Cooption and Catalysis in a Model of
Technological Evolution

Eric Scott, Andrews University /Santa Fe Institute (Mentor: J. Doyne Farmer)

02 September, 2010

Abstract

Most evolutionary algorithms ultimately focus on optimizing so-
lutions to a single target function, coevolution and related methods
notwithstanding. Cooptive phenomena between organisms adapted to
distinct environmental niches, however, lie at the heart of the evolu-
tion of complex functions in nature and technology, where solutions
adapted for one problem are repurposed to solve another, related prob-
lem. Boolean functions have become a popular toy model for explor-
ing the dynamics of such processes, and provide insight into new ap-
proaches to evolutionary computation. We implemented the basics of
a model of combinatorially evolving logic circuits developed by Brian
Arthur and Wolfgang Polak, and began to explore the sort of cooptive
and catalytic phenomena its success depends upon. We observed a
significant difference in the dynamics of evolution between when the
full suite of fitness functions is present, versus when only a few pieces
of the selective pressure are active at a time. Future work will examine
these dynamics in more detail.

1 Introduction

Evolutionary computation (EC) aims to exploit the complexity-generating
power of adaptive processes in nature to optimize solutions for real-world,
human-defined problems. To date, the state of the art is notoriously lim-
ited when compared to the algorithms’ natural counterparts. The impass is
described by Yaneer Bar-Yam[3]:

While the GA/EA [Genetic Algorithm/Evolutionary Algo-
rithm] approach can help in specific cases, it is well known that
evolution from scratch is slow. Thus it is helpful to take ad-
vantage of the capability of human beings to contribute to the
design of the system... A better understanding is necessary in
order to realize the promise of evolutionary methods. The objec-
tive revolves around mimicry of the processes that promote rapid
innovation through competition. The creation of an effective «ar-
tificial ecology»or «artificial economy»requires design.”

It is the present author’s emphasis that part of the solution to these diffi-
culties lies in Stephen Jay Gould’s concept of exaptation, in which functions
evolved for one purpose or need are coopted and further refined for another
task or environment.[I0] Exaptation exploits commonalities and chance re-
lationships between ecological niches to learn and ultimately generalize from
multiple fitness functions and develop higher quality and/or more complex
solutions. In this paradigm, intermediate functions play a major role.

The importance of diverse fitness environments to evolution of complex
and /or robust features has been observed in many computational models[13][14] [15] [17].
Logic circuits and other genetic programming paradigms[12] have often pro-
vided a sandbox for exploring the dynamics of evolution in part because of
the ease with which they can be analyzed, but also because of the (limited)
analogy they provide to genetic regulatory networks.|[11] Macia and Solé[14]
have used them to draw attention to the role degeneracy plays in organism
robustness, while Parter, Kashtan and Alon[I5] have modeled the theory of
Facilitated Variation[§] to show the sponteanous development of modularity
under exposure to multiple, distinct fitness environments. Similarly, Lenski
et al.[13] have used the Awvida artificial life simulator to highlight the impor-
tance of intermediate logic functions in the evolution of solutions to more
complex functions.

The EC tools that come closest to utilizing the notion of multiple envi-
ronments include optimization of dynamic environments[4] (fitness functions
that change over time), coevolutionary algorithms[6] (in which multiple solu-
tions compete or cooperate interactively), multiobjective optimization (where
multiple conflicting objectives are pursued simulatenously)[I8], and mixtures
thereof (for example, [9]). None of these methods have the goal of utilizing
exaptive analogies between distinct problems and, with the exception of co-
evolution, neither do they attempt to implement intermediate developmental

steps as the dominant solution mechanism.

We analyze the evolution of boolean functions in a model of technological
evolution developed by Arthur and Polak[2], with the goal of identifying the
potential of one logic function being coopted for the development of another,
and to chart sequences through this path-dependent space of selection pres-
sures analogous to the transformations undergone by reactants in a chemical
network. Under this metaphor, we conceptualize selection pressures as en-
zymes, optimized solutions as educts and products, and cooption events as
catalysis.

1.1 ANN Illustration

We illustrate this perspective with
a toy example using an Artificial Neu- Figure 1:
ral Network (ANN). A simple ANN was
trained via backpropagation to simu-
late the OR, XOR, and COUNTONES
(count the number of ones in the in-
put signal) functions for a two-bit in-
put string (See Figure 1).[16]

The network is initialized to state ("species”
values on (—0.1,0.1). We may then train it on.the XOR fu
the "species” Xy. The X;’s represent solutions that solve the XOR problem
fairly well, O;’s solve OR, C;’s solve COUNTONES, and D,’s fail to solve
any of the three. Now, if we use X as the initial condition to train a solution
O; to OR, it takes only one training cycle of backpropagation. Since this is
significantly shorter than the number of cycles required to train Oy from Ej,
we say that X, can be ezapted by OR. Alternatively, one could say that
XOR catalyzes the production of a solution to OR. Using Oy, then, as the
initial condition to train a new solution to XOR, we get a cycle that may be
repeated ad infinitum (See Figure 2a). On the other hand, if we train Ey on
OR first, and use the resulting solution O, as the initial condition to train
XOR, we see that the algorithm never converges onto a solution to XOR.
We may say, then, that OR has a negative catalytic effect on solving XOR
(See Figure 2b).

Exaptive relationships between the three objective functions are repre-
sented by the complicated graph in Figure 3, which imitates the visualization
of catalytic networks.[7] The green edges point from the fitness function to

L i 7]

3

Figure 2: Error vs. optimization time for backpropagation.
function is changed at the points marked by green labels.

Error vs. Epochs
1

XOR

Error

OR XOR OR XOR

U

Epochs

364

Error vs. Epochs

Error

OR

XOR
0 Epochs

456

The fitness

the species that was optimized on it. The edge labels denote the initial con-
dition used to create the species. Note that solutions to the same problem
generated from different initial conditions (ex. {Og, Oy, O2}) display different
exaptive (chemical) properties. Two or more solutions are represented by the
same node in the graph if they display similar chemical properties.

Figure 3:
E()‘, ()2

Y
Co

Oo

2 Model

The model developed by Arthur and Polak[2] is unique in that the only
evolutionary operator is the combination of existing circuits (i.e. the compo-
sition of boolean functions). Since its primary motivation is to explore the
path-dependent dynamics of technologies, as engineers synthesize tools and

components that were developed in different environments to meet separate
needs, there is no mutation operator. This divergence from the biological
paradigm comes with a benefit in that, by composing boolean functions of
different dimensionality, solutions can pass through fitness functions of differ-
ent dimensions, thus broadening the class of functions amongst which we can
look for catalytic effects. For example, if the function A : B™ — B"™ has been
evolved to solve fitness function « that maps m inputs to n outputs, it can
be composed with some other function into a new circuit B : B? — BY and
tested against a function § with a different number of inputs and outputs.
The algorithm proceeds as follows:

e Initialize a set primitives to contain only NAND.

Initialize a pool of circuits to be empty.

Select from 2-12 components from the primitives set and/or pool with
a weighted choice function.

Randomly wire together n variations of the circuit

For each variation:

Evaluate the average fitness against a battery of fitness functions.

If the variation’s truth table completely matches one of the goals,
add it to the primitives set.

Components were selected randomly from the primitives set with a probabil-
ity of 0.8. Otherwise, a component was selected from the pool via tournament
selection on average fitness.

We aim to answer questions like:

e Does the presence of an AND circuit in the primitives set facilitate the
evolution of a HALF-ADDER circuit?

e Does the presence of both AND and HALF-ADDER fitness functions as
a multiobjective selection pressure facilitate the evolution of a HALF-
ADDER?

These two different types of events could be roughly (and somewhat artifi-
cially) distinguished as cooptive and catalytic, respectively.

3 Results

Several scenarios were constructed with different initial sets of primitives and
suites of fitness functions. The rate at which desired functions were evolved
was then measured over several thousand generations.

Scenario Initial Primitives Fitness Functions
HALF.ADD_ONLY NAND HALF-ADDER
WITH_AND_C NAND, AND HALF-ADDER
WITH_AND_CN NAND, AND HALF-ADDER, AND
WITH_OR_C NAND, OR HALF-ADDER
WITH_OR_CN NAND, OR HALF-ADDER, OR

Figure 4: The results of one trial of independent evolutions of a
HALF_ADDER in 5,000 generations under various scenarios. With all fitness
functions active and only NAND in the initial primitives set, very few occu-
rances occured. Roughly 150 occurences appeared under a variety of simpler
scenarios.

FULL HALFADD_ONLY WITH_AND_C WITH_AND_CN WITH_OR_C WITH_OR_GN

100 150
| |

Occerences in 5000 generations
50
|

In all the scenarios tested besides FULL, the mean occurence rate for
5,000 generations was close to 150 with a standard deviation close to 10. No
statistically significant differences between the scenarios were detected. A
broader family of scenarios will need to be analyzed in the future to determine
the sort of interactions that lead to the reduction of occurrences in the FULL
scenario.

In general, our simulation does not converge on solutions as fast as Arthur
and Polak’s. This may have to do with differences in our selection mechanism,
or with parameters, or it could be a bug in our code.

4 Discussion

We implemented the basics of Arthur and Polak’s model, and began to ex-
plore the sort of exaptive phenomena its success depends upon. We observed
a significant difference in the dynamics of evolution between when the full
suite of fitness functions is present, versus when only a few pieces of the se-
lective pressure are active at a time. We determined that there is need for
further analysis of more complex scenarios before we can map the sort of
relationships we observed in the Artificial Neural Network example.

In the future we would aim to map these dependencies in detail, and to
answer the question:

o Are the catalytic effects of fitness functions greater than the sum of
their parts?

Other items to consider include the usefulness of the combinatorial model of
evolutionary processes, and how it might be extended. The work of Parter
et al. in [15] also leads one to wonder about the significance of facilitated
variation-inspired models for evolutionary computation, in which modular-
ity emerges dynamically rather than being imposed a priori. And finally,
an ambitious endeavour might seek to generalize catalytic evolution beyond
boolean functions to more complex, arbitrary classes of objective functions.

5 Implementation

The simulation was implemented in Common Lisp. As with most algo-
rithms, it is easier to describe qualitatively than to code, so a few pointers
are offered here. The full code is available at http://github.com/SigmaX/
CircuitTech.

5.1 Representation

So that the substructure of a circuit can be easily retrieved for visualization,
we represent it as an adjacency matrix. Since the components of a circuit

8

http://github.com/SigmaX/CircuitTech
http://github.com/SigmaX/CircuitTech

may have multiple inputs and outputs, a digraph of functional dependencies
between components is insufficient, since it would not specify which output
of a component fed into which input of the next. We thus map outputs onto
inputs directly in our matrix. For example, the circuit shown in Figure 4 is
represented as follows:

01 02 Al A2 Bl BQ Cl CQ Dl D2

z 0 o0 1 o0 1 0 0 0 0 O
y 0 0 o0 1 o0 1 0 0 0 0
Ao 0 0 0 O O O 1 0 1 O
Bo 0 0 0 0 O O 0 1 0 1
Co 1. 0 0 0 0 0 O 0 0 O
Do 0 1. 0 O O O O O 0 O

where {x,y} are the inputs to the circuit and {O;, Oy} are its outputs. The
labels are omitted in memory: a corresponding component vector is defined
from which they can be generated.

Figure 5:
A A A A
— —
‘ ° Au,v)
A4 A S
I
u v ! y
A B s
A A A ;r 'y X
X Y X ¥

Note that each component input can receive a signal from only one source,
and that the corresponding functional dependency graph (in which each node
is a component and edges denote any dependency) will always be acyclic in
the circuits we are generating. We accomplish this as follows: A random
ordering of components is selected, and both the rows and columns follow

9

this order. We begin with the zero matrix. For each column vector of the
matrix corresponding to an input A; of component A, a random element
between the first row and the first output Ap of A is set to one. The columns
corresponding to the circuit outputs O; have any element set to one. This
ensures that the corresponding functional dependency graph has an upper
triangular matrix with a zero diagonal, i.e. that it is acyclic. Since the
ordering of the components was selected randomly, the resulting circuit is
also random.

Executing circuits is expensive, especially since each component may itself
be a circuit with many subcomponents, and so on. It is thus to our benefit
to store the truth table of a circuit, so that its output can be used more than
once without executing the function repeatedly. We generate a graph rep-
resentation of the circuit’s truth table known as a Binary Decision Diagram
(BDD), which represents the if-then-else normal form of a boolean function
in a binary tree structure that can be easily walked for all input bit string
permutations[l]. The BDD is compressed into a memory efficient Reduced
Ordered Binary Decision Diagram (ROBDD), much like a prefix tree for a
dictionary with an n-ary (as opposed to binary) alphabet can be compressed
into a Directed Acyclic Word Graph[5]. ROBDDs have the added quality
that two logic functions that are isomorphic (perform the same computation
on a set of input variables) have ROBDDs that are not only isomorphic but
identical. The ROBDD for functions with more than around sixteen variables
can still become quite large, as the number of possible bit string permutations
is 2". It is computationally intractable to generate the entire truth table of
functions much larger than this.

ROBDDs can be composed efficiently, and Arthur and Polak use such
operators to generate new circuits. Our system composed functions via the
generation of adjacency matrices and Lisp functions as described above.

5.2 Execution Tiers

To generate the ROBDDs for circuits, we need code that executes the func-
tion. To achieve this we automatically generate a Lisp function from the
circuit’s adjacency matrix.

(defun one_a(x y)
(list (funcall A x y) (funcall B x y)))

10

Figure 6: Circuit 1, (left) and 1, (right).
A A

B

| = 1]
A& TT ‘

(defun one_b(x y)
(apply
#’(lambda (u v)
(list (funcall B u v) (funcall Cu v)))
(funcall D x y)))

Note that we used a lambda expression in circuit 1, so that the outputs of
D could be used multiple times. More complex functions may require several
nested lambda expressions, each of which must be executed in sequence, its
outputs providing the inputs for the next function. We conceptualize each
lambda as an execution tier, and consider each tier 7 to be a set of component
functions. Determining a circuit’s execution tiers is the first step toward
generating its Lisp expression, and is equivalent to performing a topological
sort on the components (though, again, the circuits resist a straightforward
graph representation).

Formally, we may define a tier as follows. Let C be the set of compo-
nent functions used in the circuit, ex. C = {A, B,C, D}, each of which in
turn is a set of input variables X;. Let ¢x, be the column vector of the
adjacency matrix corresponding to X;, with ¢, (z) being the matrix element
corresponding to output z (ex. In Figure 5, ¢4, (z) = 1, but ¢4, (y) = 0).

Definition 1 A component function X is initially in tier 75 if and only if

11

Figure 7: The decomposition of a circuit into three execution tiers.

t 1

X'’s outputs depend only on the circuit’s inputs x; € Iy. That s, all the
entries in each X;’s column vector are zero except those corresponding to
mputs to the circuit, i.e.:

s ={X € CVX; € X, (V(z € bx;lz & 1), ~ox,(2))} (1)

Now, visualizing higher tiers as subcircuits with the outputs of the previous
tier as inputs, if we define the outputs of the functions in 7¢ unioned with I

as Iy and so on, we can define the ith tier:
Livi = LU {Yo|(0bj(Yo) €) A B3X;eX ¢ T, (¢x,(Y0)))} (2)
Tg = {X - C|VX] < X, (V(Z S ¢Xj|z ¢ IZ): _‘¢Xj (Z))} (3)

The subscript 0 signifies that this is not our final definition.

Equation (3) works for the circuit in Figure 5, but it is not general. A
special case must be compensated for, as demonstrated by the circuit in
Figure 8. Component B in Figure 8 is a part of the first tier, but depends
on the output of A, contrary to our definition in (1). Since the output of

12

Figure 8:

—
D E
A 5 A A
u B ; C RTRY]
T T A A
A = v
= = AB.C
r 4
X Y X ‘r'l

A is used only once, we do not need a lambda function (tier) to process it.
To complete the definition of 7 then, we define an iterative algorithm to add
components akin to B. First we define three helper functions:

Definition 2 Object and Usage functions:
o A component X is in the set Obj(Xo) iff Xo is an output for X.

e Usage(Xop) is the number of edges directed out of Xo, i.e.

Usage(Xo) = Z ¢i(Xo)

e ObUsage(X) is the number of distinct components the outputs of com-
ponent X are used in.

If a function’s output is used more than once, we need a need a new tier to
store the value for processing multiple times. Furthermore, if a component’s
outputs are directed into different child components, complex car and cdr
arrangments can appear in the expression which are difficult to automatically

13

generate. Thus we also require a new tier if a component’s ObU sage is greater
than one:

Definition 3 Y is appended to 7 iff for all signals Xo; directed into Y :
o (Obj(Xp;) eT)V (Xo; €1;)
o Xo; is used only once, i.e. Usage(X;) = 1.
e X has only one child components, i.e. ObUsage(X) = 1.

Combining these yields the following recurrence relation, to be executed until
no change in T° occurs:

' =7 U{Y € C|VY; € Y, V(Xo;|ov,(Xo;)),
[(Obj(Xo;) € T')V(Xo; € L)A[Usage(Xo;) = 1]A[Usage(Obj(Xo,)) = 1]}&)
4

References

[1] Henrik Reif Andersen. An introduction to binary decision diagrams.
October 1997.

[2] W. Brian Arthur and Wolfgang Polak. The evolution of technology
within a simple computer model. Complexity, 11(5):23-32, May/June
2006.

[3] Yaneer Bar-Yam. When systems engineering fails — toward complex
systems engineering. In International Conference on Systems, Man and
Cybernetics, volume 2, pages 2021-2028, 2003.

[4] Jirgen Branke. Ewvolutionary Optimization in Dynamic Environments.
Kluwer, Norwell, MA, 2001.

[5] Maxime Crochemore and Renaud Vérin. Direct construction of compact
directed acyclic word graphs. In Lecture Notes in Computer Science,
volume 1264, pages 116-129, 1997.

[6] Andries P. Engelbrecht. Computational Intelligence: An Introduction.
Wiley & Sons, Ltd, England, 2007.

14

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

Cristoph Flamm, Alexander Ullrich, Heinz Ekker, Hartin Mann, and
Daniel Hogerl et al. Evolution of metabolic networks: A computational
framework. Febuary 2010.

J. Gerhart and M. Kirschner. The theory of facilitated variation. PNAS,
104, May 2007.

Chi-Keong Goh and Kay Chen Tan. A competitive-cooperative coevolu-
tionary paradigm for dynamic multiobjective optimization. IEEFE Trans-
action on Evolutionary Computation, 13(1):103-127, February 2009.

Stephen Jay Gould and Elisabeth S. Vrba. Exaptation—a missing term
in the science of form. Paleobiology, 8(1):4-15, 1982.

Stuart A. Kauffman. The Origins of Order. Oxford University Press,
New York, NY, 1993.

J. R. Koza. Genetic programming: on the programming of computers by
means of natural selection. MIT Press, Cambridge, MA, 1992.

Richard E. Lenski, Charles Ofria, Robert T. Pennock, and Christoph
Adami. The evolutionary origin of complex features. Nature, 423:139—
144, May 2003.

Javier Macia and Richard Solé. Distributed robustness in cellular net-
works: insights from synthetic evolved circuits. J. R. Soc. Interface,
6:393—-400, September 2008.

Merav Parter, Nadav Kashtan, and Uri Alon. Facilitated variation: How
evolution learns from past environments to generalize to new environ-
ments. PLoS Computational Biology, 4(11), November 2008.

W. Rand and U. Wilensky. Netlogo artificial neural net model.

Thomas Ray. Evolution, ecology, and optimization of digital organisms.
August 1992.

David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolu-
tionary algorithms: Analyzing the state-of-the-art. Fuvolutionary Com-
putation, 8(2):125-147, 2000.

15

	Introduction
	ANN Illustration

	Model
	Results
	Discussion
	Implementation
	Representation
	Execution Tiers

