74 Special Right Triangles

 Use the relationships among the sides in special right triangles.

Your Notes

The extended ratio of the side lengths of a 45° - 45° - 90° triangle is $1:1:\sqrt{2}$.

THEOREM 7.8: 45°-45°-90° TRIANGLE THEOREM

In a 45°-45°-90° triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.

hypotenuse = $leg \cdot \sqrt{2}$

Example 1

Find hypotenuse length in a 45°-45°-90° triangle

Find the length of the hypotenuse.

a.

Solution

a. By the Triangle Sum Theorem, the measure of the third angle must be 45° . Then the triangle is a 45° - 45° -90° triangle, so by Theorem 7.8, the hypotenuse is $\sqrt{2}$ times as long as each leg.

hypotenuse = leg •
$$\sqrt{2}$$

Triangle Theorem

$$= 6\sqrt{2}$$

Substitute.

b. By the Base Angles Theorem and the Corollary to the Triangle Sum Theorem, the triangle is a 45°-45°-90° triangle.

$$\sqrt{a} \cdot \sqrt{b} \\
= \sqrt{a \cdot b};$$

$$\sqrt{\mathbf{a} \cdot \mathbf{a}} = \mathbf{a}$$

hypotenuse =
$$leg \cdot \sqrt{2}$$

$$= 4\sqrt{2} \cdot \sqrt{2}$$

Your Notes

Example 2

Find leg lengths in a 45°-45°-90° triangle

Find the lengths of the legs in the triangle.

Solution

By the Base Angles Theorem and the Corollary to the Triangle Sum Theorem, the triangle is a 45°-45°-90° triangle.

hypotenuse = leg •
$$\sqrt{2}$$

 $9\sqrt{2} = x • \sqrt{2}$

$$\frac{9\sqrt{2}}{\sqrt{2}} = \frac{x\sqrt{2}}{\sqrt{2}}$$

$$9 = x$$

Divide each side by $\sqrt{2}$.

Simplify.

Checkpoint Find the value of the variable.

$$x = 4$$

2.

$$x = 12$$

The extended ratio of the side lengths of a 30° - 60° - 90° triangle is $1:\sqrt{3}:2.$

THEOREM 7.9: 30°-60°-90° TRIANGLE THEOREM

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

hypotenuse $= 2 \cdot \text{shorter leg}$

longer leg = shorter leg • $\sqrt{3}$

Your Notes

Remember that in an equilateral triangle, the altitude to a side is also the median to that side. So, altitude \overline{BD}

bisects \overline{AC} .

Example 3 Find the height of an equilateral triangle

Music You make a guitar pick that resembles an equilateral triangle with side lengths of 32 millimeters. What is the approximate height of the pick?

Solution

Draw the equilateral triangle described. Its altitude forms the longer leg of two 30° - 60° -90° triangles. The length h of the altitude is approximately the height of the pick.

longer leg = shorter leg •
$$\sqrt{3}$$

 $h = 16 \cdot \sqrt{3} \approx 27.7 \text{ mm}$

Example 4 Find lengths in a 30°-60°-90° triangle

Find the values of x and y. Write your answer in simplest radical form.

Solution

Step 1 Find the value of x.

longer leg = shorter leg •
$$\sqrt{3}$$

 $8 = x \sqrt{3}$ Substitute.
 $\frac{8}{\sqrt{3}} = x$ Divide each side by $\sqrt{3}$.
 $\frac{8}{\sqrt{3}}$ • $\frac{\sqrt{3}}{\sqrt{3}} = x$ Multiply numerator and denominator by $\sqrt{3}$.
 $\frac{8\sqrt{3}}{3} = x$ Multiply fractions.

Step 2 Find the value of *y*.

hypotenuse =
$$\underline{2} \cdot \text{shorter leg}$$

$$y = \underline{2} \cdot \underline{\frac{8\sqrt{3}}{3}} = \underline{\frac{16\sqrt{3}}{3}}$$

Windshield wipers A car is turned off while the windshield wipers are moving. The 24 inch wipers stop, making a 60° angle with the bottom of the windshield. How far from the bottom of the windshield are the ends of the wipers?

Solution

The distance *d* is the length of the longer leg of a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle.

The length of the hypotenuse is 24 inches.

hypotenuse =
$$\underline{2} \cdot \text{shorter leg} \quad \underline{30^{\circ} - 60^{\circ} - 90^{\circ}}$$

$$\frac{24}{12} = \frac{2}{s} \cdot s$$

Divide each side by 2.

longer leg = shorter leg •
$$\sqrt{3}$$

$$d = 12\sqrt{3}$$
$$d \approx 20.8$$

Approximate.

The ends of the wipers are about 20.8 inches from the bottom of the windshield.

Checkpoint In Exercises 3 and 4, find the value of the variable.

$$x = 6$$

 $h = 6\sqrt{3}$

- **Homework**
- 5. In Example 5, how far from the bottom of the windshield are the ends of the wipers if they make a 30° angle with the bottom of the windshield?
 - 12 inches