7 Solve Right Triangles

Goal • Use inverse tangent, sine, and cosine ratios.

Your Notes

VOCABULARY

Solve a right triangle To solve a right triangle is to find the measures of all of its sides and angles.

The expression " $\tan^{-1} x$ " is read as "the inverse tangent of x."

INVERSE TRIGONOMETRIC RATIOS

Let $\angle A$ be an acute angle.

Inverse Tangent If
$$\tan A = x$$
, then $\tan^{-1} x = m \angle A$.

$$\tan^{-1}\frac{BC}{AC} = m \angle A$$

Inverse Sine If
$$\sin A = y$$
, then

$$\sin^{-1} y = m \angle A$$
. $\sin^{-1} \frac{BC}{AB} = m \angle A$

Inverse Cosine If
$$\cos A = z$$
, then

$$\cos^{-1} z = m \angle A$$
.

$$\cos^{-1}\frac{AC}{AB}=m\angle A$$

Use an inverse tangent to find an angle measure Example 1

Use a calculator to approximate the measure of $\angle A$ to the nearest tenth of a degree.

Because
$$\tan A = \frac{16}{20} = \frac{4}{5} = 0.8$$

Because
$$\tan A = \frac{16}{20} = \frac{4}{5} = 0.8$$
, $\tan^{-1} \frac{0.8}{0.8} = m\angle A$. Using a calculator, $\tan^{-1} \frac{0.8}{0.8} \approx \frac{38.65980825}{0.80825} \dots$

So, the measure of $\angle A$ is approximately $_38.7^{\circ}$.

Checkpoint Complete the following exercise.

1. In Example 1, use a calculator and an inverse tangent to approximate $m \angle C$ to the nearest tenth of a degree.

 $m \angle C \approx 51.3$

Let $\angle A$ and $\angle B$ be acute angles in two right triangles. Use a calculator to approximate the measures of $\angle A$ and $\angle B$ to the nearest tenth of a degree.

a.
$$\sin A = 0.76$$

b.
$$\cos B = 0.17$$

Solution

a.
$$m\angle A = \underline{\sin^{-1} 0.76}$$
 b. $m\angle B = \underline{\cos^{-1} 0.17}$ $\approx \underline{49.5^{\circ}}$ $\approx \underline{80.2^{\circ}}$

b.
$$m \angle B = \frac{\cos^{-1} 0.17}{\approx 80.2^{\circ}}$$

Example 3 Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Solution

Step 1 Find $m \angle B$ by using the Triangle Sum Theorem.

$$180^{\circ} = 90^{\circ} + 23^{\circ} + m \angle B$$

 $67^{\circ} = m \angle B$

Step 2 Approximate BC using a sine ratio.

$$\underline{\sin 23^{\circ}} = \frac{BC}{40}$$
 Write ratio for $\underline{\sin 23^{\circ}}$.
 $40 \cdot \sin 23^{\circ} = BC$ Multiply each side by 40.

$$40 \cdot 0.3907$$
 ≈ BC Approximate $\sin 23^{\circ}$.

$$\underline{ \ \ 15.6 \ } \approx \textit{BC} \qquad \text{Simplify and round answer.}$$

Step 3 Approximate AC using a cosine ratio.

$$\frac{\cos 23^{\circ}}{40} = \frac{AC}{40}$$
 Write ratio for $\frac{\cos 23^{\circ}}{20}$.

$$40 \cdot \cos 23^{\circ}$$
 = AC Multiply each side by 40 .

$$\underline{40 \cdot 0.9205} \approx AC$$
 Approximate $\underline{\cos 23^{\circ}}$.

$$36.8 \approx AC$$
 Simplify and round answer.

The angle measures are 23° , 67° , and 90° . The side lengths are 40 feet, about 15.6 feet, and about 36.8 feet.

Your Notes

Example 4

Solve a real-world problem

Model Train You are building a track for a model train. You want the track to incline from the first level to the second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3°?

Solution

Use the tangent and inverse tangent ratios to find the degree measure *x* of the incline.

$$\tan x^{\circ} = \frac{\text{opp.}}{\text{adj.}} = \frac{4}{96} \approx \underline{0.0417}$$
 $x \approx \underline{\tan^{-1} 0.0417} \approx \underline{2.4}$

The incline is about 2.4°, so it is less than 3°.

Checkpoint Complete the following exercises.

2. Find $m \angle D$ to the nearest tenth of a degree if $\sin D = 0.48$.

$$m/D \approx 28.7^{\circ}$$

3. Solve a right triangle that has a 50° angle and a 15 inch hypotenuse.

Angles: 90°, 50°, and 40°; Side lengths: 15 in., about 9.6 in., and about 11.5 in.

Homework

4. In Example 4, suppose another incline rises 8 inches in 120 inches. Is the incline less than 3°?

No, the incline is about 3.8°.