure-ment in minutes, se
onds, and thirds. (A right angle is 90◦0′0′′0′′′.)10.6 Unit ConversionsConverting from one type of unit to another is a 
ommon o

uran
e in s
ien
e.It is just another in
iden
e of multiplying by our multipli
ative identity (1)! Forexample, to 
onvert 0.62 miles into feet we multiply by the identity 5280 feet/1 mile.The units of miles in the numerator and demominator 
an
el and we are left with3273.6 feet. (More than 3 signi�
ant �gures were retained, sin
e 5280 is an exa
tvalue.) Two additional and useful 
onversions are given below as further examples.Example: 60miles/hour × 5280 ft/mile × 1 hour/3600 s = 88 ft/s.Example: 5280 ft/mile× 5280 ft/mile /640 a
res/sq mile=43560 sq ft/a
re. Thisis a square about 209 ft on a side or a re
tangle exa
tly 132′ × 330′. A square mile isa se
tion, 36 se
tions are a geographi
 township. Politi
al townships vary in size.
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10.7. SIGNIFICANT FIGURES HOMEWORK 8510.7 Signi�
ant Figures HomeworkEa
h problem is worth two points, ex
ept as noted.1. Using your TI-84 
al
ulator result for 69! in s
ienti�
 notation, multiply 69! by7 and approximate 70! also in s
ienti�
 notation.For problems 2�7 round ea
h measurements to the number of signi�
ant �guresshown in parentheses. Write your answer in s
ienti�
 notation.2. 314.721m (4 sig. �g.)3. 0.001775m (2 sig. �g.)4. 64.32 × 10−1 m (1 sig. �g.)5. 8792m (2 sig. �g.)6. 87.073m (3 sig. �g.)7. 4.3621 × 108 m (1 sig. �g.)For problems 8�17 do the following operations and give the answer to the 
or-re
t number of signi�
ant �gures.8. 74.626m − 28.34m9. 61.2m + 9.35m + 8.6m10. 9.44m − 2.11m11. 1.36m + 10.17m12. 34.61m − 17.3m13. 2.10m × 0.70m14. 2.4526 m÷ 8.4.15. 0.365 m ÷ 0.0200.
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86 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.16. (1.8 × 10−3 m) × (2.9 × 10−2 m)17. 5.3 × 10−2 m ÷ 0.25518. (Four points:) The �ve students at table #2 obtained the following measure-ments for the length of 12-in
h rulers in 
entimeters (four groups tried it 4times). Determine whether ea
h student's measurements were a

urate and/orpre
ise.Meas. #\Student: Audrey/Rashmi Be
ky Cami Kara1. 31.51 30.4 30.281 28.12. 31.45 30.5 30.781 28.93. 31.61 30.3 30.441 28.74. 31.35 30.4 30.431 28.6A

urate: Yes or No Yes or No Yes or No Yes or NoPre
ise: Yes or No Yes or No Yes or No Yes or No19. (Three points:) Identify the exponent for the power of ten multiplier for ea
hof the following metri
 pre�xes. (Hint: they are in order and all the missingsones are multiples of three.) Pre�x ×10?Yotta- 24Zetta- 21Exa- 18Peta- 15Tera-Giga-Mega-Kilo-de
i- −1
enti- −2milli-mi
ro-nano-pi
o-femto-atto- −18zepto- −2120. Bonus: Find a humorous unit/pre�x su
h as 106 phones is one Megaphone!
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Numbers Lesson 11Beyond RationalityAll is number. PythagorasIn this lesson we will explore numbers whi
h 
annot be expressed as the ratio oftwo integers, i.e. irrational numbers. Our biography is on Pythagoras and then weexplore a proof often attributed to him that many radi
als are irrational. We studythe parts of a radi
al and how to simplify and multiply them. We dis
uss rationalizingdenominators and give the old method of extra
ting roots by hand. We 
lose with ase
tion on the Golden Ratio.11.1 The Father of Numbers: PythagorasPythagoras was an an
ient Greek (
. 576�
. 500 b.
., both dates have large singledigit un
ertainties) mathemati
ian, philosopher, and mysti
 perhaps best known forhis theorem and s
hool. We will dis
uss the Pythagorean Theorem in the next lesson.Many mathemati
al results are attributed to Pythagoras but some of them were likelydeveloped by his students at his s
hool/brotherhood, a few even after he died. Atthis time it is very di�
ult to separate the man from his legend.Pythagoras 
oined the word philosophy to signify a love of wis-dom. Pythagoras and his s
hool believed everything 
ould be de-s
ribed mathemati
ally, hen
e predi
ted and measured. Rhythmi

y
les were often involved, espe
ially in des
ribing the 
osmos,another word he likely 
reated. Mathemati
s and religion thus be-
ame 
omingled. Thought be
ame superior to observation, a notionstill present in many religions with an antis
ien
e bias.Pythagoras was born on an island o� Gree
e settled by Greeks. His se
ret reli-gious s
hool was 
ommunal (at least for those in the inner 
ir
le) and lasted severalgenerations after his death, thus in�uen
ing Aristotle, So
rates, and Plato. Se
re
y87



88 NUMBERS LESSON 11. BEYOND RATIONALITYwas not always well observed. The s
hool was lo
ated in southern Italy. Both maleand female students were wel
ome and treated equally at a time when women wereoften 
onsidered property. The pentagram (a regular pentagon with all diagonalsprodu
ing a 5-pointed star) was their symbol. Any writings Pythagoras produ
ed didnot survive, but his tea
hings may have all been stri
tly oral.In astronomy the known planets were said to produ
e a harmony of the spheres.Musi
al tones and s
ales were also studied. One story has his s
hool studying thebla
ksmith's anvils whi
h harmonized be
ause of their simple proportional sizes.Pythagoras believed in rein
arnation and 
laimed to remember four previous lives.Many of his followers or dis
iples studied in Egypt where the transmigration of thesoul was a 
ommon belief. Pythagoras was also the �rst in�uential Western vege-tarian. Beans were also not to be eaten sin
e they 
ontained or transmitted souls,although it is possible abstaining from beans really meant abstaining from politi
s.Pythagoras's death may have been a murder and some tales indi
ated he stoppedrunning when he 
ame to a �eld of beans.11.2 Irrational NumbersIt was widely believed that all numbers were rational, expressible as the ratio oftwo integers, until the Pythagorean s
hool (around 500 b.
.) dis
overed otherwise.(Legend has it that someone shared this se
ret (�spilled the beans�) and was thrownoverboard the ship they were on at the time.) Today, su
h numbers are 
alled ir-rational numbers. Sin
e then irrational has be
ome an adje
tive meaning la
kingnormal logi
al 
larity! The square root of 2 (√2) may have been the �rst irrationalnumber dis
overed. It is the solution to the simple problem x2 = 2.Irrational numbers are real numbers that 
annot be expressed as the ratio of twointegers.Common irrational numbers are nonrepeating and nonterminating de
imals. Thesein
lude the roots of any prime and indeed most radi
als.11.3 Simplifying Radi
alsThe symbol n

√ is 
alled a radi
al. The number underneath the surd symbol (�
he
k-mark�) is the radi
and. n is the root index, indi
ating what the root is. Whenno root index appears, 2 meaning square root is assumed.Irrational numbers were originally 
onsidered absurd! Histori
ally radi
als werewritten without a vin
ulum: √(2), for instan
e.
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11.4. PYTHAGORAS'S PROOF THAT THE √
2 IS IRRATIONAL 89

√
2 
an also be written as 2

1

2 . In general, xa/b means the bth root of xa. Su
hrational exponents still follow the exponentiation rules given in Numbers Lesson 5.11.4 Pythagoras's Proof that the √
2 is irrationalGiven below is a proof often attributed to Pythagoras of the existen
e of irrationalnumbers using the √

2 as an example. (Some have suggested that the golden ratiowas the �rst irrational number dis
overed.)Statements Reasons√
2 = a/b Proof by 
ontradi
tion: assume truewhat we are proving false

2 = a2/b2 2b2 = a2 Square both sides (expressions remainequal)
a and b have no 
ommon fa
tors assumed without loss of generality: a/brepresents redu
ed fra
tionIf a is odd, a2 is odd, but
2b2 is 
learly even, a 
ontradi
tion odd times odd is odd, a 
annot be botheven and odd simultaneously.If a is even, let a = 2c even 
an be fa
tored into 2 and anothernumber even (2) times anything is even
a2 = a · a = 4c2 = 2b2 Substitution of equals into produ
t(twi
e)
2c2 = b2 Division Property of EqualitySo b is even; hen
e a, b have the 
om-mon fa
tor 2, a 
ontradi
tion. Q.E.D. (quod erat demonstrandum:Latin for whi
h was to be proved.)When simplifying radi
als, break the radi
and into fa
tors of perfe
t squares,
ubes, et
. (9 is the perfe
t square of 3, 4 is the perfe
t square of 2, 27 is the 
ube of3). Separate the fa
tors into separate radi
als. Then express the roots of the radi
alswith perfe
t squares, 
ubes, . . ..Examples:

√
27 =

√
9 · 3 =

√
9 ·

√
3 = 3

√
3

√
96 =

√
16 · 6 =

√
16
√

6 = 4
√

6

3
√

250 =
3
√

125 · 2 =
3
√

125
3
√

2 = 5
3
√

2Numbers and Their App.�pdf 4 O
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90 NUMBERS LESSON 11. BEYOND RATIONALITY11.5 Multiplying Radi
alsWhen multiplying radi
als, multiply the radi
ands of like root indexes and thensimplify the produ
t. Usually, the easiest way is to simplify as you go along so thatyou don't end up with large produ
ts to fa
tor.Examples:
√

6
√

3 =
√

6 · 3 =
√

18 =
√

9 · 2 = 3
√

2

(
√

7)2 =
√

7
√

7 = 7

(2
√

5)2 = 2
√

5 · 2
√

5 = 4 · 5 = 20Compare the next two examples and noti
e how they di�er. Both methods are
orre
t. Choose the one whi
h saves you the most time.
√

50
√

15 =
√

750 =
√

25 · 30 = 5
√

30

√
50
√

15 = 5
√

2 ·
√

15 = 5
√

30Note when the radi
als have di�erent root indexes:
3
√

16
√

2 =
3
√

8 · 2
√

2 = 2
3
√

2 ·
√

211.6 Rationalizing DenominatorsCommon pra
ti
e is to simplify expressions to get rid of radi
als in the denomina-tor of fra
tions. Histori
ally, this was all but ne
essary before 
al
ulators. (Imaginedividing √2 by the √3 by long division!) In order to rationalize the demoninator, the
ommon pra
ti
e of multiplying by one is used. One 
omes in many forms: anythingdivided by itself is one. So multiply the fra
tion by the square root that is in thedenominator over itself.Examples:
√

3

2
=

√
3√
2

=

√
3
√

2√
2
√

2
=

√
6

2
√

16

12
=

4

2
√

3
=

2√
3

=
2
√

3√
3
√

3
=

2
√

3

3
√

1

8
=

1

2
√

2
=

1
√

2

2
√

2
√

2
=

√
2

4
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11.7. EXTRACTING ROOTS 9111.7 Extra
ting RootsThe √
2 
an be approximated on your 
al
ulator. Before 
al
ulators were devel-oped, the following method was widely taught and used. It is based on Newton'sMethod whi
h will be taught in 
al
ulus. Sin
e the de
imal representation of √2 goeson forever without terminating or repeating, 
al
ulators 
an only give you a fairlypre
ise de
imal approximation.Whenever you use the de
imal approximation of a radi
al, you should note that itis an approximation and not exa
t by the use of the symbol ≈.1. Separate the number into groups of two digits going ea
h way from the de
imalpoint.2. Estimate the largest square whi
h will go into the �rst group.3. This number goes both in the normal divisor's lo
ation for long division andabove the �rst group as in long division.4. Double this digit and bring it down for the next step (see example below).5. Also bring down the next group of digits as in long division.6. Estimate how many times the two digit number formed using this doubled digitand the number of times...will go into the number.7. Repeat steps 4�6 above, but now the number down will be 2, 3, 4 digits, et
.Continue until the desired a

ura
y is a
hieved.Example: Extra
ting root 2.Step 1: ?. ? ? ? ? ? ?? / 2. 00 00 00 00 00 00Find an integer that squared goes into 2:Step 2: 11 / 2. 00 00 00 00 00 00Double the quotient and bring down to be the divisor. Another digit will follow.1. ?1 / 2. 00 00 00 00 00 0012? / 1 00Find the number,?, so that 2? will go into 100 ? times. (We �nd that it is 4:

24 · 4 < 100 < 25 · 5)Numbers and Their App.�pdf 4 O
tober 4, 2009 
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92 NUMBERS LESSON 11. BEYOND RATIONALITY1. 41 / 2. 00 00 00 00 00 00124 / 1 00
964We 
ontinue to repeat the steps: double the quotient and �nd the last digit untilwe get the pre
ision we need.1. 4 11 / 2. 00 00 00 00 00 00124 / 1 00
96281 / 4 00
2 811 19How long would it take you to verify for a

ura
y the following level of pre
ision?1

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731

76679 73799 07324 78462 10703 88503 87534 32764 15727 35013 84623 · · ·.11.8 Golden RatioAnother 
urious irrational number is Φ = 1+
√

5
2

≈ 1.618 · · · and his partner Φ′ =√
5−1
2

≈ 0.618 · · ·. These are known as the Golden Ratio and symbolized by Φ, theGreek letter 
apital phi. Noti
e how things like 3′′ × 5′′ 
ards often assume theseproportions. Noti
e also how ratios of 
onse
utive Fibonna
i numbers approa
h theGolden Ratio as seen in Numbers Homework 8.8. The Golden Ratio is also one of theroots of the quadrati
 equation x2 −x− 1 = 0. If you 
hange the 2's in the 
ontinuedfra
tion given in Numbers Lesson 8 to 1's, you will have yet another representation!
Φ = 1.61803 39887 49894 84820 45868 34365 63811 77203 09180 · · ·

1WARNING: some students have naively programmed this on their 
al
ulator and not gottenthis result due to round o� error.
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11.9. RADICAL HOMEWORK 93Name S
ore11.9 Radi
al HomeworkEa
h problem is worth one point.Examples: Simplifying Square Roots
√

75 =
√

25 · 3 =
√

25 ·
√

3 = 5
√

3√
76 =

√
4 · 19 =

√
4
√

19 = 2
√

19√
144 =

√
9 · 16 =

√
9
√

16 = 3 · 4 = 12
√

54 =
√

9 · 6 =
√

9
√

6 = 3
√

6 not 3
√

2
√

3Examples: Multiplying Square Roots
(
√

3)(
√

2) = (
√

6)

(
√

3)2 = (
√

3)(
√

3) = 3

(2
√

3)2 = (2
√

3)(2
√

3) = 4 · 3 = 12Examples: Rationalizing the Denominator
√

2
3

=
√

2√
3

=
√

2√
3
·
√

3√
3

=
√

6
3

√

3
8

=
√

3√
8

=
√

3√
8
·
√

2√
2

=
√

6√
16

=
√

6
4Express ea
h square root EXACTLY in simplest form (one point ea
h).1. √12 2. √18 3. √24 4. √32 5. √40

6. √48 7. √60 8. √75 9. √73 10. √95
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94 NUMBERS LESSON 11. BEYOND RATIONALITY11. √90 12. √216 13. √120 14. √235 15. √810

16. √324 17. √720 18. √242 19. √784 20. √828

Express ea
h produ
t EXACTLY in simplest form.21. (3
√

2)2 22. (4
√

3)2 23. (2
√

3)(
√

2) 24. (3
√

6)(2
√

3) 25. (7
√

3)2

Rationalize the denominator, then simplify EXACTLY.26. √

1
3

27. √

5
24

28. √

7
27

29. √

35
50

30. √

1
2
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Numbers Lesson 12Theorems: Pythagorean, Fermat'sLast, et
.I have dis
overed a truly marvelous demonstrationwhi
h this margin is too narrow to 
ontain. Pierre de FermatThis lesson introdu
es two important theorems, the Pythagorean Theorem andFermat's Last Theorem (FLT). We repeated the quote above due to its importan
e.Considerable spa
e is given to an introdu
tion to trigonometry before the PythagoreanTheorem is applied to the pra
ti
al appli
ation of �nding distan
es. Diophantineanalysis is introdu
ed to help dis
uss FLT. Perfe
t 
uboids, the Fermat-Catalan Con-je
ture, and Goldba
h Conje
ture are also 
overed.12.1 The Father of Modern Mathemati
s: Fibona

iThe Italian Fibona

i or Leonardo of Pisa (
. 1170�
. 1250) was the �most talentedmathemati
ian of the Middle Ages.� Fibona

i is best known for spreading the use ofthe Hindu-Arabi
 pla
e value number system and also a sequen
e of natural numberspresented earlier. The name Fibona

i may have been assigned posthumously or wasthe name Leonardo published under. In either 
ase it seems to be a referen
e to hisfather and some have suggested it to be self-depre
iating in that his father's ni
knamemeant simple. Leonardo's father was a mer
hant and thus he visited Arab marketsin North Afri
a and as a young boy Leonardo learned the 
omputation methodsthere. Leonardo's publi
ation 
aused the eventual displa
ement of the use of Romannumerals thus ushering in modern arithmeti
. The Fibona

i sequen
e was not newwith Fibona

i, but his publi
ation of it in 
onjun
tion with the tallying of a rabbitpopulation popularized it. 95



96 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.2 Pythagorean Theorem, Proof, TriplesOne of the most important dis
overies in antiquity was that not only did 32+42 =

52, but also, if su
h a triple 
ould be found, these were the side lengths of a righttriangle. (A right triangle 
ontains one 90◦ or right angle.) Several 
ultures (Chinese,Babylonians, Egyptians, and Greeks) may have independently made this dis
overy,but due to our histori
 European slant and re
ords preservation, this has been knownas the Pythagorean Theorem. However, the Greeks went further, developing geometrynot only for pra
ti
al purposes, but also in abstra
tion and for its logi
al stru
ture.The Pythagorean Theorem is one of the most important fa
ts learned in Geometry.A triangle with sides a, b, and c (longest) is a right triangle if and only if a2+b2 = c2.Hen
e we know how the sides are related if it is a right triangle. We 
an alsoprove the triangle to be a right triangle if its sides have this relationship�the 
onversesituation.There are over three hundred di�erent proofs of the Pythagorean Theorem. Oneof the 
ommon proofs uses a square within a square (see �gure below). Ea
h side ofthe inner square has length c. Ea
h 
orner of the inner square interse
ts the sidesof the outer square. The four triangles formed by the interse
tion are all 
ongruent.Therefore ea
h side of the outer square is made up of two segments, a and b.

a

a
b

b

c
c

a

a

b

b

c

c

60

30

45

1

2

1

1

o

o

o

?

?

In order to �nd the distan
e c in terms of a and b, we use the fa
t that the areaof the outer square is the same as the sum of the area of the four triangles and theinner square. The rest is algebrai
 manipulation. (a+ b)2 = c2 + 4(1
2
)ab. Expanding,we get: a2 + 2ab+ b2 = c2 + 2ab. After subtra
ting 2ab from both sides, we 
on
lude
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12.3. SPECIAL TRIANGLES 97that c2 = a2 + b2. Q.E.D.1A pythagorean triple is a set of three integers a, b, c su
h that a2 + b2 = c2.A primitive pythagorean triple is a pythagorean triple su
h that GCF(a, b) = 1.Common pythagorean triple are: 3, 4, 5; 5, 12, 13; 7, 24, 25; 9, 40, 41;and 6, 8, 10. All but this last triple are primitive. The last is 
alled a multiple.Note: it follows that if GCF(a, b) = n, then n is also a fa
tor of c. Noti
e how
32 = 4 + 5; 52 = 12 + 13, . . .. This is a 
hara
teristi
 of a general 
lass of primitivepythagorean triples involving squares and two 
onse
utive integers and was illustratedin homework 3, problem 6. Pythagorean triples su
h as 8, 15, 17 do not have this
hara
teristi
.
12.3 Spe
ial TrianglesA regular polygon has all sides equal (equilateral) and all angles equal (equian-gular). In a triangle these 
annot o

ur independently. The resulting triangle withsides in the ratio 1:1:1 and angles of 60◦, 60◦, 60◦ is dis
ussed, in part, below. Thethree most important right triangles are: the 3, 4, 5; the isos
eles right (45◦, 45◦, 90◦);and the 30◦, 60◦, 90◦ triangle. The 3, 4, 5 triangle has angle measures of about 37◦,
53◦, 90◦. Wat
h espe
ially for these spe
ial angles and triangles.The isos
eles (2 or more sides equal) right (having a 90◦ angle) triangle 
an bethought of as having legs (the shorter sides of a right triangle) of length 1. Thusthe hypotenuse (the longest side of a right triangle) is √

12 + 12 =
√

2. Pleaselabel the upper �?� (blue ?) thusly in the �gure above. The 30◦, 60◦, 90◦ triangle
an be thought of as a bise
ted2 equilateral triangle. Thus one side might be 1, thehypotenuse then is 2 and the other side must satisfy 12 + x2 = 22, or x2 = 3, thus
x =

√
3. Please label the lower �?� (red ?) thusly in the �gure above. These sidelength ratios must be memorized and will be seen often in trigonometry whi
h is thestudy of triangle measure, but primarily involves triangle side length ratios. Note: if

a2 +b2 < c2, the triangle is obtuse (
ontains an angle more than 90◦). If a2 +b2 > c2,the triangle is a
ute (all three angles are less then 90◦).1We realize this proof depends on the 
on
ept of area and the area formula for triangles, itemsnot yet formally 
overed in this 
ourse. Motivation for them 
ould o

ur ba
k when fa
tors arepresented.2We will formally de�ne this term in Geometry, but its meaning should be 
lear here: to 
ut intotwo equal parts.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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98 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.4 Trigonometry De�nitions
A qui
k introdu
tion to a semester of trigonometry 
anbe summarized as follows. Three items taken two at atime 
an be done six di�erent ways (3P2 = 3!/(3−2)! =

6/1 = 6). One trigonometri
 de�nition involves ratios(two numbers) of the three sides of a right triangle.For sake of future referen
e, we will identify the tri-angle as △ABC with right angle C. This is a verystandard 
onvention. Side c is then the hypotenuseand is opposite ∠C, et
. In relation to angle A, a isits opposite side and b is its adja
ent side (adja
entmeans to lie nearby). See the �gure to the right.
A

BC

b

a

c

sin A=opposite/hypotenuse 
os A=adja
ent/hypotenuse tan A=opposite/adja
entsin is the normal abbreviation for sine and in English is pronoun
ed the samewith a long i sound (saying its name). It 
omes from the Latin word for 
urve whi
h
ame from a Sanskrit word meaning bowstring. 
os is the normal abbreviation for
osine where the pre�x 
o- has the usual meaning of together or partner. tanis the normal abbreviation for tangent from Latin meaning to tou
h whi
h has amore general geometri
 meaning of the interse
tion of two geometri
 �gures at a point.These relationships are often remembered via the mnenomi
 SOH CAH TOA. One
an readily see that tan A=sin A/
os A. The remaining three trigonometri
 fun
-tions: se
ant or se
 A=1/
os A; 
ose
ant or 
s
 A=1/sin A; and 
otangent or
ot A=1/tan A are less frequently used and usually don't even appear on 
al
ula-tors. Remember, there is only one 
ofun
tion in ea
h re
ipro
al relationship. It isimportant to note that a rather 
onfusing notation is histori
ally used for the inversetrigonometri
 fun
tions. sin−1 x refers not to the re
ipro
al of sinA, but rather to theinverse fun
tion. That is sin−1 x is an angle whose sin is equal to x. However, sin2 xmeans (sin(x))2 and must be entered as su
h on your 
al
ulator. The table belowfollows dire
tly from these spe
ial triangles and trigonometri
 de�nitions.
tan 90◦ is ill-de�ned sin
e cos 90◦ = 0 (or the adja
ent side is zero) and division byzero is not allowed. More will be presented on the trigonometri
 fun
tion de�nitionsafter Number Lessons 13 introdu
es the 
artesian 
oordinate system and NumberLesson 15 introdu
es trans
endental numbers.
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12.5. DISTANCE 99Angle (deg) Angle (Radians) Sine Cosine Tangent
0◦ 0 0 1 0
30◦ π

6
1/2 √

3/2
√

3/3

36◦52′11.63 . . .′′ 0.64350 . . . 3/5 4/5 3/4
45◦ π

4

√
2/2

√
2/2 1

53◦7′48.36 . . .′′ 0.92729 . . . 4/5 3/5 4/3
60◦ π

3

√
3/2 1/2 √

3

90◦ π
2

1 0 ill-de�ned12.5 Distan
eThe most important appli
ations of the Pythagorean Theorem is for �nding thedistan
e between points in a plane. See Numbers Lesson 13 for the formal develop-ment of the 
artesian 
oordinate system. Consider the points (1, 2) and (4, 6). Sin
eour x and y axes are orthogonal (as in at right angles or mutually perpendi
ular),it should be 
lear that the distan
e between them is √4 − 12 + 6 − 22 =
√

32 + 42 =√
9 + 16 =

√
25, whi
h is 5. In general, the distan
e between two points (x1, y1) and

(x2, y2) is:
D =

√

(x2 − x1)2 + (y2 − y1)2Points 1 and 2 may be inter
hanged with no a�e
t sin
e the squaring operationfor
es the result positive. That is, distan
e is always positive, unless termed dire
teddistan
e, in whi
h 
ase it may be negative.12.6 Diophantine AnalysisIntegers were the �rst numbers to be dis
overed and studied. As a result, 
on-siderable e�orts went into �nding integer solutions to some problems. Diophantus ofAlexandria, a Greek, lived about 250 a.d., wrote a treatise introdu
ing symbolismwhose indeterminate equations are solved with rational values. Consider the problemof �nding triangular numbers whi
h are also square. We already know the formulaefor both and 
an set them equal: n(n+1)/2 = x2 or n(n+1) = 2x2. 0, 1, 36, 1225, . . .are solutions when ({n, x} ∈ {(0, 0), (1, 1), (8, 6), (49, 35), ...}. Su
h analysis 
an bequite di�
ult and might involve expressing square roots as 
ontinued fra
tions, et
.and sparked the early interest of many mathemati
ians.12.7 Fermat's Last TheoremFermat 
onsidered extensions to the Pythagorean Theorem and wondered if thereexisted any natural numbers su
h that xn +yn = zn for n > 2. This be
ame known asNumbers and Their App.�pdf 4 O
tober 4, 2009 
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100 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.Fermat's Last Theorem and was solved in the negative only in re
ent years. Spe
i�-
ally, Fermat 
onje
tured this equation to be false. His notes are in the margin of his
opy of Diophantus' Arithmeti
a where he remarked about 1637: �I have dis
overed atruly marvelous demonstration whi
h this margin is too small to 
ontain.� This was,of 
ourse, written in Latin, sin
e that is what European s
ientists and mathemati-
ians 
ommuni
ated in until Isaa
 Newton's book Optiks was published in 1704 inthe verna
ular (language native to the region, as in English). Fermat 
learly provedhis theorem for n = 4. It is also 
lear that to prove it for all prime n is su�
ient.Euler produ
ed an in
omplete proof for n = 3 in 1770 whi
h was 
ompleted by latermathemati
ians. Legendre proved it for n = 5 in 1823. Lamé proved it for n = 7in 1839. In 1850 Kummer proved it for all n's whi
h did not divide the numeratorsof the Bernoulli numbers.3 One early proof failed be
ause prime fa
torization is notunique over the 
omplex numbers. Andrew Wiles in 1993 gave a three day series ofle
tures where he stunned the world on the last day by 
ompleting a proof of some-thing whi
h implied FLT (Fermat's Last Theorem). Although it required a littlepat
hing up over the 
ourse of the next year or so, it is now well a

epted. However,at 300 pages and dependant on re
ent advan
es in mathemati
s, it seems doubtfulFermat ever had a proof, but his margin 
ertainly was too small!12.8 Perfe
t CuboidConsider a three dimensional appli
ation of Pythagorean Theorem. In a box withdimensions 3× 4× 12, it is 
lear the longest (body) diagonal is 13 (52 + 122 = 169 =

132). There are 3 di�erent lengths of diagonals on the fa
es:√
32 + 42 = 5

√
32 + 122 =

√
153

√
42 + 122 =

√
160In a perfe
t 
uboid (box or re
tangular parallelopiped), all seven of these num-bers: three lengths, three fa
e diagonals, and one body diagonal would be integers.This seems like a another potential EXPO proje
t and two homework problems willgive two of the three types of 
lose en
ounters known. It is known that if a perfe
t
uboid exists, one of its sides must be at least 100 billion. It is also known thatperfe
t parallelopipeds4 exist.12.9 Fermat-Catalan Conje
tureThe Fermat-Catalan Conje
ture is a generalization of Fermat's Last Theorem. Itasks if with x, y, and z as relatively prime integers, 
an the equation: xp + yq = zr,with 1

p
+ 1

q
+ 1

r
< 1 be satis�ed. p, q, and r are also integers. Here are the only knownsolutions:31, 1

2
, 1

6
, 1

30
, 1

42
, 5

66
, . . ..4This older spelling seems to be falling out of favor to parallelepipeds, at least by Google.
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12.10. GOLDBACH'S CONJECTURE 101
x y z p q r1 2 3 7 3 22 7 3 5 2 47 13 2 3 2 92 17 71 7 3 23 11 122 5 4 217 76271 210663928 7 3 21414 2213459 65 3 2 79262 15312283 113 3 2 743 96222 30042907 8 3 233 1549034 15613 8 2 3For the �rst row, 17 + 23 = 1 + 8 = 9 = 32 with 1/7 + 1/3 + 1/2 = 41/42 < 1.The se
ond row has 25 +72 = 32+49 = 81 = 34 with 1/5+1/2+1/4 = 19/20 < 1.Several students in 1997�98 attempted 25000 bonus points for �nding anothersolution and some 
ontinued their resear
h in 2000�01 as an EXPO proje
ts or 
ollegeresear
h.12.10 Goldba
h's Conje
tureChristian Goldba
h lived in Russia 1690�1764. His mathemati
al work in
ludeswhat has be
ome known as Goldba
h's Conje
ture whi
h states: every even numbergreater than 2 
an be expressed as the sum of 2 primes, not ne
essarily distin
t. No
ounterexample has ever been found, but a 
omplete proof has eluded mathemati
ianssin
e 1742. However, during the summer of 2003 two groups, one Chinese, one Iranian,both 
laimed proof. I reje
t the Chinese proof out of hand. They may have provedsomething similar, but not Goldba
h's Conje
ture. They assume one is prime�elsewise, it is elegant. You be the judge of the Iranian proof.Example: 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53.
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102 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.11 Distan
e HomeworkAll values should be given as exa
t, whi
h means in simpli�ed radi
al form.(Remember to rationalize the denominator, if ne
essary.) De
imal approximationsare optional, but also lend 
ompleteness, but must be 
learly identi�ed asapproximations. Ea
h problem is worth two points.1. Using the Pythagorean Theorem in its three dimensional form (a2+b2+c2 = d2),�nd exa
tly and simplify the three fa
e diagonals and the body diagonal of aparallelopiped (box/
uboid) with a = 240, b = 44, c = 117.2. Using the Pythagorean Theorem in its three dimensional form (a2+b2+c2 = d2),�nd exa
tly and simplify the three fa
e diagonals and the body diagonal of aparallelopiped (box/
uboid) with a = 104, b = 153, c = 672.3. Find the exa
t length of the hypotenuse of an isos
eles right triangle if the legsare of length 5.4. Given the hypotenuse of an isos
eles right triangle as 12, what are the exa
tlengths of the other two sides.5. Given a 30◦, 60◦, 90◦, triangle with the hypotenuse 14, �nd the exa
t lengthsof the other two sides.6. Given a 30◦, 60◦, 90◦, triangle with the side opposite the 60◦ angle being 12, �ndthe exa
t length of the other two sides.7. Find the exa
t distan
e between the points (−12, 6) and (4,−6).8. Find the exa
t distan
e between the two points (3, 5) and (1,−1).
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12.11. DISTANCE HOMEWORK 1039. Driving to Dairy Queen from the MSC, you go a 1/4 mile to the left. The roadbends (90◦) to the right, and you pro
eed on for another mile to Main street.At Main Street, you take a left and 
ontinue for another 2 miles. Dairy Queenwill be on the left side of the road. If you happened to walk dire
tly from MSCto Dairy Queen, how many miles would you save by not driving?10. George lives 5 miles north and 2 miles east of the MSC, while Jenni lives 1 milewest and three miles south of the MSC. How far apart do they live? (Assumea �at earth!)11. A 
ir
le is the set of points equidistant from a given point. If (4, 2) is the
enter with (6, 3) on the 
ir
le, prove that (2, 3) is also on the 
ir
le. Note:(x−h)2 +(y−k)2 = r2 gives the relationship for a 
ir
le 
entered at (h, k) withradius r.12. The distan
e from point A to (3, 2) is 15. Find point A. How many answers
ould you have?13. Verify rows 3 through 5 of the Fermat-Catalin Conje
ture table.14. Verify that Goldba
h's Conje
ture is true for 58 and 74. How many di�erentsums satisfy Goldba
h's Conje
ture for 58? For 74? (An example is 78: 71 + 7= 11 + 67 = 17 + 61)15. Use your 
al
ulator (in degrees mode or use degree symbol) to verify sin 15◦ =√
6−

√
2

4
and cos 15◦ =

√
6+

√
2

4
, then 
arefully evaluate exa
tly (

√
6−

√
2

4
)2+(

√
6+

√
2

4
)2.16. Verify tan 15◦ = 2 −

√
3 =

√

6−
√

2

4
√

6+
√

2

4

.17. Read se
tion 8.6 in your geometry textbook and look at problems 8.6: 11�14,18�19, 27.
Numbers and Their App.�pdf 4 O
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Numbers Lesson 13Cartesians, Polynomials, Quadrati
sRead Euler, read Euler, he is the master [tea
her℄ of us all. LaPla
eThis lesson develops the 
artesian 
oordinate system, relations and fun
tions, thendis
usses slope, equations of a line, quadrati
s, the quadrati
 formula, the dis
rimi-nant, 
ubi
s, and higher order polynomials.13.1 Analysis In
arnate: EulerWhen the four greatest mathemati
ians are listed, Euler's name is the one addedto the great three. Leonard Euler�pronou
edOiler�(1707�1783) was a Swiss math-emati
ian and physi
ist, although he spent most of his life in Germany and Russia.Sin
e he published more papers than any mathemati
ian of his time he has been
alled proli�
�proli�
 
an also be applied to the fa
t that he fathered 13 
hildren.Euler's father was a friend of the Bernoulli family and Euler's genius was soondis
overed by them. His 
ourse of study shifted from theology to mathemati
s whenJohann Bernoulli intervened, telling Euler's father he would be a great mathemati
ian.Euler followed Johann's son Daniel to St. Petersburg after son Ni
olas died. Euler wasbarely 20 when he started working at the Imperial Russian A
ademy of S
ien
es�he had just 
ompleted his Ph.D. The A
ademy emphasized resear
h and had fewstudents and a good library. After 14 years Euler moved to Berlin. While there hewrote over 200 letters to a German prin
ess explaining diverse areas of math ands
ien
e. These were 
ompiled into a best-seller. Frederi
k the Great's mother haddi�
ulty engaging Euler in 
onversation to whi
h he replied: �Madam, it is be
auseI have just 
ome from a 
ountry where every person who speaks is hanged.�Euler lost sight in his right eye while in Russia and his sight in his left eye dete-riorated while he was in Germany, rendering him nearly blind. However, Euler hadphenominal mental 
al
ulation skills and a photographi
 memory whi
h allowed himto 
ompensate so his produ
tivity seemed barely a�e
ted. �Euler 
al
ulated without105



106 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICSapparent e�ort, as men breathe.� Euler later returned to St. Petersburg where heworked the last 16 years of his life.Euler developed the �eld of graph theory whi
h we will dis
uss further in Geom-etry and revolutionized several other �elds, su
h as number theory. He standardizedthe use of many mathemati
al symbols, terminology, and notation we now take forgranted, su
h as π, e, i =
√
−1, Σ, f(x), et
. His �nal words were: �I die� when hedied of a stroke, perhaps with a 
hild on his lap, whi
h is how he often worked.13.2 Introdu
tionCoordinate geometry was developed by both Des
artes and Fermat. Today we use
artesian 
oordinates extensively whi
h are named after the former. The relationshipbetween two sets of numbers are often represented via a graph or an equation. Forexample: F = 9

5
C + 32 relates temperature in Celsius to temperature in Fahrenheit.One variable is designated the independent variable (C) and the value (F ) dependson it and is thus the dependent variable. Often, it is easy to reverse these roles:

C = 5
9
(F − 32). Su
h relationships, if plotted on a 
oordinate system are lines andhen
e termed linear.13.3 Ordered Pairs, Quadrants, Relations, Fun
tions,
f(x), VLTMathemati
ians often speak of forming the 
artesian produ
t of several items.The 
artesian produ
t is a set operation, but results in a (potentially) bigger obje
twhi
h is generally not a member of our universal set! One example would be therational numbers formed as ratios of integers. This one happens to be the same sizeas the integers.The 
artesian 
oordinate system is su
h a 
artesian produ
t of two number lines,labelled x and y. Now instead of having points on a number line with a single numberto indi
ate its distan
e from the origin (zero), we have points on a plane with twonumbers to indi
ate position. The number lines divide the plane into four quad-rants labelled I, II, III, IV 
ounter
lo
kwise with quadrant I having both positive xand positive y 
oordinates. O

asionally Arabi
 instead of Latin numbers are used,espe
ially when referring to a single quadrant. The axes are not in any quadrant.II IIII IVThese 
oordinates are 
alled ordered pairs and are separated by 
ommas anden
losed within parentheses. The �rst 
oordinate (abs
issa) is x and is plotted hori-
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13.4. SLOPE, LINE EQUATIONS 107zontally. The se
ond 
oordinate (ordinate) is y and is plotted verti
ally. Warning:the notation for an open interval is identi
al!Latti
e points are points in the xy-plane with integer 
oordinates for both x and
y.A relation is a set of ordered pairs.A fun
tion is a relation for whi
h there is exa
tly one value of the dependentvariable for ea
h value of the independent variable.Instead of writing y = x+2, fun
tional notation is often used: f(x) = x+2. Thisdoes not mean to multiply f by x. It means f is the name of the fun
tion with x asthe independent variable. It gives the re
ipe for �nding f(x) = y given an x value.The set of values of the independent variable is the domain.The set of values of the dependent variable is the range.The Verti
al Line Test 
an be used to determine if a relation is a fun
tion asfollows. Che
k if any verti
al line ever 
rosses the relation more than on
e. If it does,the relation has failed the verti
al line test and is not a fun
tion.13.4 Slope, Line EquationsAbout half of 
al
ulus is 
on
erned with �nding the slope of any fun
tion any-where. Slope is thus an important 
on
ept but should already be familiar.slope = m = rise/run = y2 − y1

x2 − x1
=

∆y

∆x
=
dy

dx
.Parallel lines have equal slopes.Perpendi
ular lines have slopes whi
h are negative re
ipro
als.Note: modern books tend to use an in
lusive de�nition of parallel whi
h allows aline to be parallel to itself. Others ex
lude this.This should be well studied in Algebra, so only a qui
k review is presented intoday's a
tivity. In summary, if y = mx+b, thenm is the slope and b is the y-inter
ept(i.e., the value of y when x = 0). Often linear equations are written with integer
oe�
ients in either standard (Ax+By = C) or general (Ax+By−C = 0) form.Su
h relationships must be 
onverted into slope-inter
ept form (y = mx + b) foreasy use on the graphing 
al
ulator. In today's a
tivity −10x+y = −5 (10x−y = 5)and y = 5 are en
ountered. Su
h systems of equations are either in
onsistent(parallel lines, so have no points in 
ommon), dependent (
oin
ident lines (sameNumbers and Their App.�pdf 4 O
tober 4, 2009 
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108 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS
5

5 x

y

5

5 x

y

5

5 x

y

Figure 13.1: Systems of equations 
an be in
onsistent (left with y = x and y = x+2),dependent (middle with y = x and 2y = 2x), or independent (right with y = x and
y = −x+ 2).slope and y-inter
ept), so all points are in 
ommon), or independent (slopes aredi�erent). See Figure 13.1. One other form of an equation for a line is 
alled thepoint-slope form and is as follows: y− y1 = m(x− x1). The slope, m, is as de�nedabove, x and y are our variables, and (x1, y1) is a point on the line.13.5 Spe
ial SlopesIt is important to understand the di�eren
e between positive, negative, zero,and unde�ned slopes, and that is also 
overed in today's a
tivity. In summary, ifthe slope is positive, y in
reases as x in
reases, and the fun
tion runs �uphill� (goingleft to right). If the slope is negative, y de
reases as x in
reases and the fun
tionruns downhill. If the slope is zero, y does not 
hange, thus is 
onstant�a horizontalline. Verti
al lines are problemati
 in that there is no 
hange in x. Thus our formulais unde�ned due to division by zero. Some will term this 
ondition in�nite slope,but be aware that we 
an't tell if it is positive or negative in�nity! Hen
e the rather
onfusing term no slope is also in 
ommon usage for this situation.13.6 PolynomialsPolynomials are algebrai
 expressions involving only the operations of addition,subtra
tion, and multipli
ation (+,−,×) of variables. The 
oe�
ients should berational or perhaps real.Polynomials involve no nonalgebrai
 operations (su
h as absolute value) and nooperations under whi
h the set of real numbers is not 
losed, su
h as ÷ or square
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13.7. QUADRATIC FUNCTIONS 109root.An expression is a 
olle
tion of variables and 
onstants 
onne
ted by operationsymbols (+,−,×,÷, et
.) whi
h stands for a number.A term is a part of an expression whi
h is added or subtra
ted.Quadrati
 fun
tions are polynomials with degree two and will be explored below.The degree of a polynomial is the maximum number of variables whi
h are fa
torsin any one term.Polynomials (poly- meansmany) are named based on how many terms they haveand by their degree.Monomials have one term.Binomials have two terms.Trinomials have three terms.Linear fun
tions are a spe
ial 
lass of polynomials with degree one. A 
onstantfun
tion has degree zero.If only one variable is present, su
h as x, we have a polynomial in x. The 
oe�
ientof the term with highest degree is 
alled the leading 
oe�
ient. There may alsobe a 
onstant 
oe�
ient whi
h has no x multiplier.
13.7 Quadrati
 Fun
tionsThe general equation for a quadrati
 fun
tion is y = ax2 + bx+ c, where a, b, and care 
onstants, and a 6= 0. (If a = 0, then the fun
tion is linear.)Learn theQuadrati
 Formula (its derivation is given below): x =

−b±
√
b2 − 4ac

2a
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110 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS
ax2 + bx+ c = 0 Given: the general quadrati
 equation
ax2 + bx = −c Move 
onstant to other side, by subtra
t-ing c from both sides.
ax2

a
+ bx

a
= −c

a
Remove 
oe�
ients from quadrati
 term(x2) by dividing everything by the 
oe�-
ient.

x2 + bx/a + (b/2a)2 = −c/a + (b/2a)2 To have perfe
t square trinomial (that'swhy method is 
alled Completing theSquare), need to take half of �b�, squareit, and add that to both sides.
(x+ b/2a)(x+ b/2a) = −c/a + (b/2a)2 Fa
tor left side sin
e it is now a perfe
tsquare.

(x+ b/2a)2 = −c/a + (b2/4a2) Rewrote in exponential form (x× x = x2).
(x+ b/2a)2 = −4ac

4a2 + b2

4a2 On the right side, rewrote fra
tions to have
ommon denominator, 4a2.
x+ b/2a = ±

√
−4ac+b2

2a
Took square root of both sides (As you doto one side, do to the other.) When addingfra
tions with a 
ommon denominator, addthe numerators.

x = −b±
√

b2−4ac
2a

Isolate the variable by subtra
ting b/2afrom both sides.
The shape of the graph of a quadrati
 equation is 
alled a parabola. On bothsides of the vertex (the maximum or minimum point on the graph), the graph of theequation either in
reases or de
reases. The vertex lies on the axis of symmetry.Thus the graph on one side of the line (axis) of symmetry is a re�e
tion of the graphon the other side. Several examples of parabolas are explored in today's a
tivity.Where the graph 
rosses the x-axis are points 
alled x-inter
epts where y = 0.The general equation then degenerates into ax2 + bx + c = 0. To solve for x, thequadrati
 formula method must be mastered. It involved fra
tions and radi
als.Quadrati
 Relations will be explored in Algebra II, Pre
al
ulus, and Cal
ulus BC.They will allow the full nature of 
oni
 se
tions to be explored.To obtain the solution to a quadrati
 equation, Completing the Square is some-times used. Using the 
ompleting-the-square method, as outlined above in the deriva-tion of the quadrati
 formula, on the general equation (ax2 + bx+ c = 0) will �nd thesolutions to any equation.
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13.8. DISCRIMINANT 11113.8 Dis
riminantIf ax2 + bx+ c = 0, then the quantity D = b2 − 4ac is 
alled the dis
riminant.Gauss's Fundamental Theorem of Algebra states that the number of solutionsto any equation 
annot ex
eed its degree. In fa
t, if we 
arefully 
ount repeated (seeA
tivity 12) and 
omplex roots (see Numbers Lesson 16), we will �nd equality. So,a quadrati
 equation may have up to two solutions. To determine qui
kly how manyand what type of solutions a quadrati
 equation has, analyze the dis
riminant.Given: ax2 + bx+ c = 0, where a, b, and c are real numbers.If b2 − 4ac < 0 The equation has no real-number solutions. The solutions, in-volving non-real 
omplex numbers, will be dis
ussed in NumbersLesson 16.If b2 − 4ac > 0 The equation has two di�erent real-number solutions. If D is aperfe
t [rational℄ square, the solutions are rational.If b2 − 4ac = 0 Then the equation has a repeated real-number solution with thevertex on the x-axis. If a and b are rational, then the solutionwill also be rational.An example is x2−6x+8 = 0 where a = 1, b = −6, and c = 8. So the dis
riminantbe
omes (−6)2 − 4(1)(8) = 36 − 32 = 4. Sin
e 4 is a positive number, the equationwill yield two real-number solutions. These answers are (6 + 2)/2 and (6 − 2)/2,whi
h redu
e to 4 and 2. These are related to the original equations as follows:
x2 − 6x+ 8 = (x− 4)(x− 2) = 0.13.9 Solutions, Roots, Zeroes, and x-inter
eptsThe four terms solutions, roots, zeroes, and x-inter
epts are often used some-what inter
hangeably to refer to the values of x where an equation is zero.13.10 Cubi
, Quarti
, Quinti
Polynomials with degree three are referred to as 
ubi
 fun
tions. Degree fourpolynomials are quarti
 fun
tions and degree �ve polynomials are quinti
 fun
-tions.There are ways to solve 
ubi
 fun
tions and quarti
 fun
tions, but the generalquinti
 fun
tion ax5 +bx4 +cx3 +dx2 +ex+f = 0 is not solveable algebrai
ally�onlynumeri
al approximation 
an be obtained. Polynomials in x with only even or oddexponents are termed even or odd. This terminology is 
arried over to other graphswhi
h have similar symmetry when graphed. See Figures 13.2 and 13.3.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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Figure 13.2: Odd Fun
tions: y = x (left), y = x3 (middle), and y = sin x (right),where f(−x) = −f(x).
5
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y

20

-2 2 x

y
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y

Figure 13.3: Even Fun
tions: y = x2 (left), y = −(x2 − 9)(x2 + 1) (middle), and
y = cosx (right), where f(−x) = f(x).For example, the sine fun
tion is termed odd be
ause sin(−x) = − sin x, whereasthe 
osine fun
tion is termed even be
ause cos(−x) = cosx, similar to what hap-pens with polynomials with only even or odd degree terms. The even fun
tions aresymmetri
 about the y-axis, but the odd fun
tions are symmetri
 about the origin.
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13.11. FUNCTIONS HOMEWORK 11313.11 Fun
tions HomeworkEa
h problem is worth two points.1. Aunt Ethel hands you $15 in quarters (q) and dimes (d). Name �ve orderedpairs (q, d) representing the 
hange she might have given you. Graph thepoints. What relation do you observe?2. What are the slopes of the line 
ontaining points (0, 2) and (9, 5) and the linewith points (−1, 4) and (5, 8)? Whi
h line is steeper?3. Prove that �If two lines are parallel to the same line, then they are parallel toea
h other.�4. If the slope of a line is −3
4
, what is the slope of a perpendi
ular line to it?For problems 5�8, 
lassify the following lines as verti
al, horizontal, or oblique(neither):5. x+ y = 2.6. 2x = 6.7. 3x− 2y = 1.8. y = 17 − 5.9. Graph: y = 3x+ 2.10. Graph: x+ 4y = 4.
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114 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS11. Determine if the following system of equations is in
onsistent, independent, ordependent:
2x− 3y = 5

10x− 15y = 25.12. Determine if the following system of equations is in
onsistent, independent, ordependent:
6x+ 4y = 3

x− 1.5y = 4.13. Find a line perpendi
ular to the given line: 4x− y = 3.14. Graph the equation y = x2 − 3. Is it a relation or a fun
tion?15. Graph the equation x2 + y2 = 4. Is it a relation or a fun
tion? (If doing by
al
ulator, solve for y. Enter into 
al
ulator both bran
hes for y due to ± thesquare root.)16. Graph the fun
tion y = x2 + 5x+ 6. Find the domain and range.17. Graph the fun
tion y = x2 − 4x+ 4. Find the domain and range.18. Solve the equation for x exa
tly: 5x2 + 8x− 6 = 3.19. Determine if the equation has real solutions. 4x2 − 13x+ 11 = 0.20. Solve the equation, y = x2 − 4x+ 5 exa
tly, when y = 0. What does this inferabout the graph of the fun
tion?21. Read se
tions 3.6 and 3.8 in your geometry textbook and do problem 10 in both.
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Numbers Lesson 14It's Been RealWir müssen wissen, wir werden wissen.1 David HilbertIn this lesson we will extend our understanding of numbers beyond the rationalto the reals�i.e. all the numbers on the real number line. We will state various fa
tsabout the irrationals and reals, dis
uss 
ontinuity and denseness, prove the reals tobe nondenumerable, present the �eld axioms used with the real numbers, in
ludingthe Peano Axioms of Arithmeti
, and Tri
hotomy. We dis
uss orders of in�nity andsome of Gödel's work. We present the axioms of set theory, and 
lose with a se
tionon paradoxes. Some of this makes for heavy reading and is here more for referen
ethan mastry at this time.14.1 Father of [in℄
ompleteness: Kurt GödelKurt Gödel (1906�1978) is one of the two most important logi
ians, the otherbeing Alfred Tarski (1902�1983). Kurt Gödel is generally 
onsidered an Austrian-Ameri
an mathemati
ian although he was born in an area whi
h is now in the Cze
hRepubli
. He be
ame Cze
h upon the politi
al organization at the end of World WarI, and be
ame a German 
itizen when Germany took over Austrian (Ans
hluss) in1938. Gödel and his wife left Vienna in 1940 and travelled via the trans-Siberianrailway, Japan, and California to the Institute of Advan
ed Studies in Prin
eton, NJ.He had visited Einstein and others there several years earlier and even spent a yearat Notre Dame.By 1931 Gödel unveiled Gödel's in
ompleteness theorem for whi
h he is bestknown. It proved that for any 
omputable axiomati
 system strong enough to des
ribearithmeti
 on the natural numbers: 1) if it was 
onsistent, then it was in
omplete; 2)the 
onsisten
y of the axioms 
ould not be proved within the system. This ended a1We must know, we shall know. 115



116 NUMBERS LESSON 14. IT'S BEEN REALhalf 
entury of attempts epitomized by Hilbert, Whitehead and Russell, of �nding aset of axioms su�
ient for all mathemati
s.Before 
oming permanently to the US, Gödel was able to show that the Axiom ofChoi
e (AC) and the Generalized Continuum Hypothesis (GCH) were true in a settheory model (using the Zermelo-Frankel axioms or ZF) known as the 
onstru
tibleuniverse and thus 
onsistent with the standard axioms of set theory. During the1960's Paul Cohen developed a model in whi
h they were false thus showing theirindependen
e. More on these below14.2 RealsThere are numbers on the number line whi
h are not rational.We already showed that the √
2 was irrational. We also stated that the rationalswere dense�between ea
h rational number was another rational number. However,apparently they are not 
ontinuous or 
omplete. Somehow if we only had rationalnumbers on our number line, we would skip over the √

2 even though any de
imalapproximation, su
h as 1.414, 1.4142, · · ·, is on our number line!The Real Numbers are all the numbers on the number line.Physi
ists like to say that they work with 
ontinuous fun
tions with 
ontinuousderivatives (slopes), whereas mathemati
ians spend a lot of time worrying aboutwhether or not a fun
tion or its derivatives are 
ontinuous. You will explore this
on
ept further in Algebra II and Cal
ulus. Su�
e it to say now that if you 
an plotthe fun
tion without pi
king up your pen
il, it is 
ontinuous. A number line is su
ha plot.Real Numbers are either rational or irrational.All rational and all irrational numbers are real numbers.The rational and irrational numbers are disjoints sets whi
h together make up thereal numbers.The symbol ℜ, R, or R denotes the set of real numbers.
N ⊂ Z ⊂ Q ⊂ R or N ⊂ Z ⊂ Q ⊂ RJohn Derbyshire in Prime Obsession, page 170, o�ers the mnemoni
: Nine ZuluQueens Rule China to help remember how these nested Russian dolls are arranged.The real numbers are nondenumerable (un
ountable).Proof by 
ontradition:Assume that the real numbers are denumerable (meaning, they have one-to-one 
or-responden
e to natural numbers). Then there exists a pairing of ea
h number su
h
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14.3. THE FIELD AXIOMS 117that neither set has any elements left over. The following notation indi
ates onesu
h pairing where the a's, b's, c's, et
. represent digits and the subs
ripts indi
atethe lo
ation to the right of the de
imal point: 1 ↔ 0.a1a2a3 · · ·, 2 ↔ 0.b1b2b3 · · ·,
3 ↔ 0.c1c2c3 · · ·, et
. But we will now show that there is at least one real numberwhi
h is not in
luded in this pairing. Let N = 0.n1n2n3 · · ·, where the n's representany digits su
h that: n1 is not equal to a1, n2 is not equal to b2, n3 is not equal to c3,et
. Thus N is a real number and is di�erent from ea
h of the real numbers in theone-to-one 
orresponden
e. Thus the set of real numbers is non-denumerable. Thisproof goes ba
k to Georg Cantor in 1874.14.3 The Field AxiomsWe introdu
ed the group axioms in Number Lesson 8. Another interesting math-emati
al obje
t is a ring. They have two operators usually 
alled addition (+) andmultipli
ation (× or • or just juxtapositioned (from Latin: to be pla
ed side byside)). Sin
e × and x 
an so easily be 
onfused, • is often preferred. A ring is anabelian group under addition, where abelian means it is 
ommutative (see the ax-iom below), and 
omes from a famous Norwegian mathemati
ian named Niels HenrikAbel (1802�1829). (Abel is generally pronoun
ed with a long e sound and a

entedse
ond syllable.) A ring must also be 
losed under multipli
ation, and must also beasso
iative (for an asso
iative ring). There is also an axiom to interrelate additionand multipli
ation (see the distributive property below). The rings of interest to ushave a unit element whi
h will serve as our multipli
ative identity (1), and are
ommutative under multipli
ation. A �eld is just another mathemati
al obje
t withmore stru
ture than a ring.If the elements di�erent from 0 in a 
ommutative ring with unit element form anabelean group under multipli
ation, the ring is 
alled a �eld.Zero must be ex
luded be
ause it does not have a multipli
itive inverse�divisionby zero is not allowed. The only �elds we will be 
on
erned with are the binaries(0,1), the rational numbers, the real numbers, and in Numbers Lesson 16, the 
omplexnumbers.The eleven �eld axioms are listed below and are true for any real numbers, repre-sented below by x, y, and z.Closure under addition: real numbers are 
losed under addition.That is, adding any pair of real numbers will result in a unique real number.
1 + 1 = 2. Always. This also means we stay inside the set.Closure under multipli
ation: real numbers are 
losed under multipli
ation.Multiplying any real number pair together will result in a unique real number.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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118 NUMBERS LESSON 14. IT'S BEEN REAL
2 × 2 = 4 and never 5.Additive Commutativity: x+ y = y + x.Order does not matter. You 
an add a 
olumn of numbers from the top or fromthe bottom.Multipli
ative Commutativity: x • y = y • x.The root word 
ommute is 
ommonly used to des
ribe ex
hanging pla
es, likegoing forth and ba
k between home and work.Additive Asso
iativity: (x+ y) + z = x+ (y + z).Multipli
ative Asso
iativity: (xy)z = x(yz).Distributivity: Multipli
ation distributes over addition. x(y + z) = xy + xz.Additive Identity Element: The additive identity is a unique element, whi
h
an be added to any element without altering it. The additive identity is zero (0).
x+ 0 = x.We have both a left and right additive identity element and they are the same:
x+ 0 = x = 0 + x.Multipli
ative Identity Element: The multipli
ative identity is unique; it is one(1). x • 1 = x.We also have both a left and right multipli
ative identity element and they arethe same: x • 1 = x = 1 • x.Additive Inverses: For every real number there exists a unique inverse, su
h thatwhen added together, the result is the additive identity (0). The additive inverse isthe opposite (negative) of the given real number, x+ (−x) = 0.Multipli
ative Inverses: For every real number not equal to zero there exists aunique inverse, su
h that when multiplied together, the result is the multipli
ativeidentity. x • x−1 = 1.

x−1 is a general designation for an inverse, but here denotes the multipli
ativeinverse or re
ipro
al (1/x).
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14.4. REFLEXIVE, SYMMETRIC, TRANSITIVE, CLOSURE, TRICHOTOMY11914.4 Re�exive, Symmetri
, Transitive, Closure, Tri-
hotomyThe three axioms of Re�exive, Symmetri
, and Transitive, 
an be used to de�neequality. In fa
t, these three are often added to the �ve Peano axioms given in Lesson2 to form Peano Arithmeti
. In this situation they are applied to the naturalnumbers only. One additional axiom is needed, that of 
losure for equality, whi
h isgiven below.In addition to the �eld axioms, real numbers satisfy additional important axiomsor properties.Re�exive Property: If x is a real number, then x = x.Operations whi
h are re�exive look the same in a mirror. This axiom establishesthat a variable stands for the same number wherever it appears in an expression.Order is not re�exive: 5 < 5 is a 
ounterexample.Symmetry: If x = y, then y = x.Noti
e that symmetry is true for only the equal (�=�) sign. Order relationships,su
h as < and >, 
annot have the numbers rearranged without 
hanging the meaning.For example, 4 < 5 is not the same as 5 < 4.If x = y and y = z, then x = z.Transitivity: If x < y and y < z, then x < z.If x > y and y > z, then x > z.The pre�x trans- means a
ross like rapid transit qui
kly takes you a
ross a 
ity.An easy way to remember whi
h of these three properties is whi
h is to note that theinitial letters RST are in alphabeti
 order and 
orresponds to 123 or the number ofvariables whi
h appear in the des
ription!Closure: For all a and b, if a is a natural number and a = b, then b is also a naturalnumber.That is, the natural numbers are 
losed under equality. We stated it for naturalnumbers to 
omplete the list of nine Peano axioms, but it 
an also be a

epted forreal numbers.Tri
hotomy: If x and y are two real numbers, then exa
tly one of the followingmust be true: y < x, y > x, or y = x.Tri
hotomy means to se
tion or 
ut into three pie
es. Please note it is threepie
es not two be
ause the reals are 
ontinuous (not just dense). You will hit anumber wherever you 
ut the real number line.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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120 NUMBERS LESSON 14. IT'S BEEN REAL14.5 Higher Orders of In�nity, ℵnGeorge Cantor introdu
ed trans�nite numbers ba
k in the 1870's as a way to dealwith the fa
t that not all in�nite sets are equivalent. The 
ardinality of the integers,rational numbers, even algebrai
 numbers is designated the �rst order of in�nity andassigned the name aleph null (ℵ0) where aleph (ℵ) is the �rst Hebrew letter. However,the 
ardinality of the real numbers or su
h important subsets as the trans
endentalsor irrationals is beyond that of a 
ountable in�nity. This 
ardinality be
ame known asthe 
ardinality of the 
ontinuum and was designated by 
. By forming power sets (theset of all subsets of a given set), Cantor was able to form higher order in�nities. Thesebe
ame known as ℵ0,ℵ1,ℵ2, · · ·, where 2ℵ0 = ℵ1 Cantor believed this �rst aleph (ℵ1)was the 
ardinality of the 
ontinuum and was sometimes able and sometimes not ableto prove it. This may well have been a 
ontributing fa
tor to his mental instabilities.This hypothesis (2ℵ0 = ℵ1) be
ame known as the Continuum Hypothesis (CH).2This power set relationship was later generalized to apply to any su

essive pair ofalephs and be
ame known as the generalized 
ontinuum hypothesis. Only mu
h laterwas it shown that CH is independent of the usual axioms of set theory and was thusunproveable (Kurt Gödel, 1937 and Paul Cohen, 1963). The method used by Cohenbe
ame known as for
ing.While we are on the topi
, another axiom, the axiom of 
hoi
e (AC) su�ered asimilar fate, being proved independent of the rest of mathemati
s (Gödel, 1940 andCohen, 1963). However, unlike CH, it is still routinely, but not universally, used inthe development of mathemati
s.3 One last related topi
 is Gödel's In
ompletenessTheorem, 1931, whi
h showed that there were things within any formal systemwhi
h were neither provable nor not provable. These re
ent developments make onequestion the very merits of establishing a rigorous foundation for mathemati
s!14.6 The Axioms of Set TheoryFollowing are the axioms of set theory generally used in mathemati
s. They weredesigned by Ernst Zermelo, et al at the beginning of the 20th 
entury. This minimalset of assumptions leads to a 
onsistent body of mathemati
al knowledge, in
ludingthe natural, real, and 
omplex numbers along with their properties and arithmeti
.Along with other axioms, the areas of geometry, algebra, topology, et
. 
an also beformed. Georg Cantor developed set theory but impli
itly assumed many of these.
• Existen
e: There exists at least one set. (The empty set 
an be 
hosen. Theset 
ontaining the empty set would then be 
onstru
ted · · ·.)2http://www.ii.
om/math/
h/3http://www.
s.unb.
a/~alopez-o/math-faq/mathtext/node35.html
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14.7. SURREAL NUMBERS 121
• Extension: Two sets are equal i� they have the same elements.
• Spe
i�
ation: To every set A and every 
ondition S(x) there 
orresponds aset B whose elements are exa
tly those elements x of A for whi
h S(x) holds.This axiom leads to Russell's paradox.
• Pairing: For any two sets there exists a set to whi
h they both belong.
• Unions: For every 
olle
tion of sets there exists a set that 
ontains all theelements that belong to at least one of the sets in the 
olle
tion.
• Powers: For ea
h set there exists a 
olle
tion of sets that 
ontains among itselements all the subsets of the given set.
• In�nity: There exists a set 
ontaining 0 and 
ontaining the su

essor of ea
hof its elements.
• Choi
e: For every set A there is a 
hoi
e fun
tion, f , su
h that for any non-empty subset B of A, f(B) is a member of B.14.7 Surreal NumbersJohn Conway invented surreal numbers in re
ent years. These numbers have mul-tiple in�nities and many other unusual but useful properties. Donald Knuth wrote anovellete to help explain these numbers even before the te
hni
al paper was published.14.8 ContinuityOur ma
ros
opi
 existen
e means that most of our physi
al observations are 
on-tinuous. Thus most physi
al phenomina is modelled by 
ontinuous fun
tions with
ontinuous derivatives (slopes). Some 
utting edge models attempting to unify grav-ity with quantum me
hani
s while retaining general relativity (as in loop quantumgravity, unlike string or M-theory) treat spa
e as quantized. However, the mathemat-i
al treatment of fun
tions is riddled with 
on
erns about 
ontinuity. Dis
ontinuitiesfall into two 
atagories: removable and nonremovable. We stated before that 
on-tinuous fun
tions 
an be drawn without having to lift your pen
il from the paper. Forremovable dis
ontinuities one must only avoid an o

asional point whereas nonremov-able dis
ontinuities involve moving your pen
il up or down. The fun
tion x/x wouldhave a removeable dis
ontinuity at x = 0, whereas |x|/x would have a nonremoveabledis
ontinuity. The de�nition of 
ontinuity is wrapped up with the 
on
ept of limitand will not be dis
ussed further here.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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122 NUMBERS LESSON 14. IT'S BEEN REAL14.9 ParadoxesWe already en
ountered various paradoxes in Numbers Lesson 1 (Barber, Rus-sell's) and Lesson 6 (Liar's). Several paradoxes dating ba
k to the an
ients arepresented below. Zeno's name is often asso
iated with these and other equivalentones whi
h show that motion is only an illusion. Even in an
ient times these were
onsidered absurb, but it took a modern understanding of in�nity, in�ntesimals, and
onvergent in�nite series to dispel most (not all!) doubt.14.9.1 Paradox: Di
hotomyYou 
annot even start.�That whi
h is in lo
omotion must arrive at the half-way stage before it arrivesat the goal.��Aristotle.14.9.2 Paradox: Ar
hilles and the TortoiseYou 
an never 
at
h up.Aristotle rendered this paradox as follows: �In a ra
e, the qui
kest runner 
annever overtake the slowest, sin
e the pursuer must �rst rea
h the point when
e thepursued started, so that the slower must always hold a lead.�14.9.3 Paradox: ArrowYou 
annot even move.�If everything when it o

upies an equal spa
e is at rest, and if that whi
h isin lo
omotion is always o

upying su
h a spa
e at any moment, the �ying arrow istherefore motionless.�This paradox, instead of dividing up spa
e like the prior two, divides time.
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14.10. REAL HOMEWORK 12314.10 Real HomeworkEa
h problem is worth two points.1. Name the axiom used: 10 + 13 + 17 + 23 = 10 + 17 + 13 + 23.2. Name the axiom used: 14 • ((17 + 52) + 30) = 14 • (17 + (52 + 30)).3. Name the axiom used: 7 × 11 × 13 = 11 × 7 × 13.4. Name the axiom used: √

(7 × 11) × 13 =
√

7 × (11 × 13).5. Name the axiomS used: x+ 0 = x always.6. Show by 
ounterexample that subtra
tion is not 
ommutative.7. Show by 
ounterexample that subtra
tion is not asso
iative.8. Show by 
ounterexample that negative numbers are not 
losed under multipli-
ation.9. Show by 
ounterexample that there is no Symmetri
 Property of greater than(�>�).10. Show by 
ounterexample that not equal (� 6=�) is not transitive.
Numbers and Their App.�pdf 4 O
tober 4, 2009 
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124 NUMBERS LESSON 14. IT'S BEEN REAL11. Is the relationship of �Alexis is a sister of Tom� symmetri
? Show by examplewhy or why not.For problems 12�15, whi
h �eld axioms do the following sets of numbers fail?An example is irrational numbers failing for 
losure under multipli
ation sin
e√
2
√

2 = 2, whi
h is rational.12. Natural numbers (N ).13. The integers (Z).14. The rational numbers (Q).15. The binary digits {0,1} with and as the multipli
ation type operator (×) andeor (or modulo 2 addition) as the addition type operator (+), the only di�eren
eis �1+1=0�).16. Consider again the set {0,1} with and and or as operations. Does and dis-tribute over or as well as vi
e versa? Fill in the table to prove or disprove thesedistribution rules.
p q r p • (q ∨ r) (p • q) ∨ (p • r) p ∨ (q • r) (p ∨ q) • (p ∨ r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 117. Read se
tion 3.4 in your geometry textbook. Do problems 3.4: 4 and 16.
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Numbers Lesson 15Trans
endental MeditationsWho of us would not be glad to lift the veil behind whi
h the future lieshidden; to 
ast a glan
e at the next advan
es of our s
ien
e and at these
rets of its developments during future 
enturies? David HilbertIn this lesson we will dis
uss numbers whi
h are not solutions to polynomial typeequations and are thus termed nonalgebrai
 or trans
endental. After introdu
ing theDedekind 
ut as a way to de�ne real numbers, we dis
uss nonalgebrai
 numbers su
has π and e. Next we dis
uss the related problem of geometri
 
onstru
tions whi
hthe an
ients found impossible and whi
h have sin
e been proven impossible. We endthe lesson by noting how many more nonalgebrai
 numbers there are than algebrai
numbers.15.1 The Father of Logarithms: John NapierJohn Napier (1550�1617) was born, lived, and died in S
otland. He is remem-bered as both a mathemati
ian and physi
ist and is best remembered for inventinglogarithms and Napier's bones. Logarithms made hand-
al
ulations involving mul-tipli
ation and division mu
h easier and qui
ker by turning them into addition andsubtra
tion. This paved the way for many s
ienti�
 advan
es, su
h as the 
al
ulationof Mars' orbit by Kepler.Napier was also trained in theology but en
ouraged people to think he dabbled inbla
k arts. Many stories have been preserved about his exploits. We will relate twohere.Napier and his servants dis
overed the neighbor's pigeons were helping themselvesto his grain. Napier warned his neighbor he would keep any pigeons found on hisproperty. The next day Napier was observed s
ooping up pigeons into sa
ks�he hadspiked peas with brandy whi
h they had eaten, eaten enough to be unable to �y!Napier suspe
ted one of his servants was stealing from him. He took a bla
krooster, 
oated it with 
har
oal, and put it in a dark room. All the servants were125



126 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONSinstru
ted to enter the room and pet the rooster. The guilty party was soon identi�edas the one with 
lean hands�every one else had done as instru
ted!Napier was the Lord for his manor and thus had a very pra
ti
al interest in su
hthings as fertilizer and the water level in 
oal mines. Napier's favorite book was hisbook on the book of Revelation.Henry Briggs (1561�1631) was so impressed with Napiers invention of logarithmsthat he resolved to meet their inventor in person: �where almost one quarter of anhour was spent, ea
h beholding other with admiration, before one word was spoke.At last Briggs said: 'My lord, I have undertaken this long journey purposely to seeyour person, and to know by what engine of wit or ingenuity you 
ame �rst to thinkof this most ex
ellent help in astronomy, viz. the logarithms; but, my lord, beingby you found out, I wonder nobody found it out before, when now known it is soeasy.'� (viz. is an abbreviation for videli
et, Latin for namely.) Briggs proposed twomodi�
ations whi
h resulted in our base 10 or 
ommon logarithms. Briggs publishedtables a

urate to 14 de
imal pla
es for all integers 1 to 20,000 and from 90,000 to100,000 in 1624 in Arithmeti
a logarithmi
a with the gap �lled in by someone else by1628. This work remained the basis for all subsequent log tables up until 1924 whena 20 de
imal pla
e table was begun to 
elebrate 300 years of logarithms. About 1620,the slide rule was also invented whi
h is laid out on a logarithmi
 s
ale and thus byadding and subtra
ting distan
es, multipli
ation and division are performed.
15.2 Reals De�ned Via Dedekind CutTrans
endental numbers have a long history, dating ba
k to the an
ient Greeks,even though they were not named or truly re
ognized until mu
h later. As mentionedearlier, the an
ient Pythagorean s
hool dis
overed the existen
e of irrational numbers,with √

2 being the prototypi
al example as the diagonal of a unit square. Theythen regarded it as a numberless magnitude�distin
t from an arithmeti
 number�a 
on
ept whi
h remained an essential element of Greek mathemati
s. Soon otherirrational numbers were found: the square root of every prime number, then the squareroot of most 
omposite numbers. Irrational numbers, or in
ommensurables werewell studied by the time Eu
lid wrote his Elements. However, it was not until 1872when Ri
hard Dedekind (1831�1916) published his Continuity and Irrational Numbersthat a satisfa
tory theory developing su
h numbers was given, one devoid of geometri

onsiderations. His Dedekind Cut was an essential part of that development andgoes beyond what we 
an 
over here. An alternative approa
h using a Least UpperBound Axiom is also beyond our s
ope.
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15.3. THE STORY OF π 12715.3 The Story of πThe 
on
ept of π was invented to simplify 
al
ulations involving 
ir
les. TheRhind Papyrus, an Egyptian text from 1650 b.
. 
ontains a statement relating asequals, the areas of a 
ir
le and a square whose side is 8/9 the 
ir
le's diameter. Thisvalue for π of 256/81 ≈ 3.16049 · · · is a mu
h better value than the one re
ordedabout 700 years later and given bibli
ally in I Kings 7:23. �And he made a moltensea, ten 
ubits from one brim to the other...and a line of thirty 
ubits did 
ompass itround about.� These both re
ognize the need to relate the diameter or radius of a
ir
le to its area or 
ir
umferen
e. Euler was the one to atta
hed the symbol π tothe 
on
ept.
π is in fa
t de�ned as the ratio of a 
ir
le's 
ir
umferen
e (C) to its diameter (d):
π = C/d.This gives the formulae: C = πd = 2πr, where r is the radius.The area formula is similar: A = πr2.Ar
himedes �rst proposed a method of obtaining the value of π to any desireda

ura
y by 
al
ulating the perimeter of ins
ribed and 
ir
ums
ribed polygons.By in
reasing (usually by doubling) the number of sides, the a

ura
y is in
reased�the true value of π is squeezed between these two values. Using his 
rude numeri
alrepresentation, Ar
himedes was able, by using polygons of 96 sides (bise
ting the sidesof a hexagon 4 times), to determine: 310

71
< π < 310

70
or 3.140845 · · · < π < 3.142857 · · ·or π ≈ 3.1418. Over the 
enturies this value was highly re�ned until hundreds ofde
imal pla
es were known before the invention of 
omputers and now trillions ofdigits are known. An interesting 
hallenge has been memorizing these random digitsand the 
urrent re
ord is about 83,000 digits, requiring many hours to re
ite. (Theauthor had 750 digits well memorized and almost had one thousand at age 16 whenhe thought the re
ord was only a thousand. He has sin
e forgotten most all but theinitial 50 whi
h he memorized at age 11.)

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 · · ·Histori
ally, the value π ≈ 22/7 was used and is within 0.04% of the true value.Su
h a rational approximation was useful before 
al
ulators were invented and oldergeometry books have many problems whi
h were done very easily using this value.The 
urious value π ≈ 355/113 
an easily be remembered be
ause ea
h of the �rstthree odd number is repeated on
e and is even 
loser to the true value. π2 ≈ 9.8696 · · ·is surprisingly 
lose to 10, our preferred base. When students omit parentheses indenominators on their 
al
ulators, their answers are often about an order of magnitudeo� for this reason.Extending the above de�nition of π results in its most 
ommon usage: angleNumbers and Their App.�pdf 4 O
tober 4, 2009 
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128 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONSmeasurement. The radius of a 
ir
le seems like a useful unit to measure ar
 lengthsor angles. Note how the 
ir
umferen
e of a unit 
ir
le (one with r = 1) is 2π ≈
6.28318 · · ·. An ar
 the length of one radius is known as a radian and there are 2πradians in one revolution or full 
ir
le (360◦). Thus π radians are 180◦ and 1 radianis 57.2957795 · · ·◦ or 57◦17′44.806 · · ·”. The 
onversion of radians to degrees is doneby multiplying the radians by 180◦/π. To 
onvert degrees to radians, multiply thedegrees by π/180◦. The 
ir
le below is partitioned into standard angle measure indegrees. It is important to know these.1 Mathemati
ians like to think of a radian asthe proper serving size of pie, just ever so slightly less than 1/6.

0

30

60
90

120

150

180

210

240
270

300

330Pi shows up in some unusual pla
es, espe
ially in probability. Bu�on's needle isone of the originals but there are many variations, su
h ashttp://www.wikihow.
om/Cal
ulate-Pi-by-Throwing-Frozen-Hot-Dogs whi
h isfairly self-explanitory.15.4 The Story of eAnother important number to mathemati
s has a mu
h shorter history than π.Logarithm means ratio number. Although Napier's usage was slightly di�erent,the modern de�nition is:
logb a = c if and only if bc = a, b > 0, and b 6= 1.We thus see that exponentiation (exp) is an inverse operation of logarithm(log). Inverse operations have already �gured prominently as in subtra
tion is theinverse operation of addition and division is the inverse operation of multipli
ation.Another important one is square root as the inverse operation of squaring. Inversefun
tions 
an have important restri
tions whi
h di�er from the original fun
tion!Logs 
an be de�ned to any positive base (ex
ept 1), but two bases have be
omemost prevalent: b = 10 (for 
ommon logs), and b = e (for natural logs). Both1Knowing the radian values is also important but haven't been put on this graphi
 yet.
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15.5. GEOMETRIC CONSTRUCTIONS 129appear on most 
al
ulators. The base is often omitted and high s
hool and 
hemistrystudents 
an usually assume log x = log10 x. However, in 
ollege math and physi
s,
log x = loge x.

loge x = 2.30258 · · · log10 x where 2.30258 · · · = loge 10 = 1
log10 e

ln x is fairly 
ommonly used for natural logs (and now rarely looks like 1n).Napier's base was b = .9999999 = 1 − 10−7, whi
h may be only slightly more un-derstandable when you realize that de
imal fra
tions were not yet widely used�Napier a
tually being the one to invent and popularize the de
imal point! In makingthis 
hoi
e, Napier 
ame within epsilon (a hair's breadth) of dis
overing the limit of
(1 − 1/n)n as n tends to in�nity, whi
h is merely the re
ipro
al of (1 + 1/n)n as ntends to in�nity.
lim

n→∞
(1 + 1

n
)n = e.This latter value is:

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 · · ·Logarithms were qui
kly adopted by s
ientists all over the world be
ause theysimpli�ed 
al
ulations by turning multipli
ation and division into table look-ups,addition and subtra
tion, and then another table look-up to �nd the antilog. Likewe saw in s
ienti�
 notation, the de
imal part of a logarithm is often 
alled themantissa. The integer portion is 
alled the 
hara
teristi
.15.5 Geometri
 Constru
tionsThe trans
endental story really began with the restri
tions the an
ient Greeks(Plato) put on their Geometri
 Constru
tions. The only tools allowed were anunmarked straight-edge and a pair of 
ompasses. (Most sour
es spe
ify a 
om-pass, but some 
onstru
tions require two.) In Geometry we still di�erentiate between
onstru
ting, drawing, and sket
hing. In a drawing, rulers and protra
tors areallowed, whereas a sket
h may be a free-hand representation.The Greeks qui
kly mastered many 
onstru
tions, su
h as for the regular pentagon,perpendi
ular bise
tor, equilateral triangle, et
., whi
h must still be learned by highs
hool geometry students. However, try as they might, they 
ame up with four whi
hde�ed solution. These four unsolved problems of antiquity remained so until the1800's. They are:1. Squaring a 
ir
le (
onstru
t a square with area equal to a given 
ir
le);2. Dupli
ating a 
ube (
onstru
t a 
ube with twi
e the volume of a given 
ube);3. Trise
ting an arbitrary angle;Numbers and Their App.�pdf 4 O
tober 4, 2009 
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130 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONS4. Constru
ting a regular heptagon (or a
tually all regular polygons).During the 1800's, advan
es in mathemati
s enabled mathemati
ians to provethem all unsolvable under the 
onstru
tion rules then in vogue. An important partof the solution was to 
ou
h the problem in terms of algebrai
, rather than geometri
terms. One soon dis
overs that 
onstru
tions with straight-edge and 
ompass rep-resent rational operations and square roots, but not 
ube or higher roots. Thus ifa 
ube root is unavoidable, the 
onstru
tion is impossible. The algebrai
 equationsinvolved have what are known as algebrai
 roots.In 1844 the Fren
h mathemati
ian Joseph Liouville (1809�1882) proved nonal-gebrai
 or trans
endental numbers existed. His proof was not simple, but allowedhim to produ
e several examples, the most famous is known as Liouville's numberand 
an be written either as 0.110001000000000000000001 · · · or 10−(1!) + 10−(2!) +

10−(3!) + 10−(4!) + · · ·. Another favorite example is 0.1234567891011 · · ·, where thenatural numbers o

ur in order. Integers of this form are known as Smarandan
heCon
atenated Numbers and work on their prime fa
torization 
an be viewed here.2Although it had been already shown in 1737 by Euler that e and e2 and in 1768 byLambert that π were all irrational, it took many more years before they were provedto be trans
endental.In 1873, Charles Hermite (1822�1901) proved e was trans
endental.He wrote �I shall risk nothing on an attempt to prove the trans
endan
e of π . Ifothers undertake this enterprise, no one will be happier than I in their su

ess. Butbelieve me, it will not fail to 
ost them some e�ort.�But in 1882, Ferdinand Lindemann (1852�1939) proved π was trans
endental and
oined the term.Trans
endental numbers are irrational numbers that are not the roots of alge-brai
 equations.The trans
endan
e of π �nally solved, all-be-it in the negative, the problem ofsquaring the 
ir
le. Sin
e π is not algebrai
, a segment of length the square root of πis impossible to 
onstru
t.In 1795 Gauss proved that it is possible to divide the 
ir
umferen
e of a 
ir
leinto n equal parts when n is odd, if n is either a prime Fermat number or a produ
tof di�erent prime Fermat numbers. He was 18. It was published in 1801 in his majorwork Disquisitiones aritmeti
ae.In 1837 Wantzel published a proof that no other regular polygons 
an be 
on-stru
ted, thus settling in the negative the question of the 
onstru
tability of the regu-lar heptagon. However, the regular heptade
agon (17-gon) is 
onstru
table! Wantzel2http://www.worldofnumbers.
om/fa
torlist.htm
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15.6. MANY MORE TRANSCENDENTALS 131also proved that the angle of 60◦ was not trise
table sin
e the equation 4x3−3x = 1/2has no roots whi
h are rational or rational 
ombinations of square roots. Wantzel isalso responsible for the developments proving that the 
ube root of 2 is also not
onstru
table with the same year usually given.15.6 Many More Trans
endentalsAlthough π and e are the two most famous trans
endental numbers, there areplenty more. Just as the reals 
an be divided into two disjoints sets, i.e. the rationalsand irrationals, the irrationals (or reals) 
an be similarily subdivided into algebrai
sand trans
endentals. Another way to 
lassify the real numbers is as any numberthat 
an be written as a de
imal fra
tion. These de
imals are of three types: 1)terminating; 2) nonterminating but repeating; and 3) nonterminating, nonrepeating.We explored the terminating and repeating de
imals in Numbers Lesson 9 and 
on-
luded they were all rational numbers. This last 
lass, however, is another way to
hara
terize the irrational numbers.There are more irrational numbers than rational numbers.This is fairly 
lear sin
e the rational numbers were denumerable, but the real num-bers, made up of the rational numbers and irrational numbers, were nondenumerable.Logarithms and the trigonmetri
 fun
tions are examples of trans
endental fun
-tions introdu
ed and studied in the high s
hool math 
urri
ulum.Algebrai
 numbers are enumerable! Almost all real numbers are trans
endental.It has been very di�
ult to prove numbers to be trans
endental. David Hilbert(1862�1943) 
hallenged the mathemati
al 
ommunity in 1900 with a list of 23 un-solved problems in mathemati
s of utmost importan
e. In fa
t, the quote usedto open this lesson 
ame from this spee
h. The seventh problem was to prove thatfor any algebrai
 number (a 6= 0 or 1), and any irrational, but algebrai
 number b,
ab is always trans
endental. The �rst in 1929 and the se
ond a year later, the Rus-sian mathemati
ian Gelfond proved Hilbert's two examples, eπ = i−2i, and 2

√
2 to betrans
endental and in 1934 proved the general 
ase.The status of many numbers remains unknown: ππ, ee. Others: πe, 2e, and 2π havenot even been proved to be irrational! The sin 1◦ is algebrai
, whereas sin(360◦/2π) =

sin(1 rad) = 1
1!
− 1

3!
+ 1

5!
− 1

7!
+ 1

9!
− 1

11!
· · · is trans
endental.
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132 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONS15.7 Trans
endental HomeworkEa
h problem is worth two points, ex
ept as noted.1. Evaluate the following rational number and 
ompare it relative to e: 58, 291

21, 444
.2. Evaluate the following rational number and 
ompare it relative to e2: 158, 452

21, 444
.3. Find a de
imal approximation for the real number halfway between e and π.4. Find a de
imal approximation for the real number halfway between πe and eπ.5. Find the 
ir
umferen
e of a 
ir
le with diameter of 7", using the approximation

π ≈ 22/7.6. Find the exa
t and approximate area for a 
ir
le with radius 5m. (Be sureto in
lude proper units!)7. Give, to the nearest hundredth square foot, the area that 
an be irrigated by a
ir
ular sprinkler that spouts water 60' as it rotates around a �xed point. Givethe 
ir
umferen
e of the region to the nearest tenth foot.8. A 
ir
le has area 100π in2. Find the exa
t radius, diameter, and 
ir
umferen
e.9. On a 12" pizza, what does the 12" refer to? How many times as mu
h of ea
hingredient is needed for a 16" pizza with the same thi
kness? What is the areaof ea
h sli
e when a 16" pizza is divided evenly among 6 people? (see textbook8.9:13).10. Eight metal disks equally, but maximally sized, are 
ut out of ametal sheet 18" by 36". The rest is not used. What is the areaof the metal that is not used? What per
ent of the metal is used?(see textbook 8.9:14).
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15.7. TRANSCENDENTAL HOMEWORK 13311. Find a 
an or bottle with a 
ir
ular base. Measure the diameter (d) as a

uratelyas possible. Measure the 
ir
umferen
e (C) with a tape measure or by rollingthe 
an on the ruler. Cal
ulate the C/d ratio to the nearest hundredth. Whatnumber should it approximate? Explain any di�eren
e?12. A sheik dies with 3 sons and 17 
amels. Earlier he had told his steward to givethe youngest son 1/2 his 
amels; his middle son 1/3 his 
amels; and his oldestson 1/9 his 
amels. Without any fra
tional 
amels, how did the steward do it?How many 
amels did ea
h son get? (This is a puzzle question.)13. Find whi
h ordinal number 
orresponds to Andrew Ja
kson's presiden
y (asin whi
h president was he?) and what year he was �rst ele
ted. Relate thisinformation to the number e.14. Add the �rst, then se
ond, then third, ... terms in the following sequen
e:
1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ 1
5!

+ 1
6!

+ 1
7!

+ · · · What trans
endental number does theresulting series appear to approa
h?15. Add the �rst, then se
ond, then third terms, · · · in the following sequen
e:
4
1
− 4

3
+ 4

5
− 4

7
+ 4

9
− 4

11
+ 4

13
−· · ·. What trans
endental number does the resultingseries appear to approa
h (from above and below! and allbeit very slowly)?16. (Three points:) Convert 57◦ and 196◦ into radians and 5π/9 into degrees.17. (Three points:) Evaluate: log3 81, log10 100, and log9 3 without using a 
al
u-lator.18. Convert log4 x = 3 into exponential form and solve for x.19. Read se
tions 8.8 and 8.9 in your geometry text. See problems 8.8: 3, 5, 12;8.9: 1, 5, 11, and 12.20. Bonus: Look up Napier's Bones or Napier's Rods in an en
y
lopedia ordi
tionary. What were they? How many were there? What did they look like?How did they work? What spe
ie bone were they?Numbers and Their App.�pdf 4 O
tober 4, 2009 
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Numbers Lesson 16Imagine More Complex Numbers
eiπ + 1 = 0 is the most remarkable formula in mathemati
s FeynmanThis lesson motivates the 
omplex numbers as solutions to 
ertain polynomialsand introdu
es them as the 
artesian produ
t of the reals and imaginaries. Complexnumbers are added, subtra
ted, multiplied, divided, and their magnitude found. Wegraph them, introdu
e the polar form, and �nd roots in that form. We 
lose with alist of the Greek alphabet and a summary of errata and future improvements.16.1 Father of Complex Powers: Abraham deMoivreAbraham de Moivre (1667�1754) was born in Fran
e but moved to England while ateenager for politi
al refuge (after the law prote
ting protestants was lifted). There he
han
ed to met Newton's Prin
ipia Mathemati
a and supported himself by le
turingand tutoring. He soon established himself as a respe
ted �rst-rate mathemati
ian andwas ele
ted to the Royal So
iety in 1697. He was eventually asked to de
ide betweenNewton and Leibnitz regarding the invention of the 
al
ulus, in a pro
ess some saywas rigged. de Moivre never obtained a permanent tea
hing position, although hisresear
h on probability was sought after as a 
onsultant for both life insuran
e andgambling. He outlived his friends, dying the relative poverty whi
h plagued his life.His name lives on in de Moivre's Theorem given later in this lesson.16.2 The Complex NumbersIt would seem that with so many real numbers, mathemati
ians would be satis�ed.However, just as negative numbers allowed us to solve equations su
h as x+a = 0, sotoo do imaginary numbers, or more a

urately 
omplex numbers, allow us solutionsto all quadrati
 and higher degree polynomial equations. The 
hoi
e of the termimaginary has been somewhat unfortunate, but with exposure and pra
ti
e, these135



136 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERSnumbers 
an be
ome just as meaningful as the reals. Consider the following solution.
x2 + 1 = 0

x2 = −1

x = ±
√
−1 = ±i

i =
√
−1 is termed the unit imaginary�all imaginary numbers 
an be formed asmultiples thereof.For most students, the �rst exposure to 
omplex numbers is in solving quadrati
equations that have no real solutions, su
h as x2 − 4x + 5 = 0. Using the quadrati
formula, we �nd that the dis
riminate (the part of the formula under the radi
al) isnegative (−4)�but how do we take the square root of −4? Using this new symbol

i =
√
−1, and our rules for manipulating radi
als, it be
omes x =

√
4 i = 2i, and thesolutions to this equation are the 
omplex numbers: 2 ± i. The rules for adding andmultiplying 
omplex numbers are given below, but if your 
al
ulator is in a+bi mode,you 
an 
he
k this result on it by typing: (2+ i)2 +(2+ i)+ 5 or (2− i)2 +(2− i)+ 5and obtaining the result of zero.Complex numbers are of the form a+ bi, where a ∈ R and b ∈ R.

a is 
alled the real part, and b (not bi) is 
alled the imaginary part.Real and imaginary numbers are both �small� subsets of the 
omplex numbers.Real numbers are represented by a, where b = 0. Whereas, when a = 0, a + biis just bi�the imaginary numbers. The 
omplex numbers are represented by thesymbol C. A 
ommon mistake is to refer to the 
omplex numbers as the imaginarynumbers. However, the imaginary numbers are only a very spe
ial subset of the
omplex numbers. The term non-real 
omplex is often used, sin
e all real numbersare 
omplex numbers.Cantor showed the unbelieveable fa
t that points in a unit square 
ould be mappedto the points in a unit line segment, as noted earlier in his biography (9.1). Thispro
edure 
an be used to put the 
omplex numbers into a one-to-one relationship withthe real numbers, thus showing their size to be the same non-denumerable in�nity!
N ⊂ Z ⊂ Q ⊂ R ⊂ CThe 
omplex 
onjugate of a + bi is a− bi.Complex numbers often appear in 
onjugate pairs�see the quadrati
 formulafor why. i 
an be treated just like a variable, su
h as simplifying powers:

i0 = 1

i1 = i
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16.3. OPERATIONS WITH COMPLEX NUMBERS 137
i2 = −1

i3 = i2i = −1 · i = −i
i4 = (i2)2 = (−1)2 = 1

in = inmod 416.3 Operations with Complex NumbersYour TI-84+ graphing 
al
ulator will do extensive 
al
ulation with 
omplex num-bers. (Che
k your MODE and be sure you are in a+ bi and not Real or reiθ.)16.3.1 Adding or Subtra
ting Complex NumbersAdd or subtra
ting 
omplex numbers involves adding/subtra
ting like terms. (Don'tforget subtra
ting a negative is adding!)
(3 − 2i) + (1 + 3i) = (3 + 1) + (−2i+ 3i) = 4 + 1i = 4 + i

(4 + 5i) − (2 − 4i) = (4 − 2) + (5i+ 4i) = 2 + 9i16.3.2 Multiplying Complex NumbersTo multiply 
omplex numbers treat them like binomials and use the FOIL method,but simplify i2.
(3 + 2i)(2 − i) = (3 · 2) + (3 · −i) + (2i · 2) + (2i · −i)

= 6 − 3i+ 4i− 2i2

= 6 + i− 2(−1)

= 8 + i

(2 + i)2 = (2 + i)(2 + i) = 4 + 4i− 1 = 3 + 4i

√
−9 ·

√
−16 = i

√
9 · i

√
16 = i2 · 3 · 4 = −12. Noti
e how our order of operation isimportant (exponentiation before multipli
ation) as 
ommonly the in
orre
t answer√

144 = 12 is obtained. If x > 0, then √−x = i
√
x.16.3.3 Dividing Complex NumbersTo divide 
omplex numbers, multiply the numerator and denominator by the
omplex 
onjugate of the denominator.

2 + 3i

3 + i
=

(2 + 3i)(3 − i)

(3 + i)(3 − i)
=

6 − 2i+ 9i− 3i2

9 − i2
=

6 + 7i+ 3

9 + 1
=

9 + 7i

10
= 0.9 + 0.7i.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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138 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERS16.3.4 MagnitudeTo �nd the magnitude of a 
omplex number you �nd its distan
e to the origin:
|3 + 4i| =

√
32 + 42 =

√
9 + 16 =

√
25 = 5.Magnitude is often 
onfusingly referred to as absolute value, sin
e the samesymbol is used. In fa
t, you must use abs on your TI-84 
al
ulator! Noti
e how bothare a measure of distan
e and the Pythagorean Theorem is used here. A 
ommonmistake is to in
lude the i under the radi
al�avoid that error.16.4 Graphing Complex NumbersComplex numbers are graphed on the 
omplex plane�the 
artesian produ
tof the reals and the imaginaries. As su
h, it is very similar to the xy-plane. Thefamiliar x-axis is still the familiar real number line and the y-axis is repla
ed witha number line 
ontaining the imaginary numbers. This is often termed an arganddiagram. Cantor showed it was possible to 
onstru
t a one-to-one 
orresponden
ebetween every point in the plane and the real number line. On a unit square one 
anmap the ordered pair with de
imal expansion (0.a1a2a3 · · · , 0.b1b2b3 · · ·) to the realnumber 0.a1b1a2b2a3b3 · · · thus interleaving the de
imal expansions. Thus, it wouldseem, the 
omplex numbers have the same 
ardinality as the reals.16.5 Polar FormComplex numbers are also often lo
ated on the 
omplex plane by their distan
efrom the origin and angle from the positive x-axis. The angle might be given in eitherdegrees or radians. What your TI-84+ 
al
ulator uses is 
ontrolled both on input andoutput by mode. However, unlike the trig fun
tions, putting the degree symbol onan angle does not override radian input! By setting a+ bi or reiθ (polar) format andinputting the alternate form, it will inter
onvert for you.The following relationship named after Euler is often used:

Keiθ = K(cos θ + i sin θ),where sin and cos are the trigonometri
 relationships dis
ussed in Numbers Lesson12. Thus if K = 1 and θ = π/2 = 90◦, the 
omplex number lo
ated one unit dire
tlyabove the origin is obtained. This is i, be
ause sin 90◦ = 1 and cos 90◦ = 0. r is amu
h more 
ommon 
hoi
e of variable to represent magnitude, but the author feelsthe 
hoi
e of K will be mu
h more meaningful and memorable for his students!
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16.6. GREEK ALPHABET 13916.6 Greek AlphabetThe table of Greek letters below with names and phoneti
 English equivalentsshould be 
ommitted to memory by the grade A math and s
ien
e student.lower upper name equivalent lower upper name equivalent
α A alpha a ν N nu n
β B beta b ξ Ξ xi x
γ Γ gamma g, n o O omi
ron o
δ ∆ delta d π Π pi p
ǫ E epsilon e ρ P rho r, rh
ζ Z zeta z σ Σ sigma s
η H eta e τ T tau t
θ Θ theta th υ Υ upsilon y, u
ι I iota i φ Φ phi ph
κ K kappa k χ X 
hi 
h
λ Λ lambda l ψ Ψ psi ps
µ M mu m ω Ω omega o16.7 Finding nth Rootsde Moivre's Theorem states that zn = kn cis(nθ), where

cis θ is an abbreviation for cos θ + i sin θ.
n may be fra
tional thus z1/n = k1/n cis([θ + 360j]/n)◦, where j is an integerranging from 0 to n − 1. We 
an apply this to the multipli
ative identity (1) whi
halso has a magnitude of 1. It is 
lear 1 has two square roots: ±1. Sin
e −1 has twosquare roots, it should now be 
lear that 1 has four fourth roots: ±1 and ±i. We 
anapply de Moivre's Theorem to obtain the eight eighth roots as follows.The Eight Eighth Roots of Unity are ±1, ±i, ±√

2/2 ± i ·
√

2/2. (This lastexpression is generally 
onsidered ambiguous as to how many points it represents, buthere represents four distin
t points.) Note how they are very symmetri
ally arranged(on a 
ir
le) on the 
omplex plane. Note also how the radi
al relates to sin(45◦+90◦n)and cos(45◦ + 90◦n).16.8 ErrataStudents should organize their booklets for stapling now. Che
k to besure you have all your pages in page number order. An o

asional funny page sequen
ewill o

ur. Lessons 12 and 15 had a odd number of pages and a page will be �missing�(ix, x, 104, and 134). These were not repla
ed with something else this year. Variouspages in the appendi
es (title, a
tivities, quizzes, keys) have been omitted this year.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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140 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERSThis will for
e homework to be interleaved! You might have additional homeworkpages and it is your 
hoi
e where these are neatly lo
ated. Be sure you have thebox (A.5), 
omplex number (A.6), and booklet (A.7) a
tivities, and 1 quiz (B.1). Donot have your test or test key stapled within the booklet (but the released tests (C.1and ?1 ) ARE part of the booklet).Several problems were �xed and �gures added in this revision�many after print-ing, however. A summary of re
ent/future 
hanges follows.
• Consider distributing the lessons as s
hool starts next year.
• Many 
onverted a
tivities (set, di
e, fa
tors, magi
 boxes) remain di�
ult tosqueeze in. Some remain un
onverted (TI-84 intro, 
al
ulator fra
tions, fra
tionmat
hup, 
al
ulator slopes, 24, logs) but may have been moved into the lessonor into summer algebra.
• Lesson 12 
ould be split between Pythagoras and Fermat and the bios ex-panded for Diophantus and Goldba
h. Galileo's bio was moved to Stats, perhapstemporarily�I need his quote! The �rst part of 13 
ould go with the new lesson.
• The early lessons were split up in 2008 to add a lesson but at least one homeworkquestion was moved after printing in 2009. We have not yet moved the other4 Peano Axioms here. The well-ordered axiom/axiom of 
hoi
e is mentionedin both lesson 3 and 14. Eu
lid's algorithm 
ould be added. Maybe some oddquestions 
an be repeated as evens in later lessons.
• Lessons 6 and 7 remain at 6 pages but tend to be dense. Breaking this strea
hup 
ould help things as well. Pas
al's bio needs a better pla
e near here.
• Odd solutions should be generated from the beamer/pdf work and made avail-able. The software 
al
ulator (TI-SmartView) was used very little.16.9 EpilogueThis do
ument is not yet a �nished produ
t�improvement and 
orre
tions are anongoing pro
ess. With this fourth pdf version the old html version has been removedfrom the web, ex
ept for the odd solutions. It is, however, a dream 
ome true. Somework remains to smooth out areas like logi
 and paradoxes, even out the level ofe�ort required, and make the homework do what I want it to. It is planned forCenter students to take some responsibility to 
larify the less 
lear and extend themore interesting aspe
ts. Continued feedba
k is appre
iated.1Not yet labelled and integrated.
©MMIX Ke

iθ G. Calkins O
tober 4, 2009 Numbers and Their App.�pdf 4



16.10. COMPLEX HOMEWORK 14116.10 Complex HomeworkPerform the following operations with 
omplex numbers: (Show work!! Only usea 
al
ulator to 
he
k your answer.) Ea
h problem is worth two points, ex
eptfor problems 6 and 12 whi
h are 5 points ea
h.1. (3 + 5i) + (8 + 9i) =

2. (4.5 + 3i) + (3 − 1.5i) =

3. (7 + 13i) − (8 + 2i) =

4. (−5 + 3i) − (3 − 8i) =

5. (−3i) − (13 + 4i) =

10

10 re

i

6. Graph the answers to the problems 1�5 on the grid above.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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142 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERS7. (1 + 2i)(1 − 2i) =8. (2 − 3i)(−3 + 2i) =9. (3 + 2i)2 =10. (6 + 8i) ÷ (1 + 3i) =11. |(3 + 5i)| =

10

10 re

i

12. Graph the answers to the problems 7�11 on the grid above.13. Assuming the 
ube roots of 1 are equally spa
e around the unit 
ir
le, youknow the real one (1), and the two 
omplex ones are 
omplex 
onjugates of ea
hother; graph them and �nd approximate values for them.
1

1 re

i

14. Re�ne your values for the problem above using the exa
t trigonometri
 values inthe table on page 12.4 in Numbers Lesson 12 and 
he
k them on your 
al
ulator.
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144 APPENDIX A. ACTIVITIESA.1 A
tivity: Set Game and Crossword PuzzleOn the ba
k side is a 
rossword puzzle using the vo
abulary words below.The game of Set is a useful way to explore the meaning of this unde�ned word inmathemati
s.A set de
k 
onsists of 81 
ards�all di�erent. There are 81 
ardsbe
ause on four di�erent prop-erties: 
olor, number, shape,�ll, they have three di�erentstates. The 
olors are: red,green, and purple. The numberof identi
al shapes on a 
ard iseither one, two, or three. Theshapes are: diamond, oval, andsquiggle. The �ll patterns are:�lled, hashed, and empty. some-times referred to as solid, liquid,and gas.The obje
t of the game is to �nd three 
ards whi
h for ea
h of these four 
hara
-teristi
s (properties) are either all the same or all di�erent. A good rule to use is: ifthere are exa
tly two of something, it isn't a set.Let's play a little set (available online. In the game of SET, you will form sets of3 
ards as des
ribed above.One person at ea
h table will a
t as the dealer and deal 15 shu�ed 
ards fa
e upon the table. Players will initially take turns and after sele
ting 3 
ards, expli
itly tellwhether ea
h of the 4 aspe
ts are the same or di�erent. Magi
 rule: if 2 are the same,but the third is di�erent, it is not a set. After the 
ard sta
k is depleted, playerswill display their sets and espe
ially 
all attention to any set with 3 or 4 di�erentaspe
ts.Tally points for ea
h set: 1 point for ea
h di�erent 
hara
teristi
. For example:If you have three diamonds on ea
h 
ard with ea
h a di�erent 
olor and shade, theset will be two points. The person with the most points wins. (If all the groups are
ompeting, the table with no 
ards unsetted will get an extra �ve points for theirmembers.)
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A.1. ACTIVITY: SET GAME AND CROSSWORD PUZZLE 145Name S
oreA
ross5. Homophone of to and too.6. Color of grass, money, et
.7. Rhymes with jiggle and not quiteoval.10. More than 2 and less than 4.12. Women's best friend.⋄Down

1. Ready, , Go.2. Red and blue make .3. is the lonliest number . . ..4. State of matter (not gas nor liquid).7. What the tree did to the house allsummer.9. If the door is not 
losed . . ..11. for the blood we shed.1 2 345 6
7 8 9

10 11
12

Numbers and Their App.�pdf 4 O
tober 4, 2009 
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146 APPENDIX A. ACTIVITIESA.2 Counting A
tivity: Skittles
• Divide a 16 oun
e (one pound) pa
kage of SkittleTM; brand 
andies approxi-mately equally into 7 paper 
ups.
• Assign ea
h 
up to a group. Ea
h group must tally ea
h 
olor and re
ord theirdata on the 
hart below. PLEASE do not destroy any eviden
e until you havedouble 
he
ked your results. Do not 
ontaminate the spe
imens.Yellow Orange Red Green Purple TotalTable 1Table 2Table 3Table 4Table 5Table 6Table 7TotalIn 2002 there was no yellow, but white, a mystery �avor.
• Dis
uss variations of the data.
• Be sure to turn this sheet in at the end of the 
lass period.We will assemble this data and you will use it again in a few weeks for statisti
s.
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A.3. FACTOR ACTIVITY 147A.3 Fa
tor A
tivityOpen books and open table quiz. Hand in one per table.A

epted only when the answers are 
orre
t. Keep a 
opy in your notes.1. Find all the fa
tors of 18.
2. Add all the fa
tors of 18, ex
ept for itself.
3. Find all the fa
tors of 30.
4. Add all the fa
tors of 30, ex
ept for itself.
5. Find all the fa
tors of 42.
6. Add all the fa
tors of 42, ex
ept for itself.
7. Find all the fa
tors of 54.
8. Add all the fa
tors of 54, ex
ept for itself.
9. What is the pattern?
10. Does it 
ontinue?Numbers and Their App.�pdf 4 O
tober 4, 2009 
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148 APPENDIX A. ACTIVITIES
A.4 Magi
 Boxes (Base 2) A
tivity1 3 5 79 11 13 1517 19 21 2325 27 29 31

2 3 6 710 11 14 1518 19 22 2326 27 30 31
4 5 6 712 13 14 1520 21 22 2328 29 30 31
8 9 10 1112 13 14 1524 25 26 2728 29 30 31
16 17 18 1920 21 22 2324 25 26 2728 29 30 31

Ea
h table must sele
t one person tobe their fa
ilitator. This designation maypersist for several weeks until new seatingor other needs determine a 
hange. Thefa
ilitators leave the room and are giventhis instru
tion sheet. An assistant willgo over with them the instru
tions on theba
k, and have them return to their table.Ea
h fa
ilitator must ask table mem-bers in turn to se
retly pi
k any numberbetween 1 and 31. Table members pointto ea
h box beside in whi
h their num-ber appears. The fa
ilitator will then tellthem their se
ret number!After ea
h person gets at least oneturn, the fa
ilitator will try to help tablemembers understand how the tri
k works.Solution: Add up the �rst number inea
h of the boxes the person 
hose.The number you 
al
ulated is the same asthey have 
hosen.Reasoning: The �rst number in ea
hbox is a power of two. 1, 2, 4, 8, and16. Ea
h box represents the power: box0 is 20, box 1 is 21, box 2 is 22, et
. Thenumbers have been arranged in ea
h boxsu
h that the 
ombination of the powerswill 
orrespond to its binary representa-tion. For example 19 is equal to 16 + 2+ 1, or 19 = 100112, and you'll �nd 19in what we will 
all box 0 (20=1), box 1(21 = 2), and box 4 (24 = 16).
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A.5. MAXIMAL BOX VOLUME ACTIVITY 149A.5 Maximal Box Volume A
tivityTask: Given a pie
e of paper 8”× 10”, �nd all dimensionS of the box (no top)with the largest volume whi
h 
an be formed by removing equal squares from ea
h
orner and folding up the resulting tabs on ea
h side.

A.5.1 Method I (s
issors and water)Use s
issors and trial and error. (Sorry, no water will be provided.)A.5.2 Method II (TI-84 graphing 
al
ulator)Volume = height × width × length
V = x× (8 − 2x) × (10 − 2x)Press the Y= key and enter the equation (with Y1 being V above).Press the WINDOW key and enter the following:

Y min = 0;Xmax = 8;Xscl = 1;Ymin = −20;Y max = 60, Y scl = 10Press the GRAPH key.To �nd the maximum value in the graph pressing CALC key (2nd TRACE). Press4 for maximum.On
e you request maximum, �LeftBound?� appears on the s
reen. Arrow over to theleft side of the maximum. Press ENTER. �RightBound?� now appears. Arrow overto the right side of the maximum and press ENTER. �Guess?� now appears. Arrowtoward the maximum and press ENTER.The s
reen shows the maximum volume possible (y =) and the 
orresponding x value.Finish by 
al
ulating the other dimensions. What is the meaning of the negativevolume?Numbers and Their App.�pdf 4 O
tober 4, 2009 
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150 APPENDIX A. ACTIVITIES

fun
tion and window settings
graph of fun
tion and maximumA.5.3 Method III (very simple 
al
ulus)simplify: V = x(80 − 36x+ 4x2)

V = 80x− 36x2 + 4x3

V ′ = 80 − 72x + 12x2 (To �nd the slope of a polynomial at any point, multiply theexponent by the 
oe�
ient and put it down as the new 
oe�
ient. Write down yourvariable with the exponent redu
ed by one. If there is no variable, the slope is zero,so don't write anything for that term.)
V ′ = 3x2 − 18x+ 20 = 0 (rearranged order, ÷4, and set V ′ to zero be
ause slope iszero at a maximum.)

x = (18 ±
√

324 − 240) ÷ 6 (Use the quadrati
 formula to solve the resultingquadrati
 equation.)
x = 3 ±

√
21/3 ≈ 1.47247 · · ·Thus the other sides are (8 − 2x) ≈ 5.055 and (10 − 2x) ≈ 7.055.Note: fa
torable quadrati
s and integer solutions 
an be obtained by starting withsquare paper.Note also: this is the solution to the third bonus questions (either question number43 or 83) of the May 1998 semester tests (Geometry, Algebra II, Pre
al
ulus). It alsoappeared on that year's Cal
ulus AB �nal test.
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A.6. COMPLEX NUMBER ACTIVITY (LESSON 16) 151
A.6 Complex Number A
tivity (Lesson 16)Please use your TI-84+ 
al
ulator or TI-nspire with TI-84+ keypad for the fol-lowing a
tivities. How to do many of them without your 
al
ulator is illustrated inthe le
ture notes.Find the i key on your 
al
ulator (2nd) and (.) and ENTER The answer shouldbe i or possibly 1e90i.

√
−1 and ENTERDon't be surprised with an error.MODE set a+ bi and ENTRY (2nd ENTER) and ENTER.The answer should now be i. Real mode may be safest until you understand whatit is trying to do!MODE reθi

√
−1 and ENTER Your answer should be 1e90i.Set your MODE ba
k to a + bi.(3 - 2i) + (1 + 3i) ENTER should give you: 4 + i.

(3 + 2i) ∗ (2 − i) ENTER should give you: 8 + i.Note: the multipli
ation sign is optional.
(2 + 3i)/(3 + i) ENTER should give you: .9 + .7i.
abs(3 + 4i) (MATH NUM 1) should give you: 5.Note: the 
al
ulator uses abs for both absolute value and magnitude.
ii ENTER should give you .2078775764!Amazing! Imaginary to imaginary give you a real number. A
tually, this is onlythe primary answer, other values are also possible.
i−2i ENTER and eπ ENTER both should give you 23.14069263.
sin(i) and cos(i) should give you an error on the TI-83 and TI-84, but worksproperly on the TI-85 and TI-86.Numbers and Their App.�pdf 4 O
tober 4, 2009 
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152 APPENDIX A. ACTIVITIES
A.7 Numbers Booklet Veri�
ation/Stapling A
tivityDire
tions: You may work together, but answer ea
h question 
arefully using yourown Numbers booklet. Take time to put the booklet in THIS order. Make a listby table of who is missing what (nonbonus) pages.1. Page i (blue front 
over): Full title of booklet.2. Page iii: Title for Se
tion 2.5.3. Page v: Se
tion number for A

ura
y vs. Pre
ision.4. Page vii: Title for Se
tion A.4.5. Page xii: �Convey my lifelong for numbers.�6. Page 2: Q7: Leave textbook home until when?7. Page 7: John Venn's year of death.8. Page 9: Q5. Cost of new toy in 
lams.9. Page 12: Another word for axiom (top of page).10. Page 19: Eratosthenes' ni
kname (bottom of page).11. Page 25: Who said �Ah! I re
ognize the lion by his paw.�12. Page 31: Q5. Largest fa
torial 
al
ulated exa
tly on your TI-84 
al
ulator.13. Page 35: Restri
tion on �Anything to the zero power is 1.�14. Page 41: Q2. Zeroes in a googolplex.15. Page 43: Latin quote from De
artes.16. Page 49: Q8. Counterexample to large dangerous bears.17. Page 56: What I.OU6.(O4.O5.NO6) is equal to (middle of page)?18. Page 58: Q9. Obje
ts headed toward St. Ives (in base 7).19. Page 60: Group axiom 1.20. Page 66: Q20. 225 − 1 in hexade
imal.21. Page 70: Done when multiplying/dividing inequality by a negative (middle ofpage).
©MMIX Ke
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A.7. NUMBERS BOOKLET VERIFICATION/STAPLING ACTIVITY 15322. Page 76: Q12.13 Repeat length for 1
13
.23. Page 83: Why isn't 12 am or 12 pm valid (middle of page).24. Page 85: Q14. 2.4526 m÷ 8.4.25. Page 89: What Q.E.D. means (middle of page).26. Page 93: Q6 (go all the way!).27. Page 97: What is spe
ial about a 37◦, 53◦, 90◦ triangle (middle of page)?28. Page 102: Q6. Length of other two sides in 30◦, 60◦, 90◦ triangle.29. Page 106: Number system used to label quadrants (bottom of page).30. Page 114: Q16. Domain and range of: y = x2 + 5x+ 6.31. Page 120: What is the 
ontinuum hypothesis?32. Page 123: Q8. Counterexample showing negatives are not 
losed under multi-pli
ation.33. Page 127/129: What de
imal pla
e has the �rst identi
al digit in the de
imalrepresentations of π and e?34. Page 133: Q18. Solve for x: log4 x = 3.35. Page 139: Three pages �missing� page numbers (bottom of page).36. Page 142: Q14. Exa
t/approximate values of 
omplex 
ube roots of 1.37. A.2 Bonus: Page 146: Total skittles for your (original) table group.38. A.5 Page 150: Square side length to 
ut in 8”×10” 
orners to maximize volume(page 2 s
reen).39. A.4 Bonus: Page 148: Whi
h boxes have 31 in them (spe
ify by number inupper left)?40. A.7 Bonus: Page 153: Express 1/(last question number) exa
tly as a de
imalfra
tion.41. B.1 Page 158: Q9. 100 expressed as sum of two triangular number.42. C.1 Released test: Page 161: Q8 LCM(270, 600).43. C.2 Released test: (page 4): Q17. 4 an
ient impossibilities.Your booklet should now be ready for stapling. Bonus for early.Numbers and Their App.�pdf 4 O
tober 4, 2009 
©MMIX Ke

iθ G. Calkins



154 APPENDIX A. ACTIVITIES
A.8 Number/Phrase Asso
iation A
tivityComplete the phrase identified by these numbers, words, and initialletters.1 - D at a T 1 - W on a U2 - T D (and a P in a P T)3 - P for a F G in F 3 - B M (S H T R) 3 - L K4 - H of the A 4 - Q in a G 4 - T on a C U5 - D in a Z C 5 - F on the H 6 - W of H the E7 - H of R 7 - W of the A W 7 - V of S7 - D (with S W) 7 - B M and the E7 - S 7 - D S8 - P on N A 8 - P of S in the E L 8 - S on a S S9 - I in a B G 9 - P in the S S 9 - J of the S C10 - A in the B of R 10 - C in the D11 - P on a F T 12 - S of the Z 12 - D of C13 - C in a S 13 - S on the A F 13 - D in a B D16 - O in a P 16 - M on a D M C (YHH and a B of R)18 - H on a G C 18 - W on my B R20 - Y that R V W S 24 - H in a D26 - L of the A29 - D in F in a L Y30 - D H S A J and N 31 - I C F at B-R32 - D F at whi
h W F36 - I in a Y40 - T (with A B) 40 - D and N of the G F50 - C in a H D 50 - W to L Y L54 - C in a D (with the J)56 - S of the D of I 57 - H V60 - S in a M 64 - S on a C66 - B in the B 76 - T in the B P80 - D around the W 88 - K on a P 90 - D in a R A99 - B of B on the W101 - D 200 - D for P G in M212 - D at whi
h W B435 - M of the H of R500 - H of B C 600 - R in the C of the L B1000 - W that a P W 1000 - S (that a F L)1001 - A N20,000 - L U the S
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156 APPENDIX B. QUIZZESName S
oreB.1 Quiz over Numbers Lessons 1�4Open books and open group quiz. Hand in one per table.Be sure answers are 
orre
t! Keep a 
opy in your notes.1. List table members who do not have their syllabus signed by a parent.2. Set interse
tion and union are related to and's and or's. Whi
h is whi
h andwhy?3. List one quote by ea
h of the three greatest mathemati
ians and indi
ate whoseis whi
h.4. What is your group's best answer for Numbers Lesson 1, problem 9?5. What is your group's best answer for Numbers Lesson 1, problem 10?6. Show work for Numbers Lesson 2, problem 7.7. What is your group's best answer for Numbers Lesson 3, problem 8a?8. What is your group's best answer for Numbers Lesson 4, problem 7?9. Express the number 100 as the sum of two triangular numbers.10. List �ve 
ommon Latin terms and what they mean.
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158 APPENDIX C. RELEASED TEST/KEYName S
oreC.1 Geometry, Test 1, September 24,2004�Released TestOne 3"x5" note
ards and TI-84+ type graphi
 
al
ulator allowed.Please pla
e answers on the short underlines provided to theleft of the problem symbol. Ea
h of the 21 question numbershas equal weight (i.e. 5 points ea
h). Question subparts haveabout equal weight. Read the questions 
arefully. Hand in anyused s
rat
h paper with the test for potential partial 
redit.SHOW YOUR WORK
5

1. Form the best mat
h among the following.Triangular Numbers A. 0, 1, 4, 9, . . .Squares B. 0, 1, 1, 2, . . .Perfe
ts C. 0, 1, 3, 6, . . .The Fa
torials D. 6, 28, 496, . . .The Fibona

i Numbers E. 1, 1, 2, 6, . . .

5

2. Perform the following set operation: {B, r, i, t, n, e, y} ∩ {S, p, e, a, r, s}.(Three bonus points: what is the 
ardinality of ea
h set?)
5

3. Perform the following set operation and sket
h the 
orresponding Venndiagram. {B, r, i, t, n, e, y} ∪ {S, p, e, a, r, s}.
5

4. Expli
itly use the re
ursive de�nition of n! to simplify then evaluate: 7!
4!
.

5

5. Give the value of the �ve smallest Fermat numbers.
5 bonus

Five bonus points for 
orre
tly des
ribing the form a Fermat number has inbinary. Test 1 
ontinued next page.
25 + 8
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C.1. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 159
5

6. Form the best mat
h among the following.versus A. make weightmantissa B. about
ir
a C. againstmodulo D. that isid est E. a small measure
5

7. Expli
itly indi
ate the prime fa
torization of 270 and 600. Be sure to useexponents and list the prime fa
tors in in
reasing order.
5

8. Find LCM(270,600).
5

9. Convert 54310 into its base 6 value.(Three bonus points: Convert 5436 into its base 10 value.)
5

10. Depi
t a Pas
al's triangle with sides of length 6. Two bonus pointsfor naming the mathemati
al/
al
ulator fun
tion whi
h will give ea
h entry dire
tly.Two more bonus points for giving the formula for evaluating this mathemati
alfun
tion.
Test 1 
ontinued next page.

25 + 7 Numbers and Their App.�pdf 4 O
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160 APPENDIX C. RELEASED TEST/KEY
5

11. From the 
onditional: �If no 
louds, then no rain.�; write the:a. Converseb. Inverse
. Contrapositived. pe. q.
10

12,13. You are given a three input logi
 gate whose output is des
ribed 
om-pletely as the most 
ommon input. Fill in the missing two input and eight outputvalues in the table below. Four bonus points: how 
an the output be des
ribedsimply by 
onsidering separately p = 0 and p = 1?
p q r most(p, q, r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01

5

14. Solve for x and graph the solution set of −2x+ 9 < 1.
5

15. Express the unit fra
tion 1
13

as a de
imal fra
tion exa
tly. How many digitsare there in the portion whi
h repeats? Five bonus points for identifying whi
hmultiples of 1
13


an be represented by starting this repetition at a di�erent point?Test 1 
ontinued next page.
25 + 9
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C.1. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 161
5

16. Form the best mat
h among the following.Pau
a, sed matura A. Ar
himedesBook of Nature is written in mathemati
al 
hara
ters B. NewtonCogito ergo sum C. Bernoulli... playing on the seashore...smoother pebble D. GalileoEureka, Eureka E. GaussF. Des
artes
10

17,18. Show work evaluating by hand: 1

3
+

1

4
1

5
+

1

2

5

19. Express the number representing the diagonal of a unit square in severalforms (3 points). Be sure to in
lude at least one with a fra
tional exponent (2 points).
5

20. Rationalize the demoninator and simplify 
ompletely: √

225
18
.Bonus Question, 5 bonus points

0

21. How mu
h does the banana weigh with peel?

I have been 
areful to not allow others to see my work and the work on thisexamina-tion is 
ompletely my own. This examination is returned and asso
iated solutions are provided for my own per-sonal use only. I may not share them ex
ept with 
on
urrent 
lassmates taking the identi
al 
ourse. Other uses are not 
ondoned. Iwill dispose of it properly. signature dateEnd of Test.�Che
k your work.�Have a ni
e day!
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162 APPENDIX C. RELEASED TEST/KEYName S
oreC.2 Geometry, Test 1, September 24,2004�Released TestOne 3"x5" note
ards and TI-84+ type graphi
 
al
ulator allowed.Please pla
e answers on the short underlines provided to theleft of the problem symbol. Ea
h of the 21 question numbershas equal weight (i.e. 5 points ea
h). Question subparts haveabout equal weight. Read the questions 
arefully. Hand in anyused s
rat
h paper with the test for potential partial 
redit.SHOW YOUR WORK
5

1. Form the best mat
h among the following.Triangular Numbers A. 0, 1, 4, 9, . . .Squares B. 0, 1, 1, 2, . . .Perfe
ts C. 0, 1, 3, 6, . . .The Fa
torials D. 6, 28, 496, . . .The Fibona

i Numbers E. 1, 1, 2, 6, . . .

5

2. Perform the following set operation: {B, r, i, t, n, e, y} ∩ {S, p, e, a, r, s}.(Three bonus points: what is the 
ardinality of ea
h set?)
5

3. Perform the following set operation and sket
h the 
orresponding Venndiagram. {B, r, i, t, n, e, y} ∪ {S, p, e, a, r, s}.
5

4. Expli
itly use the re
ursive de�nition of n! to simplify then evaluate: 7!
4!
.

5

5. Give the value of the �ve smallest Fermat numbers.
5 bonus

Five bonus points for 
orre
tly des
ribing the form a Fermat number has inbinary. Test 1 
ontinued next page.
25 + 8

Key�-released 9/19/05 129/100

5 CADEB5+3
{e, r} 2 pt ea
h; 1 pt {} bonus: 7, 6, 25
{B, r, i, t, n, e, y, S, p, a, s}1 pt for box around VD5 210
7!
4!

= 7·6·5·4!
4!

= 42 · 5 = 210.2 pts expli
it 
an
ellation of 4!, 1 pt ans5
220

+ 1, 221
+ 1, 222

+ 1, 223
+ 1, 224

+ 1, 225
+ 13, 5, 17, 257, 65537, 4294967297; an end optional5 112, 1012, 100012, 1000000012, et
.Starts/ends with 1, has 2n − 1 zeroes in between.33
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C.2. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 163
5

6. Form the best mat
h among the following.versus A. make weightmantissa B. about
ir
a C. againstmodulo D. that isid est E. a small measure
5

7. Expli
itly indi
ate the prime fa
torization of 270 and 600. Be sure to useexponents and list the prime fa
tors in in
reasing order.
5

8. Find LCM(270,600).
5

9. Convert 54310 into its base 6 value.(Three bonus points: Convert 5436 into its base 10 value.)
5

10. Depi
t a Pas
al's triangle with sides of length 6. Two bonus pointsfor naming the mathemati
al/
al
ulator fun
tion whi
h will give ea
h entry dire
tly.Two more bonus points for giving the formula for evaluating this mathemati
alfun
tion.
Test 1 
ontinued next page.

25 + 7

5 CABED5
270 = 2 · 33 · 5 600 = 23 · 3 · 52

5 Use TI-8x+ MATH NUM 8
GCF (270, 600) = 30Also, 270 = 30 · 9 600 = 30 · 20

LCM = 270·600
GCF (270,600)

= 270·600
30

= 270 · 20 = 5400so 5400 = 20 · 270 = 9 · 600 = 23 · 33 · 525+3 543/6=90R3; 90/6=15R0; 15/6=2R3; so 54310 = 2303 .Chk: 2 · 63 + 3 · 62 + 3 · 60 = 2 · 216 + 3 · 36 + 3 · 1 = 432 + 108 +
5436 = 5 · 62 + 4 · 61 + 3 · 60 = 180 + 24 + 3 = 207

= 10006 − 136 = 216 − 9 = 2075+4
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Combination or nCr or Choose/Choi
esee MATH PRB 4 on TI-8x+
nCr = n!

r!(n−r)!
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164 APPENDIX C. RELEASED TEST/KEY
5

11. From the 
onditional: �If no 
louds, then no rain.�; write the:a. Converseb. Inverse
. Contrapositived. pe. q.
10

12,13. You are given a three input logi
 gate whose output is des
ribed 
om-pletely as the most 
ommon input. Fill in the missing two input and eight outputvalues in the table below. Four bonus points: how 
an the output be des
ribedsimply by 
onsidering separately p = 0 and p = 1?
p q r most(p, q, r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01

5

14. Solve for x and graph the solution set of −2x+ 9 < 1.
5

15. Express the unit fra
tion 1
13

as a de
imal fra
tion exa
tly. How many digitsare there in the portion whi
h repeats? Five bonus points for identifying whi
hmultiples of 1
13


an be represented by starting this repetition at a di�erent point?Test 1 
ontinued next page.
25 + 9

5 If no rain, then no 
louds.If 
louds, then rain.If rain, then 
louds.no 
louds (has if: -1
2
point)no rain (has then: -1

2
point)10+4

000101111 1
p = 0 ⇔ q ∧ r p = 1 ⇔ q ∨ r
p sele
t gate type: p = 0 is and; p = 1 is or.5 3 pts: −2x < −8 x > 42 pts: dire
tion, open 
ir
le5+5

1
13 = 0.076923 6 digits repeat.
{1, 3, 4, 9, 10, 12} see also {2, 5, 6, 7, 8, 11}Note the symmetry in these groups. 34
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C.2. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 165
5

16. Form the best mat
h among the following.Pau
a, sed matura A. Ar
himedesBook of Nature is written in mathemati
al 
hara
ters B. NewtonCogito ergo sum C. Bernoulli... playing on the seashore...smoother pebble D. GalileoEureka, Eureka E. GaussF. Des
artes
10

17,18. Show work evaluating by hand: 1

3
+

1

4
1

5
+

1

2

5

19. Express the number representing the diagonal of a unit square in severalforms (3 points). Be sure to in
lude at least one with a fra
tional exponent (2 points).
5

20. Rationalize the demoninator and simplify 
ompletely: √

225
18
.Bonus Question, 5 bonus points

0

21. How mu
h does the banana weigh with peel?

I have been 
areful to not allow others to see my work and the work on thisexamina-tion is 
ompletely my own. This examination is returned and asso
iated solutions are provided for my own per-sonal use only. I may not share them ex
ept with 
on
urrent 
lassmates taking the identi
al 
ourse. Other uses are not 
ondoned. Iwill dispose of it properly. signature dateEnd of Test.�Che
k your work.�Have a ni
e day!
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