A Quantitative Lenz's Law Demonstration

Robert Kingman

Department of Physics Andrews University Berrien Springs, Michigan 49104-0380 <u>kingman@andrews.edu</u>

American Association of Physics Teachers 125th National Meeting August 7, 2002 Boise, Idaho Acknowledgment

Appreciation is expressed for the assistance of our secretary/departmental assistant, Janine Show, in the collection of the data and critique of these slides.

Outline

- Motivation
- Experimental Setup
- Induced Current and Force on the Coil
- The Coil
- Determination of the Resistance of the Coil
- The Magnet
- Measurements of the Force on the Coil and it's Velocity
- Comparison of Predicted and Measured Forces
- Conclusion

Motivation

Lenz's law is often illustrated with qualitative demonstration experiments such as dropping a button magnet through a conducting pipe. Computer data acquisition makes it possible to measure the force on a coil as the secondary effect opposing its motion through a magnetic field.

Experimental Setup

Experimental Setup

Equipment

- Pasco Science Workshop 750 Interface
- Dell Optiplex Pentium III 550 MHz
- Coil and Plywood Frame
- Magnet
- Dual Range Force Sensor
- Pasco Smart Pulley
- F. W. Bell 4048 Gauss Meter
- Low Friction Pulleys
- Dial Calipers

Voltage Induced in the Coil V = v N w B

Current Induced in the Coil

$$I = \frac{V}{R} = \frac{v N w B}{R}$$

Force on the Coil because of the Induced Current

$$F = I N w B = \frac{\left(N w B\right)^2}{R} v$$

where *v* is the coil velocity, *N* is the number of coil turns, *w* is the width of the coil, *B* is the magnetic field strength and *R* is the resistance of the coil.

Coil Properties

- Coil Size: 7mm by 17 mm
- Number of Turns: 50
- Wire Gauge: 14

Width Determination

- Average inside width 0.0528 m
- Average outside width 0.0796 m
- Average coil width 0.0662 m

Coil Resistance

The magnet

A U-shaped steel frame with a 4 inch x 6 inch x 1 inch ceramic magnet on each side.

A magnetic field of about 1750 gauss in an air gap of 1.5 inches.

Determination of the Average B Field over the Coil Width

An average of the measurements of the magnetic field over the coil width indicated by * gives the result

 $B_{ave} = 0.165 T$

position	В	
cm	Т	
26.80	0.0934	
26.30	0.1190	
25.90	0.1327	*
25.35	0.1506	*
24.85	0.1613	*
24.35	0.1674	*
23.90	0.1713	*
23.32	0.1738	*
22.80	0.1750	*
22.40	0.1752	*
21.80	0.1752	*
21.20	0.1744	*
20.70	0.1733	*
20.10	0.1708	*
19.80	0.1691	*
19.10	0.1632	*
18.80	0.1591	*
18.20	0.1474	*
17.70	0.1328	
17.20	0.1123	
16.85	0.0995	
Bave	0.1650	

Force and Velocity Data for Run 10

 $F_{off} = -0.043 \text{ N}$ $F_{r1} = 0.780 \text{ N}$ $F_1 = 0.823 \text{ N}$ $v_1 = 0.545 \text{ m/s}$ $F_{p1} = 0.844 \text{ N}$ $F_{r2} = 0.800 \text{ N}$ $F_2 = 0.843 \text{ N}$ $v_1 = 0.530 \text{ m/s}$

 $F_{p1} = 0.844 \text{ N}$

Determination of Coil Average Width on Each Half

				Dist	Wout	Win
	Wout	Win	Wave2-7			
ave 2-7	0.07924	0.05238	0.06581	1	0.07820	0.05332
sd 2-7	0.00037	0.00034		2	0.07883	0.05290
				3	0.07886	0.05211
				4	0.07948	0.05198
				5	0.07958	0.05230
	Wout	Win	Wave 8-13	6	0.07963	0.05265
ave 8-13	0.08007	0.05324	0.06666	7	0.07907	0.05232
sd 8-13	0.00074	0.00036		8	0.07904	0.05265
				9	0.07949	0.05300
				10	0.08013	0.05330
				11	0.08092	0.05346
				12	0.08000	0.05338
				13	0.08086	0.05367
				14	0.07961	0.05204

Results for 10 Runs

Lenz's Law, Measurement of Reaction Force on a Coil as Magnet Sweeps Past											
July 2	, 2002	Ν	В	W1ave	W2ave	N B W 1	R	(NBW1)2/R		N B W 2	(NBW2)2/R
AAPT	Talk	50	0.165	0.0658	0.0667	0.54285	0.1902	1.54935		0.55028	1.59202
Boise,	, ID										
Augus	st 4, 2002										
Run#	Force of	F1	V1	F1meas	F1pred	F1meas/V1	F2	V2	F2meas	F2pred	F2meas/V2
1	-0.042	0.769	0.542	0.811	0.8397	1.4963	0.806	0.525	0.848	0.8358	1.6152
2	-0.045	0.644	0.479	0.689	0.7421	1.4384	0.768	0.502	0.813	0.7992	1.6195
3	0.011	0.859	0.571	0.848	0.8847	1.4851	0.939	0.576	0.928	0.9170	1.6111
4	0.007	0.903	0.605	0.896	0.9374	1.4810	1.019	0.630	1.012	1.0030	1.6063
5	-0.015	0.810	0.529	0.825	0.8196	1.5595	0.843	0.512	0.858	0.8151	1.6758
6	-0.044	0.797	0.550	0.841	0.8521	1.5291	0.847	0.546	0.891	0.8692	1.6319
7	-0.047	0.840	0.565	0.887	0.8754	1.5699	0.825	0.515	0.872	0.8199	1.6932
8	-0.044	0.687	0.488	0.731	0.7561	1.4980	0.744	0.487	0.788	0.7753	1.6181
9	-0.039	0.801	0.546	0.840	0.8459	1.5385	0.862	0.559	0.901	0.8899	1.6118
10	-0.043	0.780	0.545	0.823	0.8444	1.5099	0.800	0.530	0.843	0.8438	1.5906

F1pred/V1	1.5493	F2pred/V2	1.5920
F1meas/V1	1.5106	F2meas/V2	1.6274
% error	2.50	% error	2.22
stand dev	0.0396	stand dev	0.0321

Conclusion

- Computer data acquisition provides a means to observe the force on a coil as a result of current induced in it as predicted by Lenz's law.
- Equipment required is readily available or can easily be constructed.
- Care must be taken to suppress normal modes of oscillation.
- Careful measurements must be made of average magnetic field over the coil width and of the average width of the coil since the forces increases quadratically with these variables.
- Predicted and measured values of the force agree to within errors of about 2.5%, consistent with the standard deviation of the force determined over 10 experimental repetition.
- The force versus time graph provides a visual representation that reinforces the teaching of Lenz's law.