75 Apply the Tangent Ratio

Use the tangent ratio for indirect measurement.

Your Notes

VOCABULARY

Trigonometric ratio A trigonometric ratio is a ratio of the lengths of two sides in a right triangle.

Tangent The ratio of the lengths of the legs in a right triangle is called the tangent of the angle.

Remember these abbreviations: $tangent \rightarrow tan$ opposite \rightarrow opp. $adjacent \rightarrow adj.$

TANGENT RATIO

Let $\triangle ABC$ be a right triangle with acute $\angle A$. The tangent of $\angle A$ (written as tan A) is defined as follows:

$$\begin{array}{c} \mathcal{C} \\ \text{leg} \\ \text{opposite} \\ \angle \mathcal{A} \\ \\ \mathcal{B} \\ \text{leg adjacent to } \angle \mathcal{A} \\ \end{array}$$

$$\tan A = \frac{\text{length of leg opposite } \angle A}{\text{length of leg adjacent to } \angle A} = \frac{BC}{AC}$$

Example 1

Find tangent ratios

Find tan S and tan R. Write each answer as a fraction and as a decimal rounded to four places, if necessary.

Unless told otherwise. round values of trigonometric ratios to the ten-thousandths' place and round lengths to the tenths' place.

Solution

$$\tan S = \frac{\text{opp. } \angle S}{\text{adj. to } \angle S} = \frac{|RT|}{|ST|} = \frac{|60|}{|25|} = \frac{|12|}{|5|} = \underline{|2.4|}$$

$$\tan R = \frac{\text{opp. } \angle R}{\text{adj. to } \angle R} = \frac{\boxed{ST}}{\boxed{RT}} = \frac{\boxed{25}}{\boxed{60}} = \frac{\boxed{5}}{\boxed{12}} \approx \underline{0.4167}$$

Your Notes

Checkpoint Find tan B and tan C. Write each answer as a fraction and as a decimal rounded to four places.

Example 2 Find a leg length

Find the value of x.

Use the tangent of an acute angle to find a leg length.

$$\tan 31^\circ = \frac{\text{opp.}}{\text{adj.}}$$

$$tan 31^\circ = \frac{17}{x}$$
 Substitute.

 $x \cdot tan 31^\circ = 17$ Multiply each side by x .

$$x \cdot \tan 31^{\circ} = 17$$

$$x = \frac{17}{\tan 31^{\circ}}$$

$$x \approx \frac{17}{0.6009}$$

$$x \approx 28.3$$

Write ratio for tangent of 31°.

Divide each side by tan 31°.

 $x \approx \frac{17}{0.6009}$ Use a calculator to find

Simplify.

Example 3 **Estimate height using tangent**

Lighthouse Find the height h of the lighthouse to the nearest foot.

$$tan 62^{\circ} = \frac{opp}{adj}$$

$$\frac{\tan 62^{\circ}}{\text{adj.}} = \frac{\text{opp.}}{\text{adj.}} \qquad \frac{\text{Write ratio for the second of the s$$

$$\tan 62^{\circ} = \frac{h}{100}$$

$$\frac{100}{100} \cdot \frac{\tan 62^\circ}{\tan 62^\circ} = h$$

Write ratio for

Substitute.

Use a special right triangle to find the tangent of a 30° angle.

Solution

Step 1 Choose $\sqrt{3}$ as the length of the shorter leg to simplify calculations. Use the 30°-60°-90° Triangle Theorem to find the length of the longer leg.

longer leg = shorter leg •
$$\sqrt{3}$$

 $x = \sqrt{3} \cdot \sqrt{3} = 3$

Step 2 Find tan 30°.

tan $30^{\circ} = \frac{\frac{\text{opp.}}{\text{adj.}}}{\frac{\sqrt{3}}{3}}$ Write ratio for tangent of 30° .

tan $30^{\circ} = \frac{\frac{\sqrt{3}}{3}}{3}$ Substitute.

The tangent of any 30° angle is $\frac{\sqrt{3}}{3} \approx 0.5774$.

The tangents of all 30° angles are the same constant ratio. Any right triangle with a 30° angle can be used to determine this value.

Checkpoint In Exercises 2 and 3, find the value of x. Round to the nearest tenth.

4. In Example 4, suppose the length of the shorter leg is 1 instead of $\sqrt{3}$. Show that the tangent of 30° is still equal to $\frac{\sqrt{3}}{3}$.

Homework

longer leg = shorter leg •
$$\sqrt{3}$$

 $x = 1 • \sqrt{3} = \sqrt{3}$
 $\tan 30^\circ = \frac{\text{opp.}}{\text{adj.}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} • \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$