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1 Complex Adaptive Systems

I am coming to the study of Computational Intelligence (CI) technology
with the understanding that it is integrally related to the more general field
of Complex Adaptive Systems (CAS).

The new and interdisciplinary field of complex systems holds that ”the
’take home message’ of the lessons from the history of science is that method-
ological reductionism, the analytical decomposition of structures to parts,
should be completed by searching for organizational principles, too.”1 These
”organizational principles” of nature include a wide variety of phenomena,
drawing heavily from the study of nonlinear dynamics, chaos, emergent prop-
erties, game theory, and agent-based systems, and finds applications from
physics to biology to the social sciences.

Complex systems takes a top-town, generalist approach to try and shed
light on the macroscopic dynamics that result from the interaction of micro-
scopic parts. ”At the most basic level, the field of complex systems challenges
the notion that by perfectly understanding the behavior of each component
part of a system we will then understand the system as a whole.”2

John Holland describes a complex adaptive system as one that displays
”coherence under change.” The details change – the people in the city change,
the antibodies in your body change – but, he asserts, ”your immune system

1Péter Érdi, Complexity Explained (Berlin: Springer, 2008), 24
2John H. Miller and Scott E. Page, Complex Adaptive Systems: An Introduction to

Computational Models of Social Life (Princeton University Press, 2007), 3.
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is coherent enough to provide a satisfactory scientific definition of your iden-
tity”.3

The two behaviors of a CAS, adaptation (Learning, if you will) and coher-
ence (Robustness in the face of change) make them a very attractive candidate
for imitation in artificial systems. Indeed, while computational models have
proven crucial to the exploration of complex systems in nature, those self-
same natural systems have served as inspiration for the development of more
sophisticated computational paradigms (As presented by Nancy Forbes in
Imitation of Life: How Biology is Inspiring Computing (MIT Press, 2004)).

As the lines between natural phenomena and machine blurr, some advo-
cate the viewing of computation as a property of the natural world.4 The
new nature-inspired tools are again being used in computational models to
explore complex systems in nature, and the cycle continues in a two-way
relationship.

2 Computational Intelligence

These new tools form the field of Computational Intelligence, which is the fo-
cus of this study. An extension (some say successor) to AI, CI can be taken to
include the subareas of artificial neural networks, evolutionary computation,
swarm intelligence, artificial immune systems, fuzzy systems, and an exten-
sive array of hybrid systems that combine two or more of these solutions,
playing on the strengths and weaknesses of the various approaches. These
are the topics covered by my texts, and I was pleased to see that my sec-
ondary text – Computational Intelligence: An Introduction by Engelbrecht –
is used in the pioneering CI course at the Missouri University of Science and
Technology.5

3John Holland, Hidden Order: How Adaptations Build Complexity (Cambridge:
Perseus Books, 1995), 1-4.

4Colin Johnson, ”Teaching Natural Computation”, Computational Intelligence Maga-
zine, vol. 4 no. 1, February 2009, 24-30.

5Ganesh K. Kumar Venayagamoorthy, ”A Successful Interdisciplinary Course on Com-
putational Intelligence”, IEEE Computational Intelligence Magazine, vol. 4 no. 1, Febru-
ary 2009, 14-23.

2



3 Artificial Neural Networks

Artificial Neural Networks (ANNs) find their inspiration in a simplified model
of neurons in the brain. Donal Hebb established in 1943 that a network of
these mathematical neurons can ”learn” when exposed to data, and Hava
Siegalmann proved that an ANN has the full computational capacity of a
Universal Turing Machine. The development of further learning algorithms
– most notably the concept of backpropagation independently invented by
Werbos and Parker in 1974 and 1982, respectively – have made ANNs a
powerful tool and highly active area of research.

3.1 ANN Basics

An ANN is represented as a digraph. The information, the ”code” or ”knowl-
edge”, is stored in the edges of the graph which connect each neuron. This is
similar to the width of synapses in the brain, which determines how strong
the output signal of a neural is when it arrives at its target. When a network
is trained (Which entails exposing it to massive amounts of example input
until it learns how to produce the desired output), it is the weights on these
synapses that are modified until satisfactory performance is acheived.

A basic ANN design is the Feed-Forward Neural Network (FFNN), in
which no directed cycles are allowed. In a simple version of this template,
each neuron of the first layer feeds into every neuron of the second layer,
and so on. I assume this layout below in the section on back-propagation,
but be aware that FFNNs can have somewhat more intricate designs. For
example, connections can exist directly between the input layer and the out-
put layer. An alternative design strategy is the recurrent network, in which
cycles (feedback loops) are allowed, which offers more learning capacity in
exchange for being more difficult to train.

3.2 Knowledge-Based Design

It should be noted that a trained ANN is an extremely complex system. Their
usefulness comes from our ability to exploit self-organizing principles via the
training process. Reverse engineering the weights to extract this knowledge
in human-understandable terms once they are set, however – especially in
recurrent networks – is an intractable problem for more than a handful of
neurons.
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An alternative to raw knowledge extraction is knowledge-based design, in
which we design the network with comprehensibility in mind by considering
”crude domain knowledge to generate the initial network architecture, which
is later refined in the presence of training data.”6 The implementations I have
seen so far tend to use elements of fuzzy systems to combine the learning
power of ANNs with the lucidity of fuzzy rules (Which I will study later this
semester).

3.3 Activation Functions

Neural networks are an implentation of a ”connectionist system,” that is,
a massively parallel processing system.7 They are generally simulated on a
conventional computer, but we mustn’t forget that they represent an entirely
different architecture.

The heart of a neuron’s processing power is its activation function. Neu-
rons can be defined as either summation units (SU), where the sum of in-
coming signals is passed to the activation function, or as product units (PU),
in which the product of the signals is passed. i.e.,

netSU = (
∑

wifi)− θ (1)

netPU = (
∏

wifi)− θ (2)

where wi is the weight of the incoming edge (synapse), fi is the output signal
of the neuron associated with that edge, and θ is a constant.

An even wider variety of activation functions exists, which define the
output signal of the neuron based on its net input. Activation functions
generally follow one of the following forms: linear, step (Binary/Threshold),
ramp (Linear with a max and min), sigmoid (Logistic), hyberbolic tangent,
or gaussian. Which function is preferred depends on the application. The
vibe I’m getting from my reading so far is that application of CI tools is as
much an art as it is a science.

6Sushmita Mitra and Yoichi Hayashi, ”Neuro-Fuzzy Rule Generation: Survey in Soft
Computing Framework”, IEEE Transactions on Neural Networks, vol. 11 no. 3, May
2000, 748-768.

7Linda Null and Julia Lobur, The Essentials of Computer Organization and Architec-
ture (Boston: Jones and Bartlett, 2003), 439.
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3.4 Gradient Descent and Backpropagation

Backpropagation is one of the most common ways to train an ANN. It is
an example of a supervised training model, in which example answers are
provided for the network to conform to, as opposed to unsupervised learning,
in which a network learns to classify inputs into different categories with-
out being trained explicitly. Simple, two-layer feed-forward networks can be
trained fairly effectively with such methods as Hebbian learning (Which is
unsupervised), but adding hidden layers improves learning capacity while de-
creasing learning efficiency. Backpropagation made the problem of training
a network’s hidden layers tractable by providing a ”method for calculating
derivatives exactly and efficiently.” 8

The basic idea is that we define an error function that tells us how much
each of the output neurons differs from their intended value, then send this
error signal backwards through the network so each weight has an idea of
just how wrong they are. Then we use calculus to compute how best to
individually adjust each weight to improve the output. This one of the pri-
mary motivations for using continuous activation functions instead of discrete
”step” functions: calculus provides an easy way to implement the gradient
descent paradigm for greedy function optimization. By setting the initial
weights randomly and then running this backpropagation algorithm several
times, local minima can be discovered in the network’s error.

My texts showed enough of the mathematics involved to facilitate imple-
mentation, but not enough to show why propagating the error signals back
actually works. The following represents the work I had to do to make the
matter clear to myself, and to show that the entire process is a straightfor-
ward dynamic programming implementation of gradient descent equations.

The overall error of the ANN’s output can be respresented with the sum
squared error of the output neurons:

ε =
1

2

m∑
k=1

n∑
j=1

(bkj − zkj)
2 (3)

where n is the number of neurons in the output layer, b is the training
answer, and z is the output of the neuron’s activation function. It’s often
advantageous to run multiple trials before applying weight corrections, so

8Paul Werbose, ”Backpropagation Through Time: What It Is and How To Do It,”
Proceedings of the IEEE, vol. 78, no. 10, Oct. 1990.
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that a higher variety of samples are tested before we start pushing the weights
in a specific direction. m, then, is the number of separate training examples
we’ve selected for this training run. Alternatively, weight changes can be
applied after each sample if the learning rate (step size) η is sufficiently
small. In the following we will consider only the case of m = 1, but it is
straightforward to extend the equations to m > 1.

Figure 1: A basic Feed-Forward Neural Network (FFNN)
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With the error defined, we can now apply gradient descent to find the
best change in the weights:

w′
ij = wij − η

∂ε

∂wij

(4)

The tricky part is computing this partial for an arbitrary synapse. As a warm-
up problem to begin exploring what we’re trying to do, take the simple case
of altering a synapse wqr connecting a neuron yq in a hidden layer to zr in
the output layer. Since zr is the only output neuron that is changing, ε only
varies as a function of zr, i.e. ∂ε

∂wqr
= ∂εr

∂wqr
, where εr = 1

2
(br − zr)

2. Now the
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chain rule of partial differentiation gives us:

∂εr

∂wqr

=
∂εr

∂zr

∂zr

∂wqr

(5)

=
∂

∂zr

(
1

2
(br − zr)

2)
∂zr

∂wqr

(6)

= (br − zr)
∂zr

∂wqr

(7)

Note that if we had simply used the difference
∑

j (bj − zj) as our ε instead
of the SSE, we would lose some useful information (Namely the size of the
error margin) since ∂εr

∂zr
would reduce simply to -1. I find this an interesting

illustration of how squared errors are important.
Now, since zr is the activation function zr = fzr(net), we have:

∂εr

∂wqr

= (br − zr)
∂fzr(net)

∂wqr

(8)

= (br − zr)
∂fzr(net)

∂net

∂net

∂wqr

(9)

Assuming summation units, we can use equation (1) to simplify this as fol-
lows. Note how much more complex this would be if we used product units.

∂εr

∂wqr

= (br − zr)
∂fzr(netSU)

∂netSU

∂net

∂wqr

(10)

= (br − zr)
∂fzr(netSU)

∂netSU

∂

∂wqr

((
l∑

i=1

wiryi)− θ) (11)

= (br − zr)
∂fzr(netSU)

∂netSU

yq (12)

Finally, we define δzr = (br − zr)
∂fzr(netSU )

∂netSU
as the ”error signal,” the part

of ∂εr

∂wqr
that can be passed backwards through the network to help define

deeper weight adjustments. Our general equation for backpropagation across
summation units is then

∂εr

∂wqr

= δzryq (13)

The error signal δ is propagated backwards through the network across the
synapses via a summation function, allowing us to use the results of subprob-
lems (higher level weight changes) to solve the equations for deeply nested
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neurons. For example,

δyq =
∂fyq(netyq)

∂netyq

n∑
j=1

δzjwqj (14)

To see why this is done we need to extend our mathematical inquiry deeper
into the network.

In the derivation of equation (13) we made the simplifying assumption
that the synapse in question is directed into the output layer. Now take
the case of a weight wpq connecting a neuron xp in the input layer to yq.
By affecting yq, all neurons the output of yq is connected to are effected,
making our ”chain” of differentiation substantially larger. We will take yq to
be connected to every neuron in the output layer, zj, 0 ≤ j ≤ n. Proceeding
similar to the above, we now have:

∂ε

∂wpq

=
∂

∂wpq

n∑
j=0

1

2
(bj − zj)

2 (15)

=
n∑

j=0

∂εj

∂wpq

(16)

=
n∑

j=0

∂εj

∂zj

∂zj

∂yq

∂yq

∂wpq

(17)

=
∂yq

∂wpq

n∑
j=0

(bj − zj)
∂fzj(netzj)

∂yq

(18)

=
∂fyq(netyq)

∂netyq

∂netyq

∂wpq

n∑
j=0

(bj − zj)
∂fzj(netzj)

netzj

∂netzj

∂yq

(19)
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Assuming summation units:

∂ε

∂wpq

=
∂fyq(netyq)

∂netyq

∂netyq

∂wpq

n∑
j=0

(bj − zj)
∂fzj(netzj)

netzj

∂netzj

∂yq

(20)

=
∂fyq(netyq)

∂netyq

∂(
∑

h xhwhq)

∂wpq

n∑
j=0

(bj − zj)
∂fzj(netzj)

netzj

∂(
∑

i yiwij)

∂yq

(21)

=
∂fyq(netyq)

∂netyq

xp

n∑
j=0

(bj − zj)
∂fzj(netzj)

netzj

wqj (22)

=
∂fyq(netyq)

∂netyq

xp

n∑
j=0

δzjwqj (23)

= δyqxp (24)

Once the δ values have been recursively propagated through the network
by the algorithm implied by equation (14), the relationship demonstrated
by (13) and (24) can be used in (4) to calculate optimal weight changes.
Note that this solution would not be upset by weights that jump layers, for
example connecting neurons in x to the output layer.

As far as solutions to specific activation functions, my texts seem to
prefer the logistic function, which has a simple derivative, but I’ve been
using the closely-related hyperbolic tangent to test my code. We derive the
δ for zr = tanh(netSU)− θ as follows.

∂εr

∂wqr

= δyq (25)

δ =
1

yq

∂εr

∂zr

∂fzr(net)

∂net
(26)

= (br − zr)
∂

∂net
(tanh(net) (27)

= (br − zr)(1− tanh2(net)) (28)

= (br − zr)(1− z2
r ) (29)

3.5 Recurrent Networks

As aforementioned, a Recurrent Neural Network (RNN) allows synapses to
loop back onto neurons in previous layers. This creates a temporal nature, as
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past signals effect present ones. My texts barely scratch the surface of RNNs,
containing a grand total of three pages on them, most of which are taken up
by large figures. Engelbrecht presents two example Simple Recurrent Neural
Networks (SRNNs). One of these, the Elman SRNN, uses an extra hidden
layer (”context units”) to form a feedback loop (See figure 2). The weights
connected to the context layer are set at 1, so they provide a straightforward
temporal memory for the network.

Figure 2: The Elman SRNN

x1

x2

.

.

.

xk

y1

y2

.

.

.

yl

z1

z2

.

.

.

zn

b1

b2

.

.

.

bn

u1

u2

.

.

.

ul

in1

in2

ink

wx1y1

wxkyl

wy1z1

wylzn

Now that I understand that the backpropagation algorithm for FFNNs is
a straight-forward application of gradient descent, I can apply similar princi-
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ples to explore RNNs and demonstrate their difficulties for myself. Lacking
introductory literature on the topic, I scratched out the following basic RNN
on a napkin over Chinese food before attempting to take on the Elman SRNN
(See figure 3).

Figure 3: The RNN from my Napkin

a1 z b

In trying to apply gradient descent to this kind of network, I constructed
the graph in figure 4, which is equivalent to figure 3 if c equals the number of
discrete time steps entered into the recurrent network. Even though figure
4 is somewhat complicated, it has no cycles, and thus is an FFNN and
can be trained with backpropagation. Note that some awkwardness arises
since there are actually only two weights involved despite the large number
of edges. When weight changes are applied, an entire group of edges are
modified.

Figure 4: Unfolding of figure 3

a1

a2

...

ak

...

ac

z1

z2

...

zk

...

zc

b1

b2

...

bk

...

bc

in1

in2

ink

inc

w2

w1

w2

w1

w2

w1

w2

11



A natural question to ask at this juncture is whether an arbitrary RNN –
such as the Elman RNN – can be converted into a FFNN and vice versa. This
is reminiscent of the relationship between deterministic and nondeterministic
finite automata, where the former can be thought of as an expanded version
of the latter. As already mentioned, my texts (And Wikipedia, for that
matter), only provide a very light treatment of RNNs, and the answer to this
question has eluded me so far. It seems intuitively plausible to me that the
answer is yes, and that any RNN can be converted to an FFNN, but I’ve
found no statements or proofs of this.

To explore this concept of converting between ANN types further, we
examine the Elman RNN in figure 2. It is straightforward to show that
figure 5 is an equivalent FFNN for a finite number of time steps (In this case
c = 2). Note how the context layer (in green) carries information between
quantums.

Figure 5: Unfolding of figure 2 for two time steps
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Note also that the structure of this FFNN is a function of the number of
time steps in the input. We call the process of unfolding the RNN into an
FFNN for a specific number of time steps and then training it Backpropaga-
tion Through Time (BPTT). Clearly this can be a very slow process, as the
number of relationships to be considered in the FFNN version is immense. As
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a result, Genetic Algorithms and Particle Swarm Optimization are popular
alternative training methods to BPTT for RNNs (We will discuss alternative
optimizatin paradigms to gradient descent in report 2).

3.6 Code Status

I’ve put together an ANN framework in C#, trying to keep it dynamic enough
to tinker with different kinds of networks. It uses linked structures to repre-
sent the graph (As opposed to the adjacency matrices I used in a previous C
framework, which allowed for some clever matrix multiplication but overall
made for confusing arithmetic). Some modifications will be required to pro-
vide support for RNNs. I have not yet implemented backpropagation, having
been anxious to get on to genetic algorithms (Which will be the topic of my
next report), but the reasoning I went through while working through the
above will make it a straight-forward process to write the code at my leisure.
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4 Time Spent

Date Time Spent Task
12/04/08 10:00 Wrote a basic neural network simulator in C (For

CPTR 487 – time spent not counted towards in-
dependent study)

12/19/08 01:30 Explored parallel design strategies, reading about
parallel algorithms in my CPTR 276 book, tinker-
ing with Erlang, and testing multiple threads via
C#/Mono on edmund.cs.andrews.edu. I intend to
make a multithreaded CI framework.

12/13/08 03:00 Skimmed textbooks and recent literature getting a
feel for strategic approaches to evolutionary com-
putation, such as co-evolution and methods for
dealing with multi-objective functions, dynamic
environments, etc.

12/21/08 04:00 Began designing a framework to implement neural
networks and genetic algorithms together, writing
a functional neural network simulator in C# (Still
lacking training algorithms).

12/24/08 01:00 Read the first chapter of Holland’s Hidden Order,
in which he presents Complex Adaptive Systems.

12/25/08 01:00 Read the genetic algorithm section of Eberhart,
ch. 3.

12/26/08 04:00 Began GA framework (C#), deriving and imple-
menting an inverse Gray code function.

12/27/08 03:00 Fleshed out the GA with rough draft crossover,
roulette selection, and population initiation.
About 40% done.

12/28/08 02:00 Read about backpropagation, and turned my at-
tention to preprocessing, skimming the chapter on
attribute (feature) extraction in Witten, and read-
ing the section on the Fast Fourier Transform in
my book from CPTR 276.

14



Date Time Spent Task
12/29/08 03:00 Continued trying to fully understand backprop-

agation, deriving error signal differentials for
tanh(x) (The texts only have derivations for the
logistic function). Created Course Plan PDF.

12/30/08 00:30 Created outline for report 1
01/14/09 05:00 Implemented mutation and began tinkering with

different parameters to solve a toy problem.
Results are poor pending implementation of
crossover (?).

01/22/09 00:30 Read Ganesh Venayagamoorthy, A Successful In-
terdisciplinary Course on Computational Intelli-
gence, IEEE Computational Intelligence Maga-
zine, vol. 4 no. 1, February 2009, 14-23.

01/22/09 02:15 Began drafting report 1
01/27/09 05:00 Worked on report 1 / backpropagation derivation
01/30/09 04:00 Worked on report 1 / General derivation of back-

propagation
01/30/09 00:30 Read an article on Complex Systems and Neural

Nets
01/30/09 05:00 Learned TeX graphics with Tikz / Explored back-

propagation on non-feed-forward networks
01/31/09 04:00 Explored RNNs further / Updated report 1
For this Report: 49:15
To Date: 49:15
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