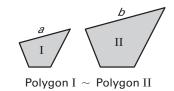
Perimeter and Area of **Similar Figures**

Goal • Use ratios to find areas of similar figures.

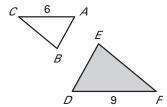

Your Notes

THEOREM 11.7: AREAS OF SIMILAR POLYGONS

If two polygons are similar with the lengths of corresponding sides in the ratio of a:b, then the ratio of their areas is $a^2 : b^2$.

$$\frac{\text{Side length of Polygon I}}{\text{Side length of Polygon II}} = \frac{\frac{\partial}{\partial b}}{\frac{\partial}{\partial b}}$$

$$\frac{\text{Area of Polygon I}}{\text{Area of Polygon II}} = \frac{\partial^2}{\partial b^2}$$



Example 1

Find ratios of similar polygons

In the diagram, $\triangle ABC \sim \triangle DEF$. Find the indicated ratio.

- a. Ratio (shaded to unshaded) of the perimeters
- **b.** Ratio (shaded to unshaded) of the areas

compare the measures with

fractions. The perimeter of $\triangle DEF$ is three halves the perimeter of \triangle *ABC*. The area of $\triangle DEF$ is nine fourths the area of \triangle ABC.

You can also

Solution

The ratio of the lengths of corresponding sides is

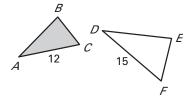
$$\frac{9}{6} = \frac{3}{2}$$
, or $3 : 2$.

- a. By Theorem 6.1, the ratio of the perimeters is 3:2.
- b. By Theorem 11.7 above, the ratio of the areas is 3^2 : 2^2 , or 9: 4.

Windows You buy two rectangular pieces of aluminum window screening. One is 15 feet long and costs \$135. The other is similar in shape and is 20 feet long. The screen is sold by the square foot. What is the cost of the longer roll?

Solution

The ratio of the length of the longer roll to the shorter roll is 20 : 15, or 4 : 3. So, the ratio of the areas is $4^2 : 3^2$, or 16 : 9. This ratio is also the ratio of the screen costs. Let x be the cost of the longer roll.


$$\frac{\frac{16}{9}}{=} = \frac{x}{135} \leftarrow \text{Cost of longer roll}$$

$$x = \underline{240} \qquad \text{Solve for } x.$$

It costs \$ 240 for the longer roll.

Checkpoint Complete the following exercises.

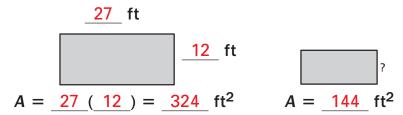
1. Given $\triangle ABC \sim \triangle DEF$, find the ratio (shaded to unshaded) of the perimeters and areas.

4:5; 16:25

2. In Example 2, suppose you decide to buy a different kind of screening but in the same dimensions. The longer roll costs \$200. What is the cost of the shorter roll?

\$112.50

Your Notes


Example 3

Use a ratio of areas

Billboards A large rectangular billboard is 12 feet high and 27 feet long. A smaller billboard is similar to the large billboard. The area of the smaller billboard is 144 square feet. Find the height of the smaller billboard.

Solution

First draw a diagram to represent the problem. Label dimensions and areas.

Then use Theorem 11.7. If the area ratio is a^2 : b^2 , then the length ratio is a:b.

$$\frac{\text{area of smaller billboard}}{\text{area of large billboard}} = \frac{\frac{144}{324}}{\frac{1}{324}} = \frac{\frac{4}{9}}{\frac{1}{9}}$$

$$\frac{\text{length of smaller billboard}}{\text{length of large billboard}} = \frac{\frac{2}{3}}{\frac{3}{3}}$$

Any length in the smaller billboard is $\frac{2}{3}$ of the corresponding length in the large billboard. So, the height of the smaller billboard is $\frac{2}{3}$ (12 feet) = 8 feet.

Checkpoint Complete the following exercise.

3. In Example 3, suppose the area of the smaller billboard is 225 square feet. Find the height of the smaller billboard.

10 ft

Stop sign A stop sign rug is a regular octagon. Each side is 2 feet and the area is about 19.3 square feet. You make a stop sign mat with a perimeter of 72 inches. Find the area of the mat to the nearest tenth of a square inch.

Solution

All regular octagons are similar, so the rug and mat are similar.

Step 1 Find the ratio of the lengths of the rug and mat by finding the ratio of the perimeters. Use the same units for both lengths in the ratio.

$$\frac{\text{Perimeter of rug}}{\text{Perimeter of mat}} = \frac{8(2 \text{ ft})}{72 \text{ in.}} = \frac{16}{6} \frac{\text{ft}}{\text{ft}} = \frac{8}{3}$$

So, the ratio of corresponding lengths (rug to mat) is 8:3.

Step 2 Calculate the area of the mat. Let x be this area.

$$\frac{(\text{length in rug})^2}{(\text{length in mat})^2} = \frac{\text{area of rug}}{\text{area of mat}}$$

$$\frac{8^2}{3^2} = \frac{19.3 \text{ ft}^2}{x \text{ ft}^2}$$

$$\underline{64} x = \underline{173.7}$$

$$x \approx 2.714 \text{ ft}^2$$

Step 3 Convert the area to square inches.

$$2.714 \text{ ft}^2 \cdot \frac{144 \text{ in.}^2}{1 \text{ ft}^2} \approx 390.8 \text{ in.}^2$$

The area of the mat is about 390.8 square inches.

Homework

Checkpoint Complete the following exercise.

4. Rectangles I and II are similar. The perimeter of Rectangle I is 48 inches. Rectangle II is 30 inches by 18 inches. Find the area of Rectangle I.

135 in.²