103 Apply Properties of Chords

Goal • Use relationships of arcs and chords in a circle.

Your Notes

THEOREM 10.3

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

$$\overrightarrow{AB} \cong \overrightarrow{CD}$$
 if and only if $\overrightarrow{AB} \cong \overrightarrow{CD}$

Example 1

Use congruent chords to find an arc measure

In the diagram, $\bigcirc A \cong \bigcirc D$, $\overline{BC} \cong \overline{EF}$, and $mEF = 125^{\circ}$. Find mBC.

Solution

Because \overline{BC} and \overline{EF} are congruent chords in congruent circles, the corresponding minor arcs BC and EF are congruent.

So,
$$\widehat{mBC} = \widehat{mEF} = \underline{125^{\circ}}$$
.

THEOREM 10.4

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

If \overline{OS} is a perpendicular bisector of \overline{TR} , then \overline{OS} is a diameter of the circle.

THEOREM 10.5

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

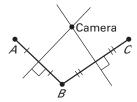
If \overline{EG} is a diameter and $\overline{EG} \perp \overline{DF}$, then $\overline{HD} \cong \overline{HF}$ and $\overrightarrow{GD}\cong \overrightarrow{GF}$.

Use perpendicular bisectors Example 2

Journalism A journalist is writing a a story about three sculptures, arranged as shown at the right. Where should the journalist place a camera so that it is the same distance from each sculpture?

Solution

- **Step 1 Label** the sculptures A, B, and C. Draw segments AB and BC.
- Step 2 Draw the perpendicular bisectors of AB and \overline{BC} . By Theorem 10.4, these are diameters of the circle containing A, B, and C.
- **Step 3 Find** the point where these bisectors intersect. This is the center of the circle through A, B, and C, and so it is equidistant from each point.



Example 3

Use a diameter

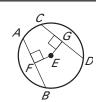
Use the diagram of $\odot E$ to find the length of BD. Tell what theorem you use.

Solution

Diameter \overline{AC} is perpendicular to \overline{BD} . So, by Theorem 10.5, \overline{AC} bisects \overline{BD} , and $\overline{BF} = \overline{DF}$. Therefore, BD = 2(DF) = 2(6) = 12.

THEOREM 10.6

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.



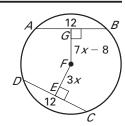
 $\overline{AB} \cong \overline{CD}$ if and only if EF = EG.

Your Notes

Example 4

Use Theorem 10.6

In the diagram of $\odot F$, AB = CD = 12. Find *EF*.



Solution

Chords \overline{AB} and \overline{CD} are congruent, so by Theorem 10.6 they are equidistant from F. Therefore, EF = GF.

$$EF = GF$$

 $EF = \underline{GF}$ Use Theorem 10.6.

$$3x = 7x - 8$$
 Substitute.

$$x = 2$$

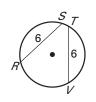
x = 2 Solve for x.

So,
$$EF = 3x = 3(2) = 6$$
.

Checkpoint Complete the following exercises.

1. If
$$\widehat{mTV} = 121^\circ$$
, find \widehat{mRS} .

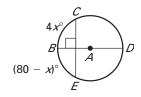
$$\widehat{mRS} = 121^{\circ}$$



2. Find the measures of CB, BE, and \widehat{CE} .

$$\widehat{mCB} = 64^{\circ}, \ \widehat{mBE} = 64^{\circ},$$

 $\widehat{mCE} = 128^{\circ}$



Homework

3. In the diagram in Example 4, suppose AB = 27 and EF = GF = 7. Find CD.

$$CD = 27$$