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Abstract

Most evolutionary algorithms ultimately focus on optimizing solutions to a single 
target function, coevolution and related methods notwithstanding. Cooptive
phenomena between organisms adapted to distinct environmental niches, 
however, lie at the heart of the evolution of complex functions in nature and 
technology, where solutions adapted for one problem are repurposed to solve 
another, related problem. Boolean functions have become a popular toy model for 
exploring the dynamics of such processes, and provide insight into new 
approaches to evolutionary computation. We implemented the basics of a model 
of combinatorially evolving logic circuits developed by Brian Arthur and Wolfgang 
Polak, and began to explore the sort of cooptive and catalytic phenomena its 
success depends upon. We observed a significant difference in the dynamics of 
evolution between when the full suite of fitness functions is present, versus when 
only a few pieces of the selective pressure are active at a time. Future work will 
examine these dynamics in more detail.

Artificial Neural Network Example

Evolutionary computation (EC) aims to exploit the complexity-generating power of 
adaptive processes in nature to optimize solutions for real-world, human-defined 
problems. To date, the state of the art is notoriously limited when compared to 
the algorithms' natural counterparts. It is the present author's emphasis that part 
of the solution to these difficulties lies in Stephen Jay Gould's concept of 
exaptation, in which functions evolved for one purpose or need are coopted and 
further refined for another task or environment (Gould 1982). Exaptation exploits 
commonalities and chance relationships between ecological niches to learn and 
ultimately generalize from multiple fitness functions and develop higher quality 
and/or more complex solutions. In this paradigm, intermediate functions play a 
major role.

We illustrate this perspective with a toy example using an Artificial Neural 
Network (ANN). A simple ANN was trained via backpropagation to simulate the 
OR, XOR, and COUNTONES (count the number of ones in the input signal) 
functions for a two-bit input string.  The solution to a function is used as the initial 
condition to solve another problem, and cooptive effects are observed.  For 
example,  learning XOR – a more difficult problem – first makes it trivial to learn 
OR.  Learning OR first, however, inhibits the network’s ability to learn XOR.
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Technological Evolution

Cooptive effects are not limited to the biological domain, being the focus of the 
study of path-dependence and increasing returns in economics.  In particular, the 
process of technological evolution by combination of existing technologies into new 
solutions relies heavily on the development of intermediate technologies that are 
retooled for myriad purposes.

We analyze a model of evolving logic circuits developed by Arthur and Polak (2006).  
New circuits are generated via random compositions of circuits already in the pool, 
and evaluated against a battery of fitness functions, its mean fitness score defining 
its probably of being incorporated into a new circuit via tournament selection.

The model was implemented in Common Lisp, an adjacency matrix used to 
remember circuit designs, a topological sort on its components used to order 
parallel modules for execution, and a Reduced Ordered Binary Decision Diagram 
(ROBDD) used to cache the truth tables of each circuit for fast processing.

Future Work

The goal of this research is to address questions like

• Does the presence of an AND circuit in the primitives set facilitate the evolution of a HALF-
ADDER circuit? 

• Does the presence of both AND and HALF-ADDER fitness functions as a multiobjective
selection pressure facilitate the evolution of a HALFADDER?

• Are the catalytic effects of fitness functions greater than the sum of their parts?
• What functions must evolve, and in what order, to allow more complex functions to be solved?
• What models besides logic circuits (ex. Biological neural networks) might be amenable to A) 

simulation of cooptive evolution, and/or B) combinatorial evolution.

We aim to map the dependencies in question in more detail, and to develop a framework for 
systematically studying and representing cooptive phenomena in arbitrary optimization problems.

The cooptive relationships between three objective functions are summarized in 
the diagram below.  Green edges point from functions to resulting solutions, and 
are labeled with the initial condition that was used.  Oi’s solve OR, Ci’s solve 
COUNTONES, Xi’s solve XOR, and Di’s fail to solve any of the functions.  The initial 
condition E0 corresponds to random weights on (-0.1, 0.1).

As a first step toward creating a map of cooptive relationships between initial conditions and fitness 
functions similar to the one we created for the ANN, we graph the number of times the HALF-ADDER 
function was evolved in 5,000 generations under different combinations of selective pressures.

We found no statistically significant change in evolution rate for the HALF-ADDER between different 
combinations of initial conditions (i.e. circuits available in the initial pool) and selective pressures 
(fitness functions in the battery) involving the AND and OR functions.  But when several dozen fitness 
pressure were active, the search process diverged from the HALF-ADDER, paralyzing its evolution.


