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”The higher intellect, the imagination, the spirit, and even the
heart might all find their congenial aliment in pursuits which, as
some of their ardent votaries believed, would ascend from one step
of powerful intelligence to another, until the philosopher should
lay his hand on the secret of creative force and perhaps make new
worlds for himself.” – Nathaniel Hawthorne, ”The Birthmark”

As science has steadily given us more and more power over our world, the
optimists have always hoped to unravel the secret behind the origin of life it-
self, in order that they might mend, imitate, and refine it, or at the very least
gain a clue as to where we came from and what our place is in the cosmic
metanarrative. Darwin is seen by most scientists as a bright beacon pointing
to the answer. The Intelligent Design (ID) movement, popular among Chris-
tians in America though frowned upon by the scientific community, questions
the sufficiency of natural processes to explain the profound complexity we
see in nature, and furthermore declares that design by a higher intelligence
can be inferred scientifically. Whether or not they denounce ID, scientists
readily acknowledge that the precise mechanisms by which evolution has and
does progress remain a mystery, and that Darwin, Watson, Crick, Gould etc.
have provided only a vague outline of the story.

Those precise mechanisms, if they can be found, would be of extreme in-
terest to technologists, and particularly in the software arena where programs
can be written to match a well-defined model. Nature has solved some of
the hardest problems we can imagine in the design of biological organisms.
Artificial Intelligence (AI) can be briefly defined as the science of solving
hard problems automatically, and thus it should be no surprise that recent
advances in AI have come, not from the hard-coded and meticulously de-
signed algorithms we traditionally associate with computer applications, but
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from biology-inspired ”soft computing” frameworks that exploit our new and
growing understanding of how complexity can self-organize in an autonomous
way. The underlying concept is emergence, which has been revolutionizing
virtually all the sciences over the last fifty years, as described by complex-
ity theorists Ricard Solé and Brian Goodwin in their Signs of Life: How
Complexity Pervades Biology (2000):

A remarkable burst of creativity in science is transforming
traditional disciplines at an extraordinary rate, catalyzing move-
ments whereby old boundaries are dissolving and newly integrated
territories are being defined. The new vision comes from the world
of complexity, chaos, and emergent order. This started in physics
and mathematics but is now moving rapidly into the life sciences,
where it is revealing new signatures of the creative process that
underlie the evolution of organisms.1

The same concepts that inspire soft computing, one of the most successful
and promising branches of AI, fuel the optimist’s hope that we are on the
brink of discovering the secret behind life itself. By and large, ID has not
confronted this growing paradigm. For the sake of broadening the discussion,
therefore, in the below we use the perspective of emergence to evaluate two
questions:

• A) Can we reliably infer design in a complex system?

• B) Does current theory provide a full explanation for the emergence of
biological complexity?

Evolution as Function Optimization

Natural selection works by exploring a ”fitness landscape” through muta-
tions and sexual reproduction, looking for peaks which represent survival
optimums in the current environment. The process works best when there is
a smooth gradient leading upwards to a maximum, providing small steps that
are acheivable with probabilistically feasible mutations (see Figure 1). Each
correct mutation takes part of the population a step up the hill, providing
the survival benefit and selective pressure necessary to carry the species to

1Ricard Soleé and Brian Goodwin, Signs of Life: How Complexity Pervades Biology
(US: Basic Books, 2000), ix.
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the top. All nature’s algorithm need do is stumble into the so-called ”basin
of attraction” of one of these peaks. In this sense the evolutionary process
can be seen as a stochastic (random) optimization algorithm, although we
acknowledge that the dynamics of biological evolution in real-world ecosys-
tems are more subtle than this simple caricature would imply. We stress the
optimization interpretation because it can help in visualizing the limits of
Darwinian processes.

Figure 1: A fitness peak with a wide basin of attraction conducive to discovery
via natural selection.

Constructing good solutions to real-world problems is more difficult than
the smooth curve in Figure 1 makes it appear, which is why gradualistic mod-
els of evolutionary history have long been abandoned in favor of such ideas
a punctuated equilibrium, in which progress occurs in occasional spurts. In
practice all optimization algorithms suffer from the ”local maximum” prob-
lem, as the fitness landscape is often tumultuous. The program happily
climbs to the top of an easy-to-find, shallow peak, while altogether missing a
much better solution with a narrow basin of attraction. There is no foreseen
benefit to going towards the higher peak, since things don’t get gradually
better as we build that system (See Figure 2), and furthermore the valley
between them may be too low for the organism to survive at all in an inter-
mediate state.

Since a real fitness landscape has many more than two dimensions, going
a long ways by chance and hitting the jackpot is extremely unlikely, and so
a roadblock occurs in the evolutionary process. Intelligent Design focuses on

3



instances where the local maximum problem appears to have been inexpli-
cably transcended.

Figure 2: A simulated fitness function with two local maximums, the taller
of which has a very small basin of attraction.

Design Inference

The premises that underlay ID are perhaps most clearly laid out by philoso-
pher and mathematician William Dembski’s three criteria for ”design infer-
ence.” The idea is that systems have been observed in nature which display
the following properties, what Dembski calls Complex Specified Information
(CSI):2

• Contingency requires that the system could have been built differ-
ently. It’s like choosing Scrabble letters at random from a bag. If the
bag contains only one type of letter, then our result is not contingent on
anything, and we have no grounds to be surprised. However, if the bag
contains a large variety of possibilities we may be able to infer design
if a given selection can be shown to be unexplainable probabilistically.

2William Dembski, Intelligent Design: The Bridge Between Science and Theology (IL:
Intervarsity Press, 1999), 128.
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• Complexity by Dembski’s definition requires that the system have
many interdependent parts, without any of which the system would be
incomplete.

• Specification requires that said system be well-suited for the prob-
lem we are attempting to solve. Out of the vast array of contingent
possibilities, there are many ”wrong” answers. In the Scrabble letters
analogy, specification could be equivalent to drawing letters at random
and trying to form a word in some particular language.

In applying these principles to biology, a system may provide survival
value (specification), but with sufficient complexity it can be seen as impos-
sible to have been produced via natural selection. Dembski sets the threshold
information content of such an ”irreducibly complex” system (a term coined
by Michael Behe) at 500 bits, a number well large enough that it cannot be
attributed to chance mutation.

If evolutionary processes are insufficient, it is reasoned, materialist expla-
nations have failed us, and we can infer the presence of design. And, indeed,
if a system unexplainable by incremental natural selection and requiring 500
bits of information to develop simultaneously and by chance can be shown
to exist, it would be a compelling argument.

Hypothesis Testing

Analyzing the truth of a hypothesis such as Intelligent Design demands that
we have a sound picture of the models and evidences involved, and how
they affect our conclusions. That is, we need a clear basis for probabilistic
inference – a framework which is absent from much of the ID literature.

In its quest to automate reasoning via precise computer programs, Ar-
tificial Intelligence maintains an endemic relationship with the endeavors
of probability theorists who seek to quantify the process of reasoning from
incomplete data. Most of AI applications are essentially mechanisms for gen-
erating and testing hypotheses and fitting new models to data. It is to our
benefit, then, to adopt this paradigm of exactness in order to avoid the foggy
misconceptions and fallacies that follow when we trust to intuition and the
imprecise language which accompanies it. In a sense, we seek a meta-model,
or a model of science itself, to assist communication and bring about a more
perspicuous view of the issue at large.

5



The scientific method determines the relative plausibility of one model
over another by testing their respective predictions. We can never prove
that the model we have is the best one, the one and only truth, though we
may become extremely confident in it after many tests (ex. Newton’s law
of gravity). The best we can do is show that its predictions match old and
new data better than any other model we’ve been able to think of. Thus
the proper epistemological context for the problem of origins is more subtle
than a simple ”science proves this” or ”science proves that.” Perhaps at this
point it would be prudent to keep in mind what has been called the ”eleventh
commandment for statisticians:”

”Thou Shalt not Extrapolate Beyond the Range of Thy Data.”3

We will not cede to agnosticism, however, until the issue has been sufficiently
explored.

Our strength of belief in a hypothesis is updated by evidence. As sup-
porting evidence is accumulated, our confidence increases, or vice versa as
detracting evidence is uncovered. The snafu is that our conclusion is par-
tially determined by how confident we were to begin with – i.e. the initial
”prior probability” we choose based on previous experience. This introduces
an inherent subjectivity into our model of reasoning, as noted by eminent
probability theorist E.T. Jaynes:

”So to our robot there is no such thing as an ’absolute’ prob-
ability; all probabilities are necessarily conditional on [the prior
probabilities]”4

Some readers will recognize this approach – updating priors with evidence
– as the Bayesian interpretation of statistical inference, which forms the
foundation of a sizeable portion of traditional Artificial Intelligence tools. 5

Many religions – occidental and oriental – emphasize personal experience
as the primary source of evidence for their faith. Such evidence can be a
valid part of the personal induction process – vastly affecting a person’s
priors, and thus conclusions – but is not amenable to the public analysis of

3Stephen P. Ellner and John Guckenheimer, Dynamic Models in Biology (Princeton:
Princeton University Press, 2006), 2.

4E.T. Jaynes, Probability Theory: The Logic of Science (2003), 87-8.
5Note that I am not supporting relativism. One’s priors are always based on previous

evidence. Exactly how that evidence is converted to quantitative figures is where the
subjectivity lies. Without evidence, we begin agnostic.
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scientific discourse. Design Inference holds our interest specifically because
it promises a public, scientific way to infer the existence of a deity.

Evaluating ID

What we have are two competing models for how life came to be which make
the following broad statements and predictions, each of which are themselves
hypotheses to be tested:

1. Supernatural:

• A) Complexity exists that is difficult to explain with natural causes.

• B) Complexity exists that has no natural explanation.

• C) Some sort of supernatural entity designed this complexity.

2. Natural:

• A) Simple in vitro and/or in silica6 processes can produce a pro-
found amount of superficial complexity.

• B) Similar in vivo natural processes do produce some of the com-
plexity we see in nature.

• C) Similar natural processes produce all the complexity we see in
nature.

Hypothesis 1(B), our focus, is a negative,
1A

1B

1C

2A

2B

2C

Figure 3: Bayesian relation-
ships between the hypotheses.

and thus very difficult to prove. Its verifica-
tion depends on an assurance as to the lim-
its of all natural processes and our ability to
identify violations of those limits, a predic-
tion that can be supported by instances of
evidence 1(A). 1(B) is not strictly falsifiable,
but our confidence in it is reduced as we suc-
ceed in explaining more and more complex
systems naturally, i.e. if 2(A) and (espe-
cially) 2(B) are verified in many cases. 1(C),
which follows from the verification of 1(B), is
only falsifiable by 2(C), which is equivalent
to another negative (no complexity was created non-naturally) and thus all

6In silica refers to an experiment conducted solely via computer simulation.
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but impossible to prove conclusively. 2(C) is falsifiable, however, by a single
counterexample via 1(B). Figure 3 summarizes these observations in a rough
version of what is known as a Bayesian network. Single lines represent sup-
porting (black) or detracting (red) evidence, thicker lines having more effect
than thin ones. Double lines represent logical proof/disproof.

We have two general sources of evidence in this model: apparent irre-
ducible complexity, and its potential explanation as computational and phys-
ical experiments threaten to unveil simple explanations for an arbitrary level
of apparent complexity.

Emergent Complexity

In seeking examples of irreducible complexity, our efforts are confounded by
the difficulty in inferring the existence of ”genuine” complexity to begin with.
Yaneer Bar-Yam, director of the New England Complex Systems Institute,
underscores this awareness in his text on complexity

”Complex phenomena require, by their nature, a complex model
to generate them. This means we cannot expect simple models to
generate truly complex behavior. Thus, a basic skepticism about
the ability of theory to describe biological phenomena can be jus-
tified. What is missing, however, is an ability to know, a priori,
what are truly complex phenomena and what properties of complex
organisms can be attributed to simple universal behaviors.”7

Another complex systems researcher defends the value and relevance of in
silica theory:

”One possible approach is through realistic models, that in-
clude as much detail as possible. On the other extreme, simple
models with a minimum number of parameters allow for the de-
termination of the basic ingredients necessary for the emergence
of complex structures.”8

While examining simulations of complexity in various fields may not always
tell us something for certain about natural systems, it does affect our picture

7Yaneer Bar-Yam, Dynamics of Complex Systems (CO: Westview Press, 1997), 690.
8Gomez Portillo IJ, Gleiser PM, ”An Adaptive Complex Network Model for Brain

Functional Networks”, PLoS ONE, vol. 4 no. 9, 07 September, 2009.

8



of how apparent complexity may or may not arise from simple origins in a
variety of situations.

Dembski’s definition of complexity implicitly deals with the minimum
information required to specify the system, not the high-level intricacy we
actually observe. This is known as the Kolmogorov or ”algorithmic” complex-
ity of the system, and is an extension Shannon’s information theory.9 In this
model certain systems can be compressed, described by an algorithm that can
be expressed in a relatively small amount of data. For example, to transmit
the string ”ABABABABABABABAB” we needn’t transmit each character
individually, but can instead send ”8*(AB)”, meaning ”AB” is repeated eight
times. Or if we want to convey the base-1 message ”1111111111111111111”
it can be compressed to ”10011” in base-2. Kolmogorov complexity is de-
fined to be the shortest possible signal + algorithm pair that can be used
to reconstruct the entire signal within the given computational environment
(be it chemical or digital).

Among the most astounding results the study of complexity has brought
us is the realization of the intricate patterns that can arise from simple spec-
ifications (i.e. low Kolmogorov complexity). Brief algorithms can be defined
which, by repeating the same operation, self-organize or ”emerge” into as-
tounding structures which the viewer would assume have much more complex
specifications. A classic example is the fractal pattern evident in the Man-
delbrot set.

The idea of a ”fractal” is somewhat ill-defined, but at its heart lies the
concept of self-similarity – a property shared by many nonlinear and chaotic
systems – in which a subsection of the system contains a scaled-down snap-
shot of the whole. This is readily apparent in the Mandelbrot set, in which
the scale models are accompanied by beautiful swirls that look like the brush
strokes of a talented artist. And yet no human being specified this paint-
ing: the entire system is described by the straightforward complex (as in
imaginary numbers) polynomial:

zn+1 = z2
n + c

which is arguably the simplest conceivable nonlinear map in the complex
plane.

At this point Dembski makes an important observation: it takes more
than this simple equation to produce the famous picture.

9Bar-Yam, Complex Systems, 706.
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Figure 4: Images from deep within the Mandelbrot set and the corresponding
Julia set.

”Any function that produces a graphic depiction of the Man-
delbrot set will be a complicated algorithm employing a compli-
cated set of input data... But by itself the function h(z) = z2 + c
is too information-poor to produce this graphic depiction of the
Mandelbrot set j. Once we examine the precise informational
antecedents to j, the illusion that we have generated information
for nothing disappears.”10

In our initial examples of Komolgorov complexity, we didn’t discuss how
much information is required to specify the algorithms that decompress
”8*(AB)” or convert base-2 back into base-1.

Clearly, however, as the length of the signal we want to reproduce in-
creases, the algorithm size remains fixed. If the algorithm to convert base-2
into base-1, for example, takes 50 bits, then translating the number 10,000
in base-1 (10,000 bits) into base-2 (”1001110001000” – 13 bits) takes only 63
bits total. No matter the size of the algorithm, as the length of the signal
increases its Kolmogorov complexity is significantly smaller than the original
(except in the case of truly random data, which cannot be compressed). The
Mandelbrot set is infinitely intricate, and its requisite algorithm is by no
means large – Dembski describes the details in a single paragraph.

It is conceivable that algorithms of this sort tend to be irreducibly com-
plex. It would indeed be difficult to encode the entire mechanism for the

10Dembski, 165
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Mandelbrot set into under 500 bits (about 63 ASCII characters). It’s impor-
tant to note, however, that once any system is reduced to its fundamentals,
our ”algorithm” consists of the laws of nature themselves. The semantics that
define the results of biological complexity operate according to these prede-
fined physical principles; only the initial (compressed) input string need be
provided.

A potent example of emergence in physics is found in the so-called ”nanoflow-
ers” that have been synthesized in laboratories under a variety of condi-
tions. The structures apparent in Figure 5 were created by heating gallium
nitride on a silicon substrate to 1100◦C and then exposing the system to
methane gas. ”Interest in such structures,” writes the Cambridge research
team who developed the experiment, ”centres around the combination of a
simple growth process based on SiC nanowire formation, with a resultant
structure having potentially complex mechanical and optical properties.”11

Figure 5: These silicon carbide ”nanoflowers” were inorganically synthesized
via a simple chemical reaction.

Neither the Mandelbrot set nor nanoflowers, impressive though they are,
meet Dembski’s specification criterion, and thus are not sufficient for demon-
strating the significance of emergence in biology. The important idea here,

11Ghim Wei Ho et al., ”Three-dimensional crystalline SiC nanowire flowers,” Nanotech-
nology, 15 (2004), 996-999.
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however, is that patterns which seem complex to our eye can actually emerge
from a simple process – that is, they have a low Kolmogorov complexity –
and that is significant to our purposes.

Stephen Wolfram, whose developments in computer science have made
significant contributions to our understanding of complexity, points out that

”We have seen a great many systems whose underlying rules
are extremely simple, yet whose overall behavior is sufficiently
complex that even by thinking quite hard we cannot recognize its
simple origins.”

Wolfram goes so far as to consider the case of trying to infer design in an ex-
traterrestrial radio signal (also an illustration Dembski uses to discuss ID12),
intimating that awareness of emergence causes any seemingly designed piece
of information fall suspect to natural causes. ”We cannot find an abstract
way to give evidence of purpose or intelligence,” he says.13

Whether or not we take such a laconic position as Wolfram, it should
be clear that design inference is made difficult by the tendency for complex
systems to display emergent properties. Furthermore, this self-organization
makes it easier for natural selection to explain biological systems. If a system
can be specified with a small number of bits, then the local maximum problem
becomes a non-issue. Something as superficially intricate as the Mandelbrot
set can be defined by a very simple mathematical algorithm, and so it is
conceivable that something such as an eye could be described by a simple
gene network.

In this view, natural selection chooses apparently complex specified sys-
tems only from amongst emergent designs that are feasible to discover via
chance and gradual development; each new available step builds on the ma-
trix of interacting parts available given the organism’s current configuration
(This process by which an organism’s current state affects it’s future possi-
bilities has been called autocatalysis14), causing gradual evolutionary steps to
quickly produce extremely intricate complexity. Indeed emergence must take
place at least some extent, since our genome is many orders of magnitude
too short to define every feature of our physiology explicitly.

12Dembski, 128
13Stephen Wolfram, A New Kind of Science (IL: Wolfram Media, 2002), 620, 838.
14Russell Eberhart and Yuhui Shi, Computational Intelligence: Concepts to Implemen-

tations (Amsterdam: Elsevier, 2007), 28.
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We have only scratched the surface of the nonlinear mathematics, com-
puting, and physics that explores in silica and in vitro models of emergence
(our hypothesis 2(A)). Clearly, however, such things are only the first step
towards understanding and uncovering emergence in real biological systems
(2(B)). In the last decade research seeking empirical confirmation of the pre-
dictions of emergent models in the real world has placed a great deal of
emphasis on power-law distributions which are easy to detect statistically.
Complexity researcher Melanie Mitchell summarizes the source of interest:

”Power-law distributions have been identified for the size of
cities, people’s incomes, earthquakes, variability in heart rate,
forest fires, and stock-market volatility, to name just a few phe-
nomena... There are many different explanations of power laws
observed in nature (e.g. preferential attachment, fractal struc-
ture, self-organized criticality, highly optimized tolerance, among
others), and little agreement on which observed power laws are
caused by which mechanisms.”15

What the true mechanisms are, as well as how to detect them, remain largely
a mystery.

Emergent Computing

One complexity researcher cites technological applications as the primary
motivation for interest in the field:

”At the core of this explosion of interest is the realization that
both natural and artificial systems (mostly computer models) are
both quite capable of showing several complex phenomena in com-
mon.”16

”Soft computing” is where the paradigm of emergence meets technology.
The term, coined by Lotfi Zadeh in 199417, refers generally not only to prob-
abilistic AI tools, but especially to nature-inspired systems such as artificial
neural networks, evolutionary computation, swarm intelligence, and artificial

15Melanie Mitchell, Complexity: A Guided Tour (Oxford University Press, 2009), 269.
16Octavio Miramontes, Complexity and Behavior in Leptothorax Ants (2007).
17Lotfi A. Zadeh, ”Fuzzy Logic, Neural Networks, and Soft Computing,” Communica-

tions of the ACM, March 1994, Vol. 37 No. 3, 77-84.
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immune systems18. Each of these technologies is fuelled by the expectation
that self-organizing, emergent properties can bring about sophisticated solu-
tions to our problems even when humans are at a loss at how to approach
them. The paradigm has struck the field deeply enough that some advocate
teaching the theory of computation as a property of the natural world.19

In general, soft computing algorithms are machine learning algorithms.
That is, they are applied to a library of sample data, modify and/or param-
eterize themselves accordingly, and then are tested on other data to see how
well they’ve modeled the system in question. The problem to be solved might
be object recognition, optimization of an industrial process, spam detection,
or modeling the dynamics of a nonlinear mechanical system being produced
for use in vehicles. All these methods resemble biological evolution in that
it is not just the algorithm and initial state of the system that produce the
complexity, but the information that is generalized and teased out of the
environment via selective processes.

We can think of these applications as a sort of laboratory to test our
understanding of the natural mechanisms that might give rise to specified
complexity. If we genuinely understand how biological solutions arise, then
we should be able to emulate those processes to solve our problems. Indeed
these attempts have allowed us to solve profoundly difficult problems and
develop practical solutions that are otherwise intractable. The evolved solu-
tions are furthermore often too complex to reverse engineer, and remain a
black box to their creators. Melanie Mitchell summarizes the difficulty:

”The key [to artificial evolution], it turns out, is not [isolated]
genes, but the way different genes interact, just as has been found
in real genetics. And just as in real genetics, it’s very difficult
to figure out how these various interactions lead to the overall
behavior or fitness.”20

Despite the success of these techniques in generating complexity, artificial
neural networks are far, far off from the power of a biological brain, and
artificial immune systems do not display the sort of powerful adaptability
evident in their human counterpart. The evolutionary approach in silica is

18Andries P. Engelbrecht, Computational Intelligence: An Introduction (England: John
Wiley & Sons, Ltd, 2007), 3.

19Colin G. Johnson, ”Teaching Natural Computation,” IEEE Computational Intelli-
gence Magazine, Feb. 2009, Vol. 4 No. 1, 24-30.

20Mitchell, 136
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not a magic formula that can relieve the engineer from his responsibilities as
designer, as Bar-Yam points out:

”While the GA/EA [genetic/evolutionary algorithms] approach
can help in specific cases, it is well known that evolution from
scratch is slow. Thus it is helpful to take advantage of the capa-
bility of human beings to contribute to the design of systems.”21

The general models we have for how complexity emerges in specified ways
have not provided us, so far, with the detailed mechanistic understanding
required to implement comparable artificial solutions. This signals us that
we have more to learn, and that our models still require a lot of fleshing out
before we can pretend that we understand the nature of high-level reality.

Conclusion

In this essay we set out to answer the questions A) Can we reliably infer
design in a complex system? And B) Does current theory provide a full
explanation for the emergence of biological complexity? The answer to both,
we conclude, is no.

Design inference, we said, requires an assurance as to our ability to iden-
tify violations of the limits of natural selection, places where the local maxi-
mum problem has somehow been significantly transcended by a 500-bit leap
in the dark. Dawkins laconically calls the identification of irreducibly com-
plex systems the ”argument from personal incredulity”22. In our exploration
of in silica and in vitro complexity, we see that the limits of natural selection
are indeed by no means easy to recognize. We simply have no method of con-
fidently establishing the inherent complexity of a system. As such, whatever
evidence there is for design is at present insubstantial, as our ”incredulity”
could well be unfounded.

It is the author’s conclusion, then, that Intelligent Design does not stand
on its own two feet as a public scientific theory. Nothing in this essay, how-
ever, has proved that a deity was never involved in the history of life. Judea
Pearl, the father of probabilistic AI, has formally pointed out the distinction

21Yaneer Bar-Yam, ”When Systems Engineering Fails – Toward Complex Sys-
tems Engineering,” Conference on Systems, Man, and Cybernetics 2003 Vol. 2
(IEEE Press, Piscataway, NJ, 2003) pp. 2021-2028. Available online at
http://www.necsi.edu/research/engineering/

22Richard Dawkins, The God Delusion (2006), 128.

15



between sufficient and actual causes23: simply because natural processes
might be sufficient for producing life does not prove that they were the ac-
tual cause of all of it. Intelligent Design is plausible, then, only when an
individual’s prior experience leads them to be inclined towards belief in a
deity who is actively involved in the present and past development of life.
That is, it can be a valid part of a religious world view already established
via personal experience or some other evidence, but ID cannot be used to
prove God, per se.

As to the second question, have we provided a full natural explanation for
biological complexity? The small amount of empirical evidence supporting
various theories of emergence only gets us so far in affirming our models.
Furthermore, the limited capabilities of our technological imitations of nature
demonstrate how much we still have to learn. Human design is still integral
to the process, and it may still remain so for a long time even if complexity
does hold the answer.

If one’s prior experience leads him or her to fairly weak evidence in one
way or another, when should he or she adopt an opinion and/or remain
agnostic? We’ll give Jaynes the final word on the matter:

”There is nothing in probability theory per se which can tell
us where to put these critical levels at which we make our de-
cisions. This has to be based on value judgments: what are the
consequences of making wrong decisions, and what are the costs
of making further tests?”24

Recommended Reading

There is a host of accessible literature written about complexity and its sister
fields by scientists of great renown. Below are works that may be useful to
those interested in learning more about the movement at an introductory or
avocational level.
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23Judea Pearl, Causality: Models, Reasoning, and Inference (New York: Cambridge
University Press, 2000), 309.

24Jaynes, 96.
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