
Report 3: Classification and Object
Recognition

Eric Scott, supervised by Roy Villafañe, Andrews University

27 April, 2009

For CPTR 495, Independent Study in Computational Intelligence

1 Computer Assisted Taxonomy

Some of Artificial Intelligence’s greatest accomplishments are in the area of
pattern recognition. Data mining, optical character recognition (OCR), and
speech recognition have enjoyed relatively significant success over the past few
decades. Computer vision, too – the study of object recognition and spatial
awareness algorithms for images and video streams – is often seen as not
only an application area but a subfield of AI and robotics. With the advent
of the Internet, the concept of content-based image retrieval (CBIR) has
become an important research fronteer, as the need to organize multimedia
databases and make them easy to query has become quite pronounced. In a
CBIR system searches are executed against the actual content of the images
via automatically generated feature tags instead of human-defined metadata,
since human classification of the images is expensive. In this sense CBIR can
be seen as content-addressable memory.

These tools serve as a possible solution to what has been called the ”tax-
onomic impedement” to biodiversity studies. In short, taxonomy is hard,
with millions of known bug species, and with paper guides that make it dif-
ficult to identify specimens without being an expert already. The taxonomic
workforce is small, making research on the distribution of bug populations
difficult.1 A sample of ten thousand bugs mechanically collected from a Mis-

1Kevin J. Gaston and Mark A. ONeill, ”Automated Species Identification: Why Not?”,
Philosophical Transactions fo the Royal Society (2004) 359, 655667.

1

souri cornfield holds a lot of information regarding migrations, responses to
pesticides, climate, etc, but it’s a time consuming and expensive process to
manually identify and record the specimens even on the most general level.

Figure 1: Expert systems such as the Centre for Biological Information Tech-
nology’s Lucid 3 aim to streamline traditional approaches to taxonomy.

Probably the world’s largest database of insect and arachnid photographs
can be found in Bugguide.net, an online community hosted by the Entomol-
ogy Department of Iowa State University. It contains nearly two hundred
thousand images classified and discussed by experts and enthusiasts, assem-
bled to form a field guide and record of bug locations. Quality control of the
initial classification specified by the photagrapher is a difficult but pertinent
priority for such a project, and the ratio of new images to experts is dispro-
portionate. Furthermore, a specialist in one order or family may prefer to
review images only in his area of expertise, making the process of skimming
through new images much like filtering junk mail.

A CBIR-based classification system, i.e. Computer assisted taxonomy
(CAT), could thus provide a significant ergonomic advantage to the commu-
nity, even if it could only distinguish between orders, differentiating between,
say, beatles, flies, and spiders. The high level of human involvement in the

2

Figure 2: Some of the roughly 23,500 images from the order Diptera (flies)
on Bugguide.net

community also provides ample opportunity for supervised on-line learning
of the system, as any misclassification could be readily noticed and corrected
by a human. Current approaches to insect identification are based on expert
systems or on classifiers which require a simple artificial background to the
image. Applications of CAT technology extend beyond resources like Bug-
guide, as robotic collection and sampling systems can take significant mea-
surements of bug populations much more quickly and at a much lower cost
than humans. The Integrated Biological Control Program at New Mexico
State University, for instance, has developed a fully automated bug sampling
and identification system for informing agricultral pest control decisions.2

Bugguide poses a particularly interesting challenge for feature extraction.
Some images are clear, well oriented, and on plain backgrounds, but as a rule
the specimens are photographed in the wild on noisy backgrounds. Certain
types of bees and wasps are often found perched atop flowers, and care must
be taken to keep the classifier from learning to identify flowers or leaves
instead of the insects sitting atop them. In some cases there are multiple
species in a single image. Separating bug from background, then, is the
primary task, the classification itself being relatively trivial.

These challenges, the available data, and the significant contribution of-
fered by a CI-based classification system make Bugguide the perfect test bed
for a student such as myself to tinker with pattern-recognition technology,
and the code I write as a result of this paper will be applied to bug cate-
gorization. This project is ambitious and too grandiose to be completed for
this independent study, but will likely continue on and become my senior

2http://www.nmsu.edu/biocontrol/

3

project for the John Nevins Andrews Honors Program.

2 Classification and Generalization

At the heart of a smart image database is the concept of classification, the
process of algorithmically sorting complex and noisy data into meaningful
categories. The algorithms and paradigms developed for such problems are
an integral part of machine learning, and include various data mining tools,
K-means algorithms, Bayesian methods, decision trees, linear regression mod-
els, kernel methods, and support vector machines, just to name a few. A
comprehensive discussion of classification and clustering technologies would
require an entire course in itself, but there is considerable overlap with CI
tools: neural networks and fuzzy-rule-based (FRB) classifiers, for example,
trained through evolutionary algorithms, are some of the most powerful so-
lutions available.

A classifier, in its simplest definition, is a mapping from a highly dimen-
sional feature space, in which vectors represent sample data (such as docu-
ments, images, or user-specific metadata), to a low-dimensional label space.
A rudimentary classifier might define a correlation function, or distance met-
ric, that defines how similar two vectors are (For example, Amazon.com
compares users’ purchase history to recommend books to users with simi-
lar interests). Often the metric is just the Euclidean distance between the
vectors, but alternative methods such as the Pearson correlation coefficient
or cosine distance allow the length of the vectors to be less important than
their direction, effectively normalizing/disregarding the document length or
image size. A more advanced system builds on these concepts to ”cluster”
vectors into discrete (or fuzzy) sets. K-means clustering, for example, deter-
mines center points to a pre-defined number of similar vector clusters, and a
support vector machine (SVM) constructs hyperplanes in the space between
clusters. Classification of new points is then determined by the nearest mean
point or by which side of the plane they fall on, respectively.

These are examples of unsupervised learning, in which vectors in the
label space are meaningful but do not necessarily correspond to pre-specified,
human-defined categories such as ”sci-fi fans,” ”pictures of cats,” or ”sunny
days.” Unsupervised learning is particularly useful for knowledge discovery,
detecting patterns and categories that humans might not even have thought
existed, and thus it is an important part of data mining.

4

Supervised learning, on the other hand, occurs when the classifier is pro-
vided with pairs of a sample datum and the human-defined label associated
with it. The system is to conform to the mapping represented by the train-
ing examples (minimize the error, making this an optimization problem as
discussed in report 2), building an internal model of the function it aims to
imitate. This means A) no labels will be discovered that we don’t already
know about and explicitly request, and B) a significant quantity of training
data must be provided for the system to be of any use. The advantage is
that a properly supervised system can learn to generalize.

Generalization in CI is usually defined as producing the correct results
on real-world data (as opposed to the samples it was trained with), i.e. ac-
curately mapping vectors from the feature space to the label space. This
process (and the term) hints at a deeper meaning, however, in the idea that
the classifier is forming an abstract understanding of the problem at hand, as
opposed to simply memorizing the answers to the training examples or build-
ing a statistical model (Which is relatively uneffective). The hidden layer of a
neural network, for example, is sometimes called the ”generalization layer,”
as the first layer of processing builds ”meta-features” that help determine
what is and is not important for the final decision in the second layer. In
this way the computer can closely model human classification and even sur-
pass human abilities (ex. learning to model complex nonlinear phenomena),
and is thus what we want for a CBIR/CAT system (In which vectors in the
label space are to correspond to potential human queries).

The road to generalization is marked by false-starts. Just when you think
your system has the universe all figured out, a carefully crafted example might
expose just how näıve it really is. Legend has it that in the 80’s the Pentagon
set out to train a neural network to recognize 100 camoflagued tanks out of
200 photographs. The network went through the training process on half
the photos from each group with flying colors, but in the end gave random
results when exposed to the remaining images. On closer examination of
the training set, it was found that all the pictures with tanks had been
taken on cloudy days, and all the ones without were from sunny days. The
network was looking at the sky, not for tanks! For the classifier to develop
an accurate mapping on real-world data points, it needs to develop a more
general concept of what a ”tank” is. More specifically, it needs to learn to
distinguish between relevant and irrelevant features.

5

3 Feature Extraction

Many classification problems, if fed raw to the training algorithm, are simply
intractable. Images, for example, may have millions of pixels. A classifier
such as a neural network could conceivably learn to take the raw numerical
bitmap and recognize such high-level entities as an individual’s face. The
number of features presented is immense, however, and it will take a very
long time for the system to learn which pixels are relevant in a given context
and which are not, not to mention the resources required to store and process
large amounts of data. Without a large and sufficiently diverse set of training
examples, too, the system can never achieve significant real-world success.
Instance based learners (such as K-means), which rely on a distance metric,
are particularly succeptible (exponentially, in fact) since irrelevant features
cause large distances to form between members that are actually of the same
category.

A very profitable shortcut, then, is to perform some preprocessing on the
data, getting some of the generalization done ahead of time. Humans intu-
itively know, for example, that an object’s location in space has no bearing
on the object’s type. We also think in high level terms about concepts such as
curves, regions of similar color, texture, specularity, and so forth. A machine
learning system works best when it can generalize data to a similar level
of reasoning. It’s inefficient for us to wait for even an adaptive classifier to
develop this sort of generalization on its own: by far the most advantageous
application of high-level features comes when humans can explicitly specify
what is and is not important, discarding irrelevant data before feeding it to
the classifier.

Feature extraction is a wide field composed of many clever techniques
that help encode humans’ common sense (and some not-so-common sense)
into mathematics that can be automated during the preprocessing phase of
classification. Below are some of the approaches useful to object recognition,
among other things. I find these formulas to be particularly intriguing, as I’ve
always been attracted to the visual-intuitive concepts that underly calculus,
and here we have the ironic inverse: a ”calculus of intuition.”

3.1 Smoothing

We begin with noise removal. Small disturbances in the signal (i.e. large
changes in color over a small area) are unimportant in most cases. If we were

6

painting a picture, we might overcome such discontinuities by smearing or
smudging the image a bit in the areas where the disturbance occurs, leaving
only general features. Graphic designers often do just this, in fact, with
digital image editing tools.

3.1.1 Gaussian Filter

One way to accomplish this mathematically is to consider a weighted sum of
local pixel intensities (or color values). This is much like assigning each pixel
(x, y) the average of its neighbors, with closer neighbors making a bigger
impact than further ones. All we need is a defined way to describe how
the relative importance of a neighboring pixel drops off with distance from
(x, y). Many kinesthetic concepts like this can be modelled with simple
mathematical functions that are easy to apply (a parabola for motion under
constant acceleration, sinusoids for oscillations, etc). Smoothing, then, can
be modelled nicely with the Gaussian function:

Gσ(x, y) =
1√

2πσ2
e−

(x2−y2)

2σ2 (1)

where σ is the desired standard deviation (which is related to the width of
the bell). A standard deviation of one or two pixels is usually sufficient to
iron out small disturbances without destroying too much data.

3.1.2 Convolution

To apply the Gaussian filter we assign each pixel (i, j) the sum of f(x, y)Gσ(i−
x, j − y) over all (x, y), where f(x, y) is the color value of the pixel (x, y).
This type of weighted sum is known as the ”convolution” of f with Gσ, de-
noted ∗. Convolution is a common technique used in many fields, from image
processing to protein crystallography3.

h(i, j) = f ∗Gσ =
+∞∑

x=−∞

+∞∑
y=−∞

f(x, y)Gσ(i− x, j − y) (2)

Because of the exponentially decreasing nature of the Gaussian, in prac-
tice using pixels more than a few standard deviations away from (i, j) has
a negligable effect on the outcome. In the literature, then, the bounds of

3http://www-structmed.cimr.cam.ac.uk/Course/Convolution/convolution.html

7

Figure 3: A two-dimensional Gaussian function with σ = 2

summation are usually [x = i− kσ] to [i+ kσ] and [y = j − kσ] to [j + kσ],
respectively, where k is somewhere from 3 to 5, and [. . .] denotes the roundoff
operation to the nearest integer.

3.2 Edges

Once small disturbances have been smoothed out, we can run another al-
gorithm to detect changes in color distribution, or more specifically, edges.
That is, if T is a prespecified threshold, a potential edge lies wherever

∂f

∂x
≥ T (3)

or

∂f

∂y
≥ T (4)

8

Of course, this method runs into trouble when, for example, a single pixel
discontinuity is encountered. Thus, it is important to smooth the image
first, since smoothing will eliminate small discontinuities, but not consistent
differences like those found in a true edge. The two processes, smoothing
and edge detection, can be combined in a highly advantageous way because
of the following property of convolution:

(f ∗G)′ = f ′ ∗G = f ∗G′ (5)

Here we see that we can avoid numerically sampling the derivative of the
signal f by evaluating it for G instead, which is known (See equation 1):

G′σ(x) = − x√
2πσ4

e−
x2

2σ2 (6)

Note that I’ve switched to the one-dimensional Gaussian. This is because,
to detect edges at an arbitrary orientation (as opposed to purely horizontal
or vertical), we will run the algorithm individually on the x and y dimensions
and then combine the two like so:

Rv(x, y) = I(x, y) ∗G′σ(x)Gσ(y) (7)

Rh(x, y) = I(x, y) ∗G′σ(y)Gσ(x) (8)

R(x, y) = R2
v(x, y) +R2

h(x, y) (9)

Then we mark any pixels where |R(x, y)| > T . Connected pixels can then be
linked into unitary edge curves for further processing.

3.3 Fourier Transform

Image processing is closely related to signal processing, a field with wide
applications and with which electrical engineers are particularly familiar.
The Fourier transform is a special case of the bilateral Laplace transform,
which converts a function f(t) on the t domain into a function F (s) on the s
domain. That is, the Laplace transform is a function of the new parameter
s, which was not present in the original function, and it is not a function of
t. This is because the Laplace is an integral transform, and once evaluated
all the terms with t in them become constant:∫ +∞

−∞
f(t)e−st dt

9

Figure 4: The results of edge detection on a specimen of Notiophilus Novem-
striatus

The disappearance of t implies that the transform represents properties of
the function as a whole instead of only specific parts of it. The Laplace
Transform is useful in situations where a problem is easier to solve in the s
domain than the t domain. It often makes engineers’ lives a lot easier, and for
our current purpose is the same principle that motivates feature extraction.

The Fourier transform, then, comes about when we set s = 2πiξ, ξ ∈ R,
effectively making F a function of ξ:∫ +∞

−∞
f(t)e−2πiξt dt

This is important because, if you expand the exponential with Euler’s for-

10

mula and graph a few examples of the integrand, you should be able to
convince yourself that the oscillations in the exponential resonate with cer-
tain frequencies in f(t), depending on the value of ξ. In effect, the Fourier
Transform produces a graph |F (ξ)| vs. ξ that represents what frequencies ξ
are present in f(t) and how strong they are.

The discrete Fourier transform (DFT) can be used to process unknown
functions by sampling them in discrete time and processing them digitally.
One could decompose an audio signal, for example, into a Fourier series (A
collection of individual sine waves) that could be used later to synthesize the
sound of a trumpet.

Fk =
1

N

N∑
n=0

xne
2πi
N
kn

The DFT has a discrete domain and a discrete range, as opposed to the
discrete time Fourier transform (DTFT) which has a discrete domain and a
continuous range.

The fast Fourier transform (FFT) is a famous class of algorithms for
computing the DFT efficiently. Technically, any implementation of the DFT
which has O(n log n) complexity (as opposed to the O(n2) complexity of a
näıve execution of the formula) is called a FFT, but the term usually refers
to the Cooley-Tukey algorithm (re)discovered in the 60’s (Thought it was
known to Gauss as early as 1805). It can be used in one and multidimen-
sional transforms (A multidimensional Fourier transform essentially involves
running multiple single-dimensional transforms).

3.3.1 Frequency Filtering

We can use a Fourier transform to extract only general spatial features of
the images (or, conversely, only fine features) by selecting only low (or high)
frequencies from the output (See figure 5). Additional tools include band-
pass filters (which specify a specific frequency range) and high-boost filters
(which can help amplify edge features).

3.4 Wavelets

While the Fourier transform remarkably useful for a variety of image pro-
cessing techniques, it is still somewhat clumsy where dimensionality is con-

11

Figure 5: An image and its Fourier transform, followed by a low and high-
pass filter, respectively, with their inverses.

cerned since it represents images via a linear combination of general sinu-
soidal functions. While this makes representing repeating patterns trivial,
isolated features are somewhat more difficult to model via this method. An
alternative, then, is to choose a damped wave function ψ (such as sinc) and
position it over the localized features in the function being modelled. This
can be accomplished via the wavelet transform, which is the inner prod-
uct of the wavelet basis function (sometimes called child wavelets ψa,b(t) =
1√
a
ψ(t−b

a
), (a ∈ R+, b ∈ R) and the signal f(t):

12

Wψ =< ψa,b(t), f(t) > (10)

=
1√
a

∫ +∞

−∞
ψ∗(

t− b
a

)f(t)dt (11)

Where ψ∗(t) is the complex conjugation function of ψ(t), and a and b are the
scale and translation parameters, respectively.

Figure 6: sinc(x) is a common ”mother wavelet” for the wavelet transform.

3.5 Textures

One of the most important object recognition cues that humans use daily is
visual texture. Abstracting these properties into feature labels would indeed
give any computer vision system a significant advantage. This brings us to
the domain of texture analysis, which deals with the supervised and unsu-
pervised classification of different textures. Some approaches to the problem
are based on principles we have already explored: fourier analysis, wavelets,
and pre-defined primitives (such as edges) are all useful to texture classifi-
cation. Other methods include stochastic and fractal modelling algorithms,
and various statistical approaches.

13

David Mack, now a graduate of the Computer Science program at An-
drews University, did his senior honors research project in the area of texture
classification in 2003. He used a genetic programming approach to evolve
classifiers for various textures, with statistical features extracted from the
images’ associated Grey Level Co-occurrence Matrix (GLCM).

The GLCM of an image A is an ω×ω matrix MA, where ω is the maximum
value of a pixel’s intensity (”grey level”). A direction vector is selected as part
of the definition of a GLCM, such as (1, 0) (east), which defines a relationship
between paired pixels. For example, for the eastern direction vector, every
pixel A(i, j) is paired with A(i + 1, j). The value of the GLCM MA(x, y),
then, records how many times a pixel with the value y is paired with a pixel
with the value x. Note that in this case the rightmost elements are not paired
with anything.

For example, if the elements of A are integers on [0, 5], then

A =

0 5 2 3
1 3 3 4
0 2 3 3
5 3 2 2

yields the following GLCM for eastward pairing:

MA =

0 0 1 0 0 1
0 0 0 1 0 0
0 0 1 2 1 0
0 0 1 2 0 0
0 0 0 0 0 0
0 0 1 1 0 0

This can be read as follows: For the first row, we’re told that pixels with the
value of 0 are paired once with a pixel of the value 2 and once with the value
5. For the the third row, we’re being told that pixels with the value of 2 are
paired once with pixels of the value 2, twice with 3, and once with 4.

Equipped with this abstract statistical representation of the image, it is
straightforward to compute several potentially useful features. The following
table is taken from Mack’s review:

14

∑
i

∑
j(i− j)2P (i, j) Contrast: A measure of the local

variation in the image
−

∑
i

∑
j P (i, j)logP (i, j) Entropy: The inverse of unifor-

mity. It is high when all elements
of the GLCM have relatively equal
values.∑

i

∑
j(i− µ)2P (i, j) Variance: The statistical variance

of the distribution of value pairings.∑
i

∑
j P

2(i, j) Angular Second Moment: A
measure of textural uniformity. It
is high when the distribution is con-
stant or periodic.∑

i

∑
j
P (i,j)
|i−j|2 , i 6= j Inverse Difference Moment:

The overall homogeneity of the im-
age. It is high when the GLCM is
concentrated along the main diago-
nal.∑

i

∑
j

(i−µi)(j−µj)P (i,j)

σiσj
Correlation: A measure of linear
dependencies within the image.∑

i

∑
j[(i− µi) + (j − µj)]3P (i, j) Cluster Shade: Describes the

clustering of pixel pairs using the
third moment.∑

i

∑
j[(i− µi) + (j − µj)]4P (i, j) Cluster Prominence: Describes

the clustering of pixel pairs using
the fourth moment.∑

i

∑
j |i− j|[(i− µi) + (j − µj)]P (i, j) Diagonal Moment: A measure of

the difference between correlation
of high grey levels and low grey lev-
els.

3.6 Segmentation

As our toolbox of features grows, so does our ability to differentiate between
macroscopic components of an image. We can hope to distinguish between
splotches of color on a butterfly’s wings, which can help to identify its species,
and to separate the insect from irrelevant background data. This process
of dividing the image into chunks and evaluating macroscopic features is
known as segmentation. Segmentation is vital to classification and models of

15

associative memory. For example, models built to demonstrate how the brain
might store and access visual memory use several Hopfield neural networks
trained with Hebbian learning, each for a different feature such as color
distribution, shape, and motion.4 For our bug classifier we might begin by
segmenting the image into regions of similar color or texture, or we might
use wavelets to perform a more abstract differentiation.

Using these features as the input of a machine learning system, we can
construct an ANN to perform boundary extraction on images of insects. Once
the specimen’s outline has been determined the background can be cropped
out, making the classification problem much easier. This is what I’m cur-
rently working on, though as of yet I have done no tests to determine just
how feasible this is.

Figure 7: Boundary extraction training images for specimens of Calephelis
Arizonesis (Arizona Metalmark)

3.7 Boundary Curvature

Once the boundary of an object has been successfully determined, its general
shape is one of the features that can be of use to our classifier. Its shape is,
however, still defined by a rather low-level pixel representation. We consider
the boundary to be a two-dimensional parametric equation:

~r(t) =< x(t), y(t) > (12)

4Yaneer Bar-Yam, Dynamics of Complex Systems (1997), 343.

16

A more intuitive notion of the shape of an object can be provided by its
curvature. Curvature is analogous to a higher-dimensional concept of the
second derivate: it’s the rate at which a trajectory’s direction changes. In
the present context it’s simply a measure of how curved our boundary is at
any given point. As any good Calc III student should know, curvature is
defined as follows:

c(l) =
|r′(t)× r′′(t)|
|r′(t)|3

=
x′(t)y′′(t)− y′(t)x′′(t)

[x′(t)2 + y′(t)2]3/2
(13)

Just as we did with edge detection, we can combine this process with
smoothing by making the following substitutions:

Ẋ(t, σ) = x(t) ∗ ∂Gσ(t)

∂t

Ẍ(t, σ) = x(t) ∗ ∂
2Gσ(t)

∂t2

Ẏ (t, σ) = y(t) ∗ ∂Gσ(t)

∂t

Ÿ (t, σ) = y(t) ∗ ∂
2Gσ(t)

∂t2

Where ∗ is the convolution operator. Then the smoothed curvature repre-
sentation of the boundary can be computed as follows:

c(t, σ) =
Ẋ(t, σ)Ÿ (t, σ)− Ẏ (t, σ)Ẍ(t, σ)

[Ẋ(t, σ)2 + Ẏ (t, σ)2]
3
2

(14)

This function can then be processed via wavelets, etc, to produce an accurate,
low-dimensional representation of the object’s outline.

4 Classifier Architecture

Work utilizing many of the above tools was published this winter from South-
east University, Nanjing, China by Hong Pan and Liang-zheng Xia. They
developed a wavelet neural network (WNN) that take the curvature repre-
sentation of the boundary as its input. The first layer consists of ”wavelet
nodes” whose parameters are trained with the rest of the network via an

17

iterative gradient technique (a backpropagation algorithm modified to han-
dle the wavelet parameters). A separate sub-network is used to recognize
each class of object. The system was tested on simulated outlines of aircraft,
photographs of leaves from six species, and photographs of real-world tools.
Gaussian noise and geometric transforms were used to artificially increase
the number of sample images in each experiment to one to two thousand.
All the images were, however, placed on a solid white background, making it
trivial to distinguish the object border.

Figure 8: WNN described by Pan and Xia

Mack’s project also used a separate classifier for each texture class. It is
easier to train a classifier to provide a yes or no answer regarding a specific
species of object than it is to train one large classifier to distinguish between
several different species. This approach works fairly well when the specimen
is neatly separated from its background.

For the images on Bugguide, however, boundary extraction will be a
crucial and difficult process, and it is what makes the project relatively am-
bitious. One potentially useful feature for boundary extraction could be how
blurry segments of the image are, since the background tends to be out of
focus compared to the specimen. The large amount of data available from

18

the website may be sufficient, too, to build a set of classifiers that learns to
recognize common background objects such as leaves, sticks, etc, in effect
building a system to memorize what is not a bug. These difficulties will be
the focus of future work and experimentation.

Figure 9: Sub-network structure of the WNN classifier

5 Code Status

Edge detection has been implemented, though it’s slow enough that I intend
to research more efficient algorithms. I also need to experiment more with the
threshold and standard deviation parameters to get more beautiful samples.
Early attempts to feed raw image data into neural networks and genetic
algorithms overloaded my code. This could imply that the linked structures
I’m using in C# require too much overhead to be practical, but more likely
the network was simply too large. Further feature extraction will reduce the
dimensionality thousands of times over.

19

In short, there’s still a lot of work to be done. Hitherto most of my time
has been spent in literature review and learning about the mathematical
tools at my disposal. More of that is needed as well.

6 Sources

I’ve learned about all of these topics from multiple sources over a long pe-
riod of time, but in general most specific information was drawn from the
following:

• Berman and Paul, Algorithms: Sequential, Parallel, and Distributed
(2005): Fast Fourier Transform.

• Hall-Beyer, Mryka, ”GLCM Texture Tutorial,” v. 2.10,
http://www.fp.ucalgary.ca/mhallbey/the glcm.htm: Grey Level Co-occurence
Matrix.

• Mack, David,”Visual Texture Classification Through Genetic Program-
ming”, senior Honors thesis at Andrews University, presented in 2003,
supervised by James Wolfer of Indiana University South Bend: Texture
Analysis.

• Pan and Xia, ”Efficient Object Recognition Using Boundary Repre-
sentation and Wavelet Neural Network”, IEEE Transaction on Neural
Networks, vol. 19, no. 12, 2132-2149: Boundary Curvature, Convolu-
tion, Wavelet Neural Network.

• Segaran, Programming Collective Intelligence (2007): Clustering, Clas-
sification.

• Russel and Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.
(2003): Computer Vision, Gaussian Filter, Convolution, Edge Detec-
tion.

• Witten and Frank, Data Mining (2005): Clustering, Classification, Fea-
ture Extraction.

• Wikipedia and Scholarpedia: Everything else, give or take.

20

7 Time Spent

Date Time Spent Task
02/19/09 01:00 Read honors thesis of a previous AU student who

worked with GAs
02/19/09 06:00 Debugged GA framework, implemented crossover,

and created graphs of behavior with different pa-
rameters on a toy problem, directly and via set-
ting weights on a neural network.

02/21/09 07:00 Implemented multithreading in the GA (Still
buggy), tinkered with parameters more, realized
the significance of squared and/or inverse errors
vs. difference

03/19/09 02:00 Skimmed articles in IEEE Trans. on Neural Net-
works

03/20/09 02:00 Read parts of Yaneer Bar-Yam, Dynamics of
Complex Systems, ch. 2, regarding Subdi-
vided Hopfield Neural Networks and Content-
Addressable Memory

03/24/09 05:00 Read more in Holland, and section 8.5 of Engel-
brecht, and worked on draft of report 2

03/25/09 02:30 Worked on draft
03/25/09 02:30 Read D. Anderson et al, Modeling Human Activ-

ity From Voxel Person Using Fuzzy Logic, IEEE
Transactions on Fuzzy Systems, vol. 17, no. 1, p.
39-49.

04/04/09 11:00 Read ch. 24 of Russel and Norvig, on Computer
Vision and feature extraction for images. Read
Wikipedia pages on object recognition, but found
poor coverage of the topic. Read Pedrycz et al,
Fuzzy Clustering With Partial Supervision in Or-
ganization and Classification of Digital Images,
IEEE Transactions on Fuzzy Systems, vol. 16,
no. 4. Sketched a design for Bugguide classi-
fier. Started a report (3) on Classification and
Object Recognition. Began an Sqlite backend for
the Bugguide project, downloading and indexing
55 images for training.

21

Date Time Spent Task
04/04/09 04:00 Worked on draft of report 2.
04/05/09 03:00 Read Angelov et al., Evolving Fuzzy-Rule-Based

Classifiers From Data Streams, Fuzzy Systems,
vol. 16, no. 6.

04/05/09 09:00 Worked on draft of report 3. Implemented edge
detection algorithm for feature detection as de-
scribed in Russle and Norvig. Tested it on several
bug photos and tinkered with the parameters.

04/06/09 02:30 Began manually highlighting silhouettes of bugs
to provide training data for an ANN.

04/07/09 07:00 Indexed/Highlighted more bugs and wrote code to
interface images with the net. Learned that pixel-
by-pixel representation totally overloads both my
GA and ANN code.

04/08/09 01:30 Read section in Engelbrecht on coevolution
04/09/09 02:30 Read up on Fourier transforms and low/high-pass

filtering in image processing.
04/10/09 02:00 Wrote about Fourier transforms for report 3.
04/18/09 11:00 Read Pan and Xia, Efficient Object Recognition

Using Boundary Representation and WNN, IEEE
Transaction on Neural Networks, vol. 19, no. 12,
2132-2149. Wrote about smoothing, convolution,
and edge detection for report 3. Started coding
a smoothing function that’s separate from edge
detection.

04/19/09 08:00 Took a closer look at Pan and Xia. Re-
read Mack’s honors thesis on genetic program-
ming. Wrote about texture analysis, segmenta-
tion, boundary extraction, curvature representa-
tion, and sub-classifier architecture for report 3.
Had my code output data for edge detection to
form 3D graphs for report 3. Installed the Weka
datamining workbench and poked around.

22

Date Time Spent Task
04/26/09 03:00 Searched internet for articles relating to Com-

puter Assisted Taxonomy Read Gaston and
O’Neill, Automated Species Identification: Why
Not?

04/27/09 03:30 Finished report 3.
For reports 2 and 3: 96:00
To Date: 145:15

23

