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When observation and theory collide, scientists turn to carefully designed 

experiments for resolution. Their motivation is especially high in the case of 

biological systems, which are typically far too complex to be grasped by 

observation and theory alone. The best procedure, as in the rest of science, is 

first to simplify the system, then to hold it more or less constant while 

varying the important parameters one or two at a time to see what happens. 

—Edward O. Wilson (2002) 

 

INTRODUCTION 

Prior to the seminal work of R. M. May in the 1970s, the prevailing paradigm viewed the 

unpredictable fluctuations in population time series data as random effects due to 

environmental variability and/or measurement errors. In the absence of environmental 

variability, according to this view, population numbers would either equilibrate or settle 

into regular periodic oscillations. May’s (1974) suggestion that simple deterministic rules 

might explain the complex fluctuations observed in animal abundances led to an intense 

search for chaos in extant population data. The results of the search were suggestive, but 
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equivocal, and May’s hypothesis remained the subject of lively debate (Zimmer 1999, 

Perry et al. 2000). 

We took a different approach. Our interdisciplinary research team composed of 

statisticians, mathematicians, and biologists came together in the early 1990’s to 

document experimentally the occurrence of nonlinear dynamic phenomena in biological 

populations. We began with the idea that nonlinear theory yields testable hypotheses 

concerning changes in the dynamical behaviors of populations. For example, in the case 

of the quadratic map (sometimes called the “logistic” map), changes in the intrinsic 

growth rate lead to a sequence of dynamical behaviors from equilibria to periodic cycles, 

to aperiodic chaotic behavior. Our thought was that a sequence of changes in dynamical 

behavior, which is a common feature of nonlinear models, could, in principle, be tested 

under controlled laboratory conditions. This would provide a connection between theory 

and data that was missing from ecology. 

From the very beginning of our collaboration, fundamental questions greeted us at 

every turn as we looked at historical time series data and at data collected in our 

laboratories. Over the years we struggled to combine deterministic concepts such as 

equilibria, cycles, saddle nodes, bifurcations, basins of attraction, multiple attractors, 

resonance, and chaos with observations. What would a stable equilibrium, let alone 

chaos, look like in a population? Could a saddle node be invoked as an explanation for 

different transient behaviors of time series among replicate populations? Is chaos even 

possible if we consider discrete-state population models? Is it useful to consider 

populations as discrete-state stochastic systems? 
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In ecological theory, a central (and abiding) problem is to situate deterministic 

theory in the context of biological systems where important demographic events are 

probabilistic. Chance variation, in such fundamental biological processes as the number 

of offspring per adult and the chance of an individual surviving to adulthood, is a part of 

population dynamics. Probabilistic variation enters the overall research effort in the 

statistical methods associated with model identification, parameter estimation, and model 

validation. Chance events are also a component of the interpretation of population 

behavior; probabilistic variation is essential to the explanation of ecological time series 

data. We expand on these points. 

First, a mathematical population model, built and tested as a serious scientific 

hypothesis, must be somehow connected to data. A probabilistic version of the model 

must be constructed to account for inevitable deviations of data from the predictions of 

the deterministic model. Demographic/environmental variability must be modeled in 

order to construct an appropriate estimating function for the model parameters (based on 

the likelihood or conditional sums of squares, for instance). Statistical diagnostic 

procedures should be used to evaluate the uncertainty component of the model.  

Second, chance events interact with deterministic forces to produce emergent 

dynamic behaviors. The deterministic skeleton fixes the geometry of state space, 

providing a stage for the transient dance of stochasticity. Chance events allow the system 

to visit (and re-visit) the various deterministic entities on the stage, including unstable 

invariant sets, which under strict deterministic theory would have little or no impact on 

population time-series. Ecological time-series can display a stochastic mix of many of the 

dynamic features of the skeleton, including multiple attractors, transients, unstable 
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invariant sets (such as saddles and unstable manifolds) and lattice effects. Stochasticity 

enlarges the repertoire of time series orbits; each population, even in a set of laboratory 

replicates, may display a unique sequence of population abundances. 

In this chapter, we expand upon the message that in order to understand 

population fluctuations, deterministic and stochastic forces must be viewed as an integral 

part of the ecological system. We begin by laying out our models, animal and 

mathematical. We then discuss how we estimated model parameters and validated the 

model. Next, with the parameterized model in hand, we present an overview of some of 

the nonlinear phenomena and related topics that we have documented in our experimental 

system: chaotic dynamics, population outbreaks, saddle nodes, phase switching, lattice 

effects, the anatomy of chaos, and finally, mechanistic models of stochasticity.  

 

ANIMAL MODEL 

Our experience with the flour beetle Tribolium castaneum (Herbst) made it our choice as 

the animal model (Costantino and Desharnais 1991). Nevertheless, in the spring of 1992, 

it was far from clear that the beetle system would meet the demands for an in-depth 

investigation of nonlinear population dynamics. Several features made the beetle 

attractive. Much of the biology is understood and the life cycle is sufficiently complicated 

that the dynamical possibilities are rich; moreover, there is a consensus that cannibalism 

plays a major role in beetle dynamics (Mertz 1972). Laboratory protocols to culture and 

manipulate the insects in a controlled setting are well established. Bi-weekly census 

counts can be accurate and can be taken over many reproductive cycles in a relatively 

short period of time. The animals are routinely cultured in half-pint milk bottles 
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containing 20g of standard medium, in incubators maintained at a constant temperature, 

relative humidity and amount of light. In general, environmental variation is minimized. 

However, environmental variability can be imposed on the system, for example, by 

altering the size of the habitat following a census. 

 

DETERMINISTIC SKELETON 

Small. That was the word of caution for building the model. Keep the number of 

parameters small. Keep the number of state variables small. A model with an over 

abundance of parameters and state variables (relative to the amount of data available) will 

be difficult to analyze mathematically and impossible to test statistically. 

To construct the mathematical model, we proposed deterministic equations for the 

prediction of measurable state variables from one census time to the next. The state 

variables were chosen to be the numbers of larvae, L, pupae, P, and adult beetles, A. The 

resulting larval-pupal-adult (LPA) model is a system of three difference equations. The 

deterministic LPA model predicts the numbers of animals in each stage at time t + 1 

given the actual number of animals in each stage at time t: 

 

 ( )

( )

1

1

1

exp ,

1 ,

exp 1 .

ea el
t t t t

t l t

pa
t t t a t

c cL bA A L
V V

P L

c
A P A A

V

µ

µ

+

+

+

 = − − 
 

= −

 
= − + − 

 

 (1) 

 

Here Lt is the number of feeding larvae at time t, Pt is the number of non-feeding larvae, 

pupae and callow adults at time t, and At is the number of sexually mature adults at time t. 

The unit of time is two weeks, which is the approximate amount of time spent in each of 
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the L and P classes under experimental conditions. The average number of larvae 

recruited per adult per unit time in the absence of cannibalism is b > 0, and the fractions 

µa and µl are the adult and larval probabilities of dying from causes other than 

cannibalism in one time unit. In T. castaneum, larvae and adults eat eggs and adults eat 

pupae. The exponential expressions represent the fractions of individuals surviving 

cannibalism in one unit of time, with cannibalism coefficients 0/ ,/ ,/ >VcVcVc paelea . 

Habitat size V has units equal to the volume occupied by 20g of flour, the amount of 

medium routinely used in our laboratory. 

 

STOCHASTIC MODELS 

The LPA model (1) is not complete. The model must include a probabilistic 

portion that specifies how the variability in the data arose. There are many ways of 

formulating a stochastic model. We present two possibilities. 

Ecologists have drawn a distinction between environmental stochasticity (chance 

variation from extrinsic sources affecting many individuals) and demographic 

stochasticity (intrinsic chance variation in individual births and deaths) in populations 

(May 1974, Shaffer 1981, Simberloff 1988). Environmental noise can be modeled as 

being additive on the log scale, while demographic noise is additive on the square root 

scale (Dennis et al. 1995, 2001). 

In our early explorations of the LPA model we used an environmental stochastic 

version (2) to describe the dynamics of larvae, pupae and adults (Dennis et al. 1995): 
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Later experiments and analyses supported a demographic stochastic LPA model (3) 

(Dennis et al. 2001): 
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In models (2) and (3), Et = [E1t, E2t, E3t]′ is a random vector and is assumed to have a 

trivariate normal distribution with a mean vector of 0 and a variance-covariance matrix of 

Σ. Covariances among E1t, E2t, and E3t at any given time t are assumed (and represented 

by off-diagonal elements of Σ), but we expect the covariances between times to be small 

by comparison. Thus we assume that E0, E1, ... are uncorrelated. In rare instances where a 

large negative Eit causes the term in square brackets to be negative, the value of that life 

stage is set to zero. 

 

PARAMETER ESTIMATION AND MODEL VALIDATION 

A mathematical model is a scientific hypothesis expressed in the peculiarly precise, 

quantitative language of mathematics. How is the hypothesis to be evaluated?  How are 
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model parameters to be estimated? How is a statistical test of the model constructed? To 

what extent can the precision of the mathematical model be translated into strong 

statistical tests? More generally, how are theory and data to be joined? Finding working 

solutions to these problems have been an important feature of our research effort.  

The stochastic construction represented by models (2) and (3) have a number of 

statistical advantages. First, written on the logarithmic scale for (2) and on the square root 

scale for (3), the stochastic models are seen to be a type of multivariate, nonlinear, 

autoregressive (NLAR) model: 

 
( )1t t t+ = +W h W E . 

 

Here Wt is the column vector of the logarithmic-transformed state variables, 

[ln , ln , ln ]t t t tL P A ′=W , or square root-transformed, [ , , ]t t t tL P A ′=W , state 

variables; ( ) ( )( ) [ { exp( },t t ea t el tg bA c V A c V L= − −h W  {1 ) },l tg Lµ−  

( ){ exp( (1 ) }]t pa t a tg P c V A Aµ ′− + −  is a column vector of functions (where ( )g ⋅  is either 

a logarithmic or square root transformation); and tE has a multivariate normal (0, Σ) 

distribution. Development of statistical methods (estimation, testing, and evaluation) for 

NLAR models has received much attention (Tong 1990). Second, this stochastic 

construction preserves the dynamical properties of the deterministic model (1) through 

one-step predictions (conditional expected values). Third, changes in the underlying 

deterministic forms can easily be accommodated in the stochastic construction. Fourth, 

the model is easy to simulate and, finally, parameter estimates are straightforward to 

compute. 
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The stochastic construction has biological advantages as well. The models allow 

for covariance of fluctuations in larvae, pupae, and adults in a given time period, as 

described by the covariance of elements in tE . Autocovariances of the noise elements 

through time, though, are not expected to be important compared to the covariances 

between the elements within a time, provided the underlying dynamics (deterministic 

skeleton) are specified correctly. The different scales of variability for larvae, pupae, and 

adults are accounted for through the parameters on the main diagonal of the variance-

covariance matrix Σ . 

The stochastic LPA models (2) and (3) provide an explicit likelihood function. A 

likelihood function gives the probability, under the proposed stochastic model, that the 

random outcome would be the observed time series. A likelihood function is a 

fundamental tool in statistical inference (Stuart and Ord 1991) and represents the crucial 

connection between data and model. Data for a particular Tribolium population are a 

realization of the joint stochastic variables , ,t tL P  and tA . The data take the form of a 

trivariate time series: ( ) ( ) ( )qqq aplaplapl ,,,,,, ,,, 111000 . Let tw  denote the column 

vector of transformed observations at time t : [ln , ln , ln ]t t t tl p a ′=w  or 

[ , , ]t t t tl p a ′=w . Suppose θ  denotes the unknown parameters in the functions in 

( )⋅h , i.e., the parameters in the deterministic model equations. Additional unknown 

parameters are in the variance-covariance matrixΣ . The likelihood function ( , )L Σθ  is 

given by 

 

1
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q

t t
t
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where 1( )t tp −w w  is the joint transition probability density function, that is, the joint 

probability density function for tW conditional on 1 1t t− −=W w  and evaluated at tw .The 

maximum likelihood (ML) estimates of parameters in θ  and Σ  are those values that 

jointly maximize ( , )L Σθ , or, equivalently, ln ( , )L Σθ . The ML estimates of parameters in 

θ  must be obtained numerically for any particular data set. We have found that 

maximizing the log-likelihood using the Nelder-Mead simplex algorithm is convenient, 

reliable, and easy to program (Olsson and Nelson 1975, Press et al. 1986). ML estimates 

for the stochastic LPA models have desirable statistical properties. ML estimates are 

asymptotically unbiased, asymptotically efficient, and asymptotically normally 

distributed. However, the properties of ML estimates do not hold if the model is a poor 

description of the underlying stochastic mechanisms producing the data. In particular, if 

the noise vector tE does not have a multivariate normal distribution, or is correlated 

through time, then the ML estimates could be biased. Since we aim to identify dynamic 

behavior by estimating where the parameters in θ  are in parameter space, an alternative 

estimation method that yields more robust parameter estimates is useful. 

The method of conditional least squares (CLS) was also used for estimation of the 

parameters. CLS methods relax many distributional assumptions about the noise 

variables in the vector tE  (Klimko and Nelson 1978, Tong 1990). CLS estimates are 

consistent (converge to the true parameters as sample size increases), even if tE  is non-

normal and autocorrelated, provided the stochastic model has a stationary distribution. In 

the LPA model, CLS estimates reduce to three univariate cases because any given 

parameter does not appear in more than one model equation. CLS estimates are based on 

the sum of squared differences between the value of the variable observed at time t and 
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its expected (or one-step forecast) value, given the observed state of the system at time 

1−t . For the LPA model, there are three such conditional sums of squares: 
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Here [ ]1 , ,el eab c c ′=θ , lµθ =2 , and 3 ,pa ac µ ′ =  θ  are the parameter vectors from the 

model equations. The conditional sums of squares are constructed on the logarithmic or 

square root scales because that is the scale on which we assume noise is additive. Three 

separate numerical minimizations are required, one for each of the above sums of 

squares. We find the Nelder-Mead simplex algorithm convenient. The estimates of the 

parameters in the variance-covariance matrix of tE are then found from the sums of 

squares and cross products matrix constructed using the conditional residuals. 

Model evaluation procedures center on the residuals defined as the differences of 

the logarithmic (or square root) state variables and their one-step (estimated) expected 

values: 

 

1
ˆ( ).t t t−= −e w h w  

 

Here te is a vector of residuals for ( ), ( ), ( )t t tg l g p g a  in a population at time t , and 

ĥdenotes the functions in h evaluated at the ML parameter estimates. If the model fits, 
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then 1 2, ,..., qe e e should behave approximately like uncorrelated observations from a 

trivariate normal distribution. Departures of the residuals from normality can be 

investigated using graphical procedures such as quantile-quantile plots and tested using 

the Lin-Mudholkar statistic (Tong 1990). Autocorrelations of residuals indicates a 

relationship between successive prediction errors and thus might suggest a systematic 

lack of fit between model and data. First and second (or higher) order autocorrelations of 

residuals can be computed and tested for significance. 

In Dennis et al. (1995), we applied a maximum likelihood procedure to the data of 

Desharnais and Costantino (1980) and conducted rigorous diagnostics for the evaluation 

of the stochastic model (2). A single set of parameter values from the control cultures was 

able to describe the dynamics of nine demographically manipulated cultures, even though 

none of the data from these manipulated populations were used to obtain the parameter 

estimates. The observed time series for a representative replicate together with the one-

step predictions are graphed in Fig. 1. The solid lines connect the observed census data 

(closed circles). Dashed lines connect the observed numbers at time t  with the forecast 

(open circles) at time 1+t . The accuracy of a particular forecast can be judged by 

comparing the predictions at time 1+t  with the number of animals actually observed at 

time 1+t . In general, the graph reveals a close association between the one-step forecast 

and the census data. Parameter estimation placed the population in the region of 

parameter space that corresponds to stable 2-cycles of the deterministic skeleton of the 

LPA model. 

Similar statistical methods for parameter estimation and model validation were 

applied to the data from two other experiments described in this chapter (Dennis et al. 
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1997, 2001). In both cases, the diagnostic analyses of the residuals supported the LPA 

model. 

 

EXPERIMENTAL CONFIRMATION OF NONLINEAR DYNAMIC PHENOMENA 

The laboratory system—beetles in a bottle together with the deterministic and stochastic 

models—was devised to test basic ecological hypotheses in isolation from confounding 

factors. With a parameterized and validated model for laboratory cultures of T. 

castaneum in hand, we were ready to open a new phase of our research in which 

experiments are focused directly on phenomena such as bifurcation sequences, equilibria, 

cycles, stable and unstable manifolds, and chaos. 

Recognizing that we are part of a continuing tradition of using flour beetles in 

ecological research it seems appropriate to recall the philosophy of laboratory research 

stated 50 years ago by pioneering ecologist Thomas Park (1955): 

 

Research in laboratory population ecology should take its orientation from 

some phenomenon known or suspected to occur in nature and known or 

suspected to have significant ecological consequences. Its objective is not 

to erect an indoor ecology but, rather, to illustrate conceptually the general 

problem to which it is addressed. The research is thus the handmaiden of 

field investigation; not the substitute. Findings derived from such studies 

are models of selected events in natural environments. The models, though 

not simple, are simplified; they are under a regimen of planned control, 

and their intrinsic interactions are likely to be intensified. To this extent 
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they are unrealistic. But they remain, nonetheless, quantitative biological 

models and their unrealistic aspects may be a virtue instead of a vice. This 

is to say, they can contribute to the maturation of ecology, at least until 

that time when they are no longer needed. 

 

We begin our presentation of selected nonlinear phenomena documented in our 

laboratories by describing an experiment based on a model predicted sequence of 

transitions in dynamic behavior occurring in response to changes in the adult death rate. 

 

BIFURCATIONS IN THE DYNAMIC BEHAVIOR OF POPULATIONS 

Nonlinear mathematical models can undergo sudden transitions in dynamic behavior in 

response to changes in parameter values. Specifically, the long term attractors of model 

trajectories—stable points, stable cycles, loops, strange attractors—can exhibit abrupt 

changes in identity and stability when model parameter values are altered. The anatomy 

and taxonomy of these changes is the focus of bifurcation theory in nonlinear dynamics. 

An important biological point is that a given nonlinear model may forecast a 

unique parade of dynamic behaviors in response to parameter change. If a population rate 

quantity—birth rate, death rate, migration rate, etc.—could be manipulated 

experimentally, the resulting observed population responses would serve as a test of the 

model bifurcation sequence. 

The LPA model predicts such a sequence of transitions in dynamic behavior in 

response to changing values of the adult death rate parameter aµ . A bifurcation (or final-

state) diagram is a plot of the asymptotic dynamical behaviors as a function of adult 
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mortality (Fig. 2). For very small values of mortality there is a stable fixed point. As aµ  

increases a period doubling bifurcation to stable 2-cycles occurs. With further increases 

in aµ  there occurs a surprising reversal to an interval of stable equilibria. An increase of 

aµ  to values near one results in another destabilization of equilibria and, in this case, a 

bifurcation to invariant loop attractors in phase space and quasi-periodic time series 

(called a Neimark-Sacker bifurcation). 

To test the bifurcation prediction we manipulated adult mortality rate in beetle 

cultures (Costantino et al. 1995; Dennis et al. 1997). Rigorous statistical verification of 

the predicted shifts in dynamical behavior provided convincing evidence that the 

observed transitional changes did indeed correspond to those forecast by the 

mathematical model (see Fig. 3). 

 

A SECOND BIFURCATION EXPERIMENT: THE HUNT FOR CHAOS 

Ecologists searched for chaos in historical data. This involved various statistical methods 

for the analysis of existing time series (e.g. Ellner and Turchin 1995, Turchin and Ellner 

2000, Perry et al. 2000). Our approach was experimental. We focused not on a particular 

time series but rather on a collection of time series taken from treatments designed to lie 

along a route to chaos. Thus, any claim that chaotic dynamics influenced the populations 

would not rest on a single data set, but would be supported by the dynamics observed 

across an entire sequence of predicted bifurcations. 

Thus, our hunt for chaos took the form of a second transitions experiment whose 

protocol was based upon an LPA-model-predicted sequence of bifurcations (Costantino 

et al. 1997).  This sequence occurs in the model when the adult death rate is 0.96aµ =  
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and the adult cannibalism of pupae pac  is increased (by manipulating adult recruitment). 

The sequence (see Fig. 4) begins at 0pac =  with quasi-periodic oscillations around an 

invariant loop. With further increases in pac  the predicted dynamics pass through a 

complicated array of aperiodic attractors and period locking windows (where the motion 

around the loop is exactly periodic) until finally chaotic and strange attractors dominate. 

For sufficiently large values of pac  there is predicted a distinctive cycle of period three 

which bifurcates to a six-cycle near 1pac = . 

Based on these predictions, the “hunt for chaos experiment” was designed 

with adult mortality rate at µa = 0.96. The adult recruitment rate was manipulated so that 

it would equal exp( )t pa tP c A− , with values of pac  set at 0.00, 0.05, 0.10, 0.25, 0.35, 0.50, 

and 1.00. There was also an unmanipulated control treatment. 

The data from these experiments, together with the predicted deterministic 

attractors and stochastic realizations of model (3) using the estimated parameter values, 

are plotted in phase space in Fig. 5. The pattern of changes in dynamics and variability 

from treatment to treatment are well-captured by the model, from the stable point 

equilibrium of the control, to the irregular behavior of 0.35pac = , to the strong periodic 

signals in the 0.50pac =  and 1.00 treatments.  

These results illustrate two important messages. Biological systems can undergo 

transitions between different types of deterministic behaviors in response to changing 

conditions. Moreover, these transitions might be predictable by means of suitable 

stochastic versions of the models (Dennis et al. 2001). 

 



 17

CHAOS AND POPULATION OUTBREAKS 

Sensitivity to initial conditions is a key characteristic of chaos. This property led to 

suggestions on how small perturbations might be used to influence the dynamics of 

chaotic systems. One idea is that by “nudging” the parameters or state variables at points 

in the trajectory where the system is particularly sensitive to perturbations, one might 

produce a desired effect, large relative to the perturbation applied. Several authors discuss 

this method for population control in ecology (Doebeli 1993; Solé et al. 1999; 

Shulenburger et al. 1999; Hawkins and Cornell 1999), but provide no experimental test 

of the procedure. In this section, we show how small demographic perturbations in adult 

numbers can be used to dampen large chaotic fluctuations in the densities of larvae 

(Desharnais et al. 2001). 

The chaotic strange attractor for 0.96aµ =  and 0pac =  has regions of differing 

sensitivities to initial conditions (Fig. 6A). For each of 2000 points on the attractor we 

computed the three eigenvalues of the Jacobian matrix of the deterministic LPA model. 

Each point was shaded according to tλ , the logarithm of largest modulus of the three 

eigenvalues: light gray for negative values, dark gray for moderate positive values, and 

black for large positive values. These numbers, which ranged from –1.03 to 3.92, are the 

local Liapunov exponents for one step in the orbit (Bailey et al. 1997). They measure the 

effect of small perturbations on the population trajectory. Values of 0tλ >  indicate 

regions of phase space where nearby trajectories diverge in the next time step; values of 

0tλ <  occur in regions where nearby trajectories converge. The black coloration in Fig. 

6A indicates a “hot” region of the attractor where larval and adult numbers are small and 
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numbers of pupae are large. Small perturbations in this region can have a large effect on 

the population. 

We closely studied orbits of simulated populations and noticed that differences of 

a few adults in the “hot region” resulted in widely divergent trajectories. This led to the 

identification of two rules which we subsequently used in the experimental protocol. The 

first or “in-box” rule, which forecasts a reduction in larval numbers with small 

perturbations in the number of adult beetles, is as follows. If the life stage vector 

[ , , ]t t tL P A  is such that 150tL ≤  and 3tA ≤  then three adults are added to the culture; 

otherwise no perturbation is made. We developed a second or “out-box” rule as a control 

to demonstrate that it is the dynamics associated with the “hot spots” on the chaotic 

attractor that are responsible for the reduction in larval numbers and not simply the fact 

that adults were added to the culture. Under this rule, if the life stage vector [ , , ]t t tL P A  is 

such that 150tL >  or 3tA >  then three adults are added to the culture; otherwise no 

manipulation is made. The regions where the in-box and out-box perturbations are 

applied are represented in Fig. 6B. 

We conducted an experimental evaluation of the predicted perturbation responses 

by establishing nine laboratory populations of the RR strain of the flour beetle 

T. castaneum. As in the study described in the previous section, we experimentally set the 

adult mortality rate at 0.96 and manipulated the adult recruitment rate so that it would 

equal exp( )t pa tP c A−  with 0.35pac = . Three of the populations formed an experimental 

control treatment where no perturbations were applied for the duration of the experiment. 

For the six remaining cultures, the above procedure was continued for 132 weeks; 

however, at week 134 and thereafter for a total of 78 weeks, in addition to manipulating 
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µa and cpa, we applied the in-box perturbation rule to three populations and the out-box 

rule to three populations until week 210 after which we stopped the in-box and out-box 

perturbations and maintained the cultures for another 54 weeks. 

Predicted and observed time series for larval numbers are shown in Fig. 7. The 

panels on the left side of the figure show realizations from the stochastic version of the 

LPA model (3) with parameters estimated from a previous study (Dennis et al. 2001). 

The panels on the right side are for one representative replicate population from each of 

the three experimental treatments. Both the simulated and observed populations in the 

unperturbed control treatment (Fig. 7A, B) show large chaotic fluctuations in larval 

numbers similar to those observed in previous studies (Costantino et al. 1997, Dennis et 

al. 2001). The in-box perturbations, which were designed to decrease the amplitude of the 

fluctuations in insect numbers, had the desired effect. The model and experimental 

populations in the in-box treatment exhibit large amplitude fluctuations prior to the in-

box perturbations (solid symbols in Fig. 7C, D), but these oscillations dampened 

dramatically after the in-box perturbations were applied (open symbols in Fig. 7C, D). On 

the other hand, as predicted by the model, the out-box populations continued to exhibit 

large amplitude fluctuations in larval numbers during the out-box perturbations (Fig. 7E, 

F). This was despite the fact that, in accordance with the experimental protocol, the out-

box perturbations were applied more often than the in-box perturbations. This 

demonstrates that the dampening effect of the in-box treatment was due to the timing of 

the perturbations to coincide with the occurrence of life stage numbers in a sensitive 

region of phase space (box in Fig. 6B). During the final 54 weeks of the experiment, the 

LPA model prediction was for the oscillatory amplitudes of the cultures to return to the 
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levels attained prior to the application of the perturbations. That behavior was observed 

(Fig. 7). 

Can small perturbations be used to influence the dynamics of natural ecosystems? 

The question has yet to be addressed by field ecologists. Certainly introduction of a 

handful of individuals of a non-native species into a region can have wide ranging 

effects. However, the possibility of changing the dynamics of an abundant species in the 

field with small perturbations has not been explored to our knowledge. Here we have 

made the step from theoretical possibility to laboratory demonstration. For a similar 

approach to be effective in field populations, a model of the dynamics of the system is 

required which can be used to make accurate predictions. Such models will come from 

careful studies of the mechanisms that determine ecological change (Kendall et al. 1999, 

Perry et al. 2000, Turchin and Ellner 2000). 

 

BACK IN THE SADDLE (NODE) AGAIN 

Random events can frequently and repeatedly produce visits near unstable equilibria, 

cycles, or other invariant sets. Such visitations can result in the influence of unstable 

invariant sets on the dynamics of a population. This is particularly true for unstable 

invariant sets that are not repelling. In the higher dimensional systems typically found in 

ecology, unstable invariant sets often are associated with attracting regions in phase 

space; that is, there are points in phase space whose orbits approach the unstable set. 

These points constitute the “stable manifold” of the invariant set. Moreover, points near, 

but not on this stable manifold are temporarily drawn toward the unstable set before 

being repelled away towards an attractor. Unstable invariant sets of this type are called 
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“saddles”. Nonlinear systems, particularly those with complex dynamics, are generally 

replete with saddles. 

Since random events can cause deviations away from an attractor and place an 

orbit near an unstable set or its stable manifold, a population’s dynamics becomes a 

mixture of influences from both stable and unstable sets. Indeed, the predicted stationary 

distribution of most stochastic models covers all (or most) of feasible phase space, and 

therefore such a mixture is theoretically certain to happen. The resulting temporal 

patterns are then a matter of the relative strengths of the influences due to the unstable 

and stable invariant sets. 

Here we present evidence for the influence of a saddle observed in a replicate of 

the 0.05pac =  treatment of the hunt for chaos experiment. In Fig. 8 plots of the larval, 

pupal and adult time series of the deterministic model (1), stochastic realizations of 

model (3), and the data are presented. The deterministic time series displays no influence 

of the presence of the unstable equilibrium (Fig. 8A). The stochastic model forecasts that 

the time series of some stochastic realizations and some experimental orbits will visit the 

unstable equilibrium and remain relatively nonoscillatory at low levels before returning 

to the asymptotic stable attractor. One such stochastic realization is presented in Fig. 8B. 

A saddle fly-by occurs in the interval marked by the double ended arrow. The 

experimental data show a saddle fly-by in the interval from time step 8t =  to 17t = . 

In the four panels of Fig. 9, the deterministic model-predicted invariant loop 

(black closed curve) and the data orbit (open symbols) are presented in phase space. In 

the first panel the data for time steps 0 to 8 (weeks 0 to 16) show a temporal motion 

around the loop. However, at time step 8 there is a perturbation away from the loop 
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which places the data point near the model predicted unstable equilibrium (solid circle). 

From time steps 8 to 13 (weeks 16 to 26) the data orbit stays clustered very near this 

predicted equilibrium. Indeed, if the interval of observation were restricted to the first 13 

time steps of the experiment an inaccurate conclusion of equilibrium dynamics might be 

made. The equilibrium, however, is unstable and the data orbit, from time steps 13 to 19, 

displays a “star-like” rotational motion in state space as the data orbit leaves the vicinity 

of the saddle equilibrium and returns to the stable invariant loop. This geometrically 

distinctive path is predicted by the deterministic LPA model (1). The linearization at the 

equilibrium has a conjugate pair of complex eigenvalues ire θ± of magnitude 

1.265 1r ≈ > and polar angle 2.576θ ≈ (and a third real positive eigenvalue 

0.3945 1λ ≈ < ). This complex eigenvalue implies a rotational motion away from the 

saddle of approximately 2 2.439π θ ≈  radians (139.8° ) per step, the motion occurring 

approximately in a plane parallel to that spanned by the eigenvectors 

( , , ) (1, 1.116,0.4860)L P A ≈ −  and (1, 0.3526, 0.2817)− − . In the fourth panel the data 

return to the model predicted quasi-periodic motion around the invariant loop. 

For the deterministic LPA model, only those time series whose orbits pass near 

the stable manifold will be strongly influenced by the saddle node. Moreover, once the 

population has reached the stable attractor it will stay there forever. This is true neither 

for stochastic LPA model time series nor for experimental observations. Chance events 

can cause a population to land near the stable manifold and come under the influence of 

the saddle node. This might even reoccur on several occasions in a time series, and 

several ‘fly-bys’ of the saddle would then be present in the data (Cushing et al. 2003). 
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The stochastic component of the dynamics can therefore account for different transient 

behaviors of time series in identically replicated experimental populations. 

 

PHASE SWITCHING IN POPULATION CYCLES 

Populations often exhibit temporal oscillations, and sometimes these oscillations shift 

phase. A common phenomenon observed in oscillating Tribolium cultures is a change of 

phase in which, for example, a high-low periodic pattern “chicken-steps” (skips) to a 

low-high pattern. Fig. 10A displays larval numbers for two of the control replicates from 

the experiments of Desharnais and Costantino (1980). The cultures, shown to be 

oscillating with period 2 (Dennis et al. 1995), display phase shifts in both replicates 

which eventually lead to asynchronous oscillations. Two other examples appear in Fig. 

10, one from the experiment of Costantino et al. (1995) involving a two-cycle (Fig. 10B) 

and another from the experiment of Costantino et al. (1997) ) involving a three-cycle 

(Fig. 10C). 

We hypothesize that phase shifts correspond to stochastic jumps between basins 

of attraction in an appropriate phase space which associates the different phases of a 

periodic cycle with distinct attractors (Henson et al. 1998). 

At the maximum likelihood LPA parameters estimated from the control replicates 

reported in Desharnais and Costantino (1980) the model admits an unstable fixed-point 

with coordinates (rounded to the nearest beetle)  

[ ] [ ]97 ,60 ,124,, =APL  
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This fixed point is stable in some directions and unstable in other directions; it is a saddle 

node as described in the previous section. The model also predicts two locally stable 2-

cycle solutions: one which alternates between the stage vectors 

[ ] [ ], , 18,  158,  106L P A =  

[ ] [ ], , 325,  9,  118L P A =  

and the other, which traverses the same vectors in opposite phase 

[ ] [ ], , 325,  9,  118L P A =  

[ ] [ ], , 18,  158,  106L P A = . 

Because they “live” on the same attractor {[18, 158,106], [325, 9, 118]}, the two 

different 2-cycles listed above are indistinguishable when plotted in phase space. 

However, these 2-cycles do determine different phases for each component. For example, 

the first cycle determines a low-high oscillation in the larval component, while the second 

determines a high-low oscillation in the larval component. In order to differentiate 

between these out-of-phase 2-cycles as separate attractors with distinct basins of 

attraction, we turn to the composite of the LPA model. 

The “composite LPA model” (the composite map, whose solutions correspond to 

even time steps of solutions of the LPA model) identifies the above 2-cycles as two 

different fixed point attractors given by the stage vectors 

[ ] [ ] O, , 18,  158,  106   and  [ , , ] [325,9,118].L P A L P A
∆
= =  

(Note the subscripts ∆ and O are used to label the two attractors.) The saddle point of the 

LPA map (labeled with the subscript +) is also a saddle point 

[ ] [ ], , 124,  60,  97L P A
+
=  
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of the composite map. 

The basins of attraction of the two stable fixed points of the composite LPA 

model are sets in 3-dimensional phase space and are computed numerically. In this 

particular example, the basins are fairly simple sets. Throughout a large portion of phase 

space, they are separated by a 2-dimensional surface (containing the saddle) that forms 

part of the “basin boundary.” Initial conditions on one side of the boundary lead to 

composite map solutions that approach [ ]∆APL ,, , while initial conditions on the other 

side generate composite map solutions approaching [ ]OAPL ,, . Solutions starting on the 

basin boundary near the saddle point tend to the saddle [ ]+APL ,,  (locally, the boundary 

is the “stable manifold” of the unstable saddle). Indeed, near the saddle, the stable 

manifold of this unstable entity forms the watershed geometrical feature of phase space. 

Near the origin, however, the basin boundary becomes much more complicated; but this 

will not concern us. 

Deterministic and stochastic time series generated by the LPA model for the L-

stage are displayed in Fig. 11 using the initial condition [70, 35, 64] of the experiment 

described above. The deterministic time series approaches the 2-cycle shown in Fig. 11A. 

In composite phase space, the corresponding solution of the composite LPA map 

approaches the fixed point [ ]∆APL ,, = [18, 158, 106] (Fig. 11D). The stochastic model L-

stage time series, on the other hand, shifts phase at time t = 7 and again at t = 15 (Fig. 

11B). In composite phase space, these phase changes occur exactly when the basin 

boundary is crossed (Fig. 11E). The data for replicate B from Desharnais and Costantino 

(1980) are shown in Fig. 11C and F. As the LPA model predicts, phase shifting occurs in 
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the data time series precisely when the data cross the model predicted basin boundary in 

composite phase space. 

Deterministic attractors alone do not account for the phase shifting mechanism 

proposed. Indeed, in some situations attractors may be of little interest as final states. 

Other invariant sets such as basin boundaries and saddle points, along with stochasticity, 

play a key role, and may lead to data dominated by transient rather than asymptotic 

dynamics. 

 

LATTICE EFFECTS 

The discovery that simple deterministic population models can display complex aperiodic 

fluctuations such as chaos (May 1974) inspired decades of empirical and theoretical work 

in ecology (Hastings et al. 1993, Dennis et al. 2001). The resulting mathematical models 

of population dynamics almost invariably employ a continuous state space.  That is, 

variables representing population densities in these models are real-valued. But animals, 

and for many practical purposes, plants, are individuals. More realistic models would 

therefore cast population densities as discrete variables, with state space a discrete lattice 

of numbers. As long as population size is bounded, deterministic models of the latter type 

have finitely many possible states and hence display only periodic cycles. In particular, 

discrete-state deterministic models with bounded dynamics cannot display chaos. 

Approximating population size with continuous-state models is commonly 

justified by the assumption that population numbers remain so large that the discrete state 

space lattice is sufficiently fine (May 1974). However, the deterministic dynamics of 

associated discrete-state and continuous-state models can be quite different even for very 
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large population sizes, so that the effects caused by the discreteness of animal densities 

(lattice effects) cannot always be ignored (Jackson 1989). 

As we have repeatedly emphasized, ecological systems are invariably stochastic. 

Discrete-state models, when perturbed by stochasticity, can recover the deterministic 

dynamics of the underlying continuous state space. The dynamics of such a model are a 

blend of the dynamics predicted by the deterministic continuous-state model and the 

cyclic dynamics predicted by the deterministic discrete-state model (Henson et al. 2001; 

Henson et al. 2003, King et al. 2002, King et al. 2004). 

As it turns out, lattice effects are not theoretical oddities arising from simple 

population models. We were able to verify the existence of lattice effects in the chaotic 

treatments of the “hunt for chaos” experiment described earlier in this chapter (Henson et 

al. 2001). We present one example in detail. 

Figure 12A shows a chaotic attractor of the LPA model. The data from the 

experimental treatment corresponding to this attractor clearly exhibit the temporal and 

phase space patterns of the predicted chaotic dynamics (King et al. 2004). However, the 

data also reveal a near 6-cycle pattern not predicted by the LPA model. We show that this 

unexpected 6-pattern is in fact a lattice effect. 

Suppose that, in order to simulate dynamics on a whole integer lattice, we 

integerize the LPA model as follows. Since we manipulated the experimental parameters 

aµ and pac  by adding or subtracting integer numbers of adults, we can more accurately 

describe the experimental protocol by replacing the A-equation in the LPA model by an 

A-equation in which recruitment and survival are integer quantities. In addition, the 

survival/recruitment processes for the other state variables are fundamentally integer 
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processes. One possible deterministic lattice model for the experiment in question, and 

the one used in Henson et al. (2001) is 
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This is a discrete state (or “lattice”) LPA model. When 1V = , the lattice model predicts a 

6-cycle attractor (Fig. 12B). 

One stochastic version of the integerized LPA model results from adding 

demographic variability on the square root scale to the two unmanipulated life stage 

equations, namely to the equations for the larval and pupal stages: 
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where E1t and E2t are random normal variables with mean zero and variance-covariance 

matrix Σ. In the rare cases in which a large negative E causes a negative value inside a 

square, we set the right hand side of that equation equal to zero. Equation (5) is a 

stochastic discrete state LPA model. 
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When V = 1, time series generated by the stochastic lattice model resembles the 

chaotic attractor; however, the lattice effect 6-pattern episodically recurs. See Fig. 12C. 

The 6-pattern forecast by the stochastic lattice model is clearly evident in the 

three experimental replicates. Figure 13A shows the larval time series data from one 

replicate. The intermittently occurring 6-pattern is also seen in the phase space 

representation of the data (Fig. 13B). 

Lattice effects can dramatically alter the predictions of ecological models, 

especially in systems for which the continuous-state deterministic dynamics are complex. 

In deterministic models, discretizing state space can replace a complicated continuous-

state attractor with a simpler lattice attractor. Yet the continuous-state dynamics remain 

important inasmuch as they continue to shape the transient behavior on the lattice. In the 

presence of demographic variability, the system is influenced by both transients and 

attractors, and thus displays episodes which alternately resemble the dynamics of the 

continuous-state and lattice models. We emphasize that such lattice effects are not only 

found in relatively coarse lattices or in small populations: indeed, in our experimental 

study of chaotic population dynamics, lattice effects were important even with 710  lattice 

points. 

 

ANATOMY OF CHAOS 

Chaos is a mathematical concept. In reality, populations are stochastic, discrete-state 

systems. In the previous section we saw that, although discrete-state deterministic 

systems cannot exhibit chaos, discrete-state stochastic systems can exhibit a dynamic 

blend of lattice effects and what appears to be chaos. But can the chaotic signal be 
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quantified? What, in fact, do we mean when we say a discrete-state stochastic system is 

“chaotic”? 

At the heart of chaos is the concept of sensitivity to initial conditions: a small 

perturbation can have a big effect. In populations, stochastic perturbations are not 

necessarily small, and they occur often. It is tempting to conclude that all fine structure 

associated with a chaotic mathematical model would be washed out by noise in 

experimental data.  This is not necessarily the case. 

Mathematically speaking, chaotic attractors are composed of infinitely many 

periodic orbits of saddle stability-type. Thus, chaotic dynamics exhibit continual fly-

bys—not of saddle nodes as discussed in a previous section—but of saddle cycles. In 

time series, these fly-bys appear as recurrent episodes of near-periodic dynamics. 

Sensitivity to initial conditions rearranges the recurrent episodes but does not destroy 

them. Scientists studying oscillatory chemical reactions, electroencephalographic 

recordings, and epidemiological case-reports have all noted the appearance of recurrent 

near-periodic episodes in putatively chaotic dynamical systems (Lathrop and Kostelich, 

1989; Schaffer et al. 1993; So et al. 1996, 1997). 

Identification of cyclic episodes in time series requires a lot of data. For the 

oscillatory chemical reactions and electroencephalographic recordings mentioned above, 

it was possible to resolve these fine structures clearly because of the wealth of data. In the 

epidemiological study, however, the identification of these patterns was confined to 

cycles of periods one and two, even though the data set afforded by measles case-reports 

in major cities are extensive by ecological standards (Schaffer et al. 1993). There is, in 

fact, a dearth of long ecological time series. The 8-year long Tribolium data set 
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( 70≈ generations) from the “hunt for chaos” experiment represents a unique opportunity 

to examine the signal of chaos as it is manifest in biological populations. 

We have developed the following hypothesis. Populations, being discrete-state 

stochastic systems, should display episodes of lattice cycles interspersed with episodes of 

chaotic signal. The chaotic signal itself should exhibit recurrent episodes of cyclic 

behavior. Chaotic population time series therefore should be a mixture of cycles 

predicted by both the discrete-state and continuous-state models, woven together by 

stochasticity. In this section we present a tool to test this hypothesis.  

For the chaotic ( 0.35pac = ) treatment in the “hunt for chaos” experiment there 

are a large number of model-predicted periodic orbits.  They are of two types: (1) saddle-

cycles embedded in the continuous-state LPA model attractor and (2) lattice cycles of the 

discrete-state LPA model. Although there are infinitely many of the first type, the level of 

demographic variability and the length of the data time-series puts a limit on our ability 

to distinguish among these cycles.  Thus we focus our attention on a dominant period-11 

saddle-cycle.  At the same parameter estimates, the discrete-state LPA model has 

precisely nine periodic orbits.  These orbits fall into three groups based on their 

periodicity: 3-cycles, 6-cycles, and 8-cycles. Cycles within each of the groups are very 

similar, with none differing from any other by more than 30 animals. Figure 14 shows the 

period-11 saddle-cycle and the lattice 3, 6, and 8-cycles. 

We can quantify fly-bys of periodic orbits using a measure of the “distance” 

between data points and periodic orbits.  We generalize the notion of distance using a 

quantity we call the lag-metric comparison, or LMC.  Essentially, the LMC measures the 

average distance in state space between the data and each phase of the model cycle. To be 
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where 1 2 3x x x x= + +  is a norm on the three-dimensional state space. In Figure 15, 

we plot ( , )LMC s t  against t  directly.  

Figure 15 shows plots of the LMC of the data from replicate 13 of the “hunt for 

chaos” experiment against time. At any time t  a low value of the LMC indicates that the 

data lie close to the model-predicted T-cycle and have done so over the course of the 

preceding T time units; a high LMC value indicates poor correspondence between model 

cycle and data.  Plotted against time, the LMC appears as a “braid” with one strand for 

each phase.  Time intervals over which the data trajectory closely follows the model 

cycle (“cycle episodes” for short) appear as unplaited portions of the braid. Tightly 

plaited portions indicate lack of correspondence between data and the particular model 

cycle in question. 

Viewing the complete 424-week replicate 13 data series using the LMC, we see 

that, initially, the population trajectory follows the saddle 11-cycle.  During this same 

interval, the lattice 8-cycle is also evident. This is not surprising, since these two cycles 

lie close together. After about week 50, a 6-cycle episode is identified. Over weeks 110-

134, another 8-cycle/11-cycle episode appears, which is followed by a 3-cycle episode 
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over weeks 150-172. At around week 200, a 130-week 6-cycle episode begins.  Weeks 

328-356 display another 11-cycle/8-cycle episode. Finally, it should be noted that a 1-

cycle episode (i.e., an equilibrium fly-by) is evident in these data around week 364.  

Overall, the pattern we observe in the data is one of transient but recurrent near-

periodic episodes, each traceable to a model-predicted periodic orbit.  From this 

perspective, the principal role of stochasticity is to move the system from one cycle to 

another.  The set of patterns observed, as well as their relative prominence in the mixture, 

is a prediction of the mathematical model.  It is worth pointing out that this method of 

quantifying the influence of chaos in population data is based on the fine structure of the 

dynamics.  By contrast, commonly-used measures, such as the “stochastic Liapunov 

exponent” are long-time averages which can measure only the gross properties of an 

entire system.  

 

MECHANISTIC MODELS OF THE STOCHASTICITY 

We have presented three stochastic LPA models in this chapter: the lognormal model (2), 

the square root model (3), and the integerized square root model (5). Although these 

models have been useful, stochasticity was introduced to the deterministic skeleton 

through the addition of biologically unspecified random variables. A next step is to 

associate more carefully the uncertainty to biological features such as reproduction and 

survival. 

A simple stochastic model of this type for the population dynamics of the beetle 

uses the binomial and Poisson distributions to characterize the aggregation of 
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demographic events within the life stages (Dennis et al. 2001, Henson et al. 2003, 

Desharnais et al. 2004). The Poisson-binomial (PB) model is 
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where 1tL +  is the number of feeding larvae, 1tP+  is the number of non-feeding larvae, 

pupae, and callow adults, 1tR +  is the number of sexually mature adult recruits, 1tS +  is the 

number of surviving mature adults, and ,  ,  ,  and t t t tl p r s  are the respective abundances 

observed at time t . The total number of mature adults 1tA +  is given by 1 1t tR S+ ++ , and 

t t ta r s= +  is the total number of mature adults observed at time t . Here “~” means “is 

distributed as.” 

The PB model (6) has purely demographic variability. The L-stage is a compound 

process: a random number of potential recruits are produced with conditional mean tba , 

and each potential recruit subsequently undergoes a survival process in which the 

conditional survival probability exp( )el t ea tc l c a− −  depends on the system state variables tl  

and ta . We assume that the number of potential recruits has a Poisson tba distribution, 

and that the number of subsequent survivors has a binomial distribution. The conditional 
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distribution of 1tL +  given t tL l= and t tA a=  becomes a Poisson distribution with mean 

exp( )t el t ea tba c l c a− − . 

The distribution of 1tP+  given t tL l=  has a binomial ( , (1 ))t ll µ−  distribution. The 

A-stage equation is the sum of two survival processes: recruits from the P-stage, denoted 

1tR + , and surviving adults, denoted 1tS + . We assume that 1tR +  given t tP p=  and t tA a=  

has a binomial ( ,exp( ))t pa tp c a−  distribution. The P-stage survival probability is the 

nonlinear function exp( )pa tc a− . 1tS +  is assumed to have a binomial ( , (1 ))t aa µ−  

distribution. 

In the PB model there are no noise variances and covariances to be estimated. The 

stochastic model has the same number of parameters as the deterministic LPA model (1). 

State space is discrete. The PB model is a stochastic lattice (integer valued) model. The 

assumption of demographic variability seems appropriate for laboratory cultures of 

beetles grown under standard conditions. We have used this type of model to study 

competition between two species of flour beetle where competitive exclusion is a 

common outcome (Desharnais et al. 2004). 

 

BEYOND BEETLES 

The rarity of designed manipulations and replications in natural systems makes rigorous 

testing of models difficult. Models of natural systems must necessarily be evaluated on 

the basis of biological plausibility, how well they describe the data, and, when possible, 

how well they predict new data. Models of natural systems retain the status of hypotheses 

and are used only tentatively as building blocks in theories about population abundance 
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patterns. Our laboratory documentation of nonlinear phenomena such as saddles nodes, 

phase switching, bifurcations, lattice effects, and chaos suggests that these phenomena 

may be worthy hypotheses to incorporate into investigations by field ecologists. 

What are the prospects for finding this sort of fine-structure in the dynamics of 

natural systems? Clearly, we have exploited some special features of the Tribolium 

system.  Foremost among these are: a very detailed understanding of the life history and 

population biology of the organism, the ability to observe all essential state variables, the 

absence of measurement error, the ability to essentially eliminate environmental 

variability, and the isolation of each population from interaction with other populations.  

In systems with different properties, the attainable resolution may be coarser. We hope 

our research using the Tribolium model system, however, will raise expectations for how 

quantitatively precise the model/data fit can be in population biology. 

Ecologists can be encouraged that simple nonlinear models can help unlock 

substantial gains in understanding population systems. Keys to transforming nonlinear 

models from scientific caricatures to testable scientific hypotheses are: incorporating 

demographic/environmental variability as well as the deterministic signal in biologically 

based models, explicitly connecting models and data, including statistics in the 

mathematical analysis, rigorously evaluating model performance, and effectively 

combining biology, mathematics, and statistics in an interdisciplinary approach. 

Our use of a laboratory population system served the purpose that laboratory 

experiments have always served: to isolate factors and to rigorously attribute cause. We 

were interested in whether the concepts from nonlinear dynamics—cycles, multiple 

attractors, chaos—could ever advance beyond the status of hypotheses and be convincing 
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explanations of population fluctuations. We were interested in whether a mathematical 

population model could ever be considered reliable scientific knowledge. The laboratory 

allowed us to manipulate conditions, perform a census of each population, and replicate, 

so that key predictions of the model could be tested. 

Our results strengthen the relevance of mathematical modeling in population 

ecology. Not only was a mathematical model useful in describing population patterns, it 

was essential for understanding the experimental results. Nonlinear dynamical concepts, 

combined with stochasticity, are the explanations of the phenomena that we documented. 

In addition, advanced statistical modeling techniques were required for connecting model 

and data. Throughout much of ecology, mathematical models have been no more than 

simplified teaching concepts, not to be taken seriously, and statistics has been a set of 

recipes for data analysis. Herein we have displayed a population system in which 

mathematical modeling and mathematical statistics form an integral part of the theories 

themselves. 
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FIGURE CAPTIONS 

Fig. 1. Time series data (closed circles) and one-step forecasts (open circles) for the 

control replicate A from the experiment of Desharnais and Costantino (1980). Solid lines 

connect the observed census data. Dashed lines connect the observed numbers at time t 

with the one-step forecast at time t+1. The maximum likelihood parameter estimates 

are 11.67, 0.0093, 0.0110, 0.0178, 0.5129, 0.1108el ea pa l ab c c c µ µ= = = = = = . 
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Fig. 2. Bifurcation diagram for the LPA model (1) with adult mortality aµ  as the 

bifurcation parameter. The maximum likelihood parameter estimates are 

7.48, 0.0091, 0.0041, 0.0120, 0.2670ea pa el lb c c c µ= = = = = . The arrows indicate those 

values of aµ  at which experiments were conducted. 

 

Fig. 3. Phase space plots of the data (SS genetic strain) obtained from the bifurcation 

experiment with 0.04aµ = (equilibrium), 0.27,0.50aµ = (2-cycles), 0.73aµ =  

(equilibrium) and 0.96aµ =  (invariant loop). 

 

Fig. 4. Bifurcation diagram for the LPA model (1) using pac  as the bifurcation parameter. 

The adult death rate was set experimentally at 0.96aµ = . The other parameter values are 

10.45, 0.2000, 0.01731, 0.01310l el eab c cµ= = = = . The arrows indicate those pac  values 

at which experiments were performed. 

 

Fig. 5. Phase-space plots for the data and stochastic model (3) of the experiment 

associated with the bifurcation diagram in Fig. 4. The model simulations used 

0.007629aµ =  for the controls, 0.96aµ =  for the treatments where adult mortality was 

manipulated, and the pac  value given in the figure together with the conditional least 

squares parameter estimates 10.45b = , 0.01731elc = , 0.01310eac = , 0.2000lµ =  and 

the following variance-covariance estimates: 11ˆ 1.621σ = , 12ˆ 0.1336σ = − , 
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13ˆ 0.01339σ = − , 22ˆ 0.7375σ = , 23ˆ 0.0009612σ = − , and 33ˆ 0.01212σ =  for the controls 

and 11ˆ 2.332σ = , 12ˆ 0.007097σ = , 22ˆ 0.2374σ = , and 13 23 33ˆ ˆ ˆ 0σ σ σ= = =  for the 

treatments where adult mortality and recruitment were manipulated. 

 

Fig. 6. Chaotic attractor of the deterministic LPA model in phase space. The pictures 

were generated from 2000 iterations of the LPA model after the initial transients 

disappeared. The attractor is shaded according to  tλ , the logarithm of largest moduli of 

the three eigenvalues of the Jacobian matrix of the LPA model (1) evaluated at the point 

( , , )t t tL P A  using 0.96aµ = , 0.35pac = , and the conditional least squares parameter 

estimates listed in the caption of figure 5. The colors range from light gray for negative 

values (λt < 0), to dark gray for moderate values (0 ≤ λt ≤ 3), to black for large positive 

values (λt > 3). (A) The full attractor has “hot regions” (black) where the trajectories 

show strong divergence and “cold regions” (light gray) where trajectories converge. (B) 

The axis scale for adult numbers is changed to magnify the base of the attractor. The 

grids show the boundary of the “in-box” and “out-box” regions used in the experimental 

design described in the text. The “hot spots” of the attractor fall mostly within this box. 

 

Fig. 7. Time series of larval numbers for the stochastic model and experimental data 

under three conditions: unperturbed treatment, in-box treatment, and out-box treatment. 

The simulations are from the demographic stochastic model (3) with 0.96aµ = , 

0.35pac = , and the conditional least squares parameter and variance-covariance estimates 

listed in the caption of figure 5. 
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Fig. 8. The time series of larval (circles), pupal (triangles), and adult (squares) numbers. 

(A) Deterministic model which reveals no influence of the presence of the unstable 

equilibrium. (B) Stochastic model (3) with a saddle fly-by displayed in the interval 

marked by the double ended arrow. (C) Experimental data with a saddle fly-by seen in 

the interval from 8t = to 17t = . The deterministic and stochastic model simulations used 

0.96aµ = , 0.05pac = , and the conditional least squares parameter estimates listed in the 

caption of figure 5. The stochastic model also used the and variance-covariance estimates 

listed in the caption of figure 5. 

 

Fig. 9. The model predicted invariant loop (closed curve) and unstable equilibrium 

(closed circle) for the hunt experiment treatment 0.05pac =  are shown together (in phase-

space) with the data orbit of one replicate (open circles). Lines connect the data values 

through time. 

 

Fig. 10. Time series data showing phase switching in population cycles. (A) Replicate A 

(circles) changes phase at time step 4 while replicate B (triangles) changes phase at time 

step 4 and 14. After time step 14 both replicates from the experiment of Desharnais and 

Costantino (1980) are asynchronous. (B) Replicate 4 (circles) does not change phase. 

Replicate 22 (triangles) changes phase at time step 10. After time step 10 both replicates 

from the experiment of Costantino et al. (1995) are asynchronous. (C) Replicates 3, 18, 

and 23 from the experiment of Costantino et al. (1997) show 3-cycle dynamics (transient 

time steps zero to four are omitted for clarity). Replicate 23 (squares) does not shift 
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phase. Replicate 3 (circles) changes phase at time step 8. Replicate 18 (triangles changes 

phase at time step 13 and at time step 18. After time step 18 all three replicates are out of 

phase. 

 

Fig. 11. Model predictions and the data. Time series for the deterministic model (1) were 

generated for the L-stage using maximum likelihood parameter estimates 11.67b = , 

0.5129lµ = , 0.0178pac = , 0.0110eac = , 0.0093elc = , 0.1108aµ =  and the initial 

condition [70, 36, 64]. Time series for the stochastic model (2) were generated for the L-

stage using the same parameter estimates and initial condition as for the deterministic 

model and the variance-covariance estimates 11ˆ 0.2771σ = , 12ˆ 0.02792σ = , 

13ˆ 0.009796σ = , 22ˆ 0.4284σ = , 23ˆ 0.008150σ = − , and 33ˆ 0.01112σ = . (A) The 

deterministic time series approaches a 2-cycle. (D) In composite phase space, the 

corresponding solution of the composite LPA map approaches the fixed point [ ]∆APL ,, = 

[18,158,106]. (B) The stochastic model L-stage time series, on the other hand, shifts 

phase at time t = 7 and again at t = 15. (E) In composite phase space, these phase changes 

occur exactly when the basin boundary is crossed. The data for replicate B from the 

experiment of Desharnais and Costantino (1980) are shown in panels (C) and (F). As the 

LPA model predicts, phase shifting occurs in the data time series precisely when the data 

cross the model predicted basin boundary in composite phase space. 

  

Fig. 12.  Density dynamics of the LPA models with b = 10.67, µl = 0.1955, µa = 0.96, 

cel = 0.01647, cea = 0.01313, cpa = 0.35. For the demographic stochastic model (3), the 

variance and covariance entries of the matrix Σ were taken to be σ11 = 2.332, 
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σ22 = 0.2374 and σ12 = σ21 = 0. (A) The chaotic attractor of LPA model (1). (B) A 6-cycle 

attractor of the lattice LPA model with V = 1 (on the order of 107 lattice points). (C) A 

stochastic realization with V = 1 exhibits a mixture of patterns, with intermittent patterns 

that resemble the lattice 6-cycle in panel (B) interspersed among episodes that resemble 

the chaotic attractor in panel (A).   

 

Fig. 13.  A 304 week data time series obtained from one replicate of the Tribolium 

experiment (Dennis et al. 2001) where adult mortality and recruitment were manipulated 

to be µa = 0.96 and cpa = 0.35. (A) Selected temporal episodes that resemble the lattice 

model 6-cycle shown in Fig. 12B are displayed as open circles. The remaining data points 

(closed circles) resemble the chaotic time series. (B) The selected temporal episodes in 

(A) are shown in phase space (on the order of 710  lattice points). Compare the 6-pattern 

episodes (open circles) to the 6-cycle lattice attractor in Fig. 12B.   

 

Fig. 14. Model-predicted continuum and lattice cycles. The four small phase-space 

graphs depict the 11-cycle from the continuous-state model (1) and the 8-, 6-, 3-cycles 

from the discrete-state deterministic model (4). In the central graph, all the cycles are 

superimposed on the chaotic attractor of the deterministic model. The graphs were 

generated by using the conditional least-squares parameter estimates 

10.45, 0.01310, 0.01731, 0.2000ea el ab c c µ= = = =  with 0.96, 0.35a pacµ = =  both set 

experimentally. 
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Fig. 15. Lag-metrics in the data. (A) Raw time-series data. For clarity, only the L-stage 

numbers are shown. LMC with respect to the model-predicted cycles: (B) continuous-

state model saddle 11-cycle; (C) discrete-state model 8-cycle; (D) discrete-state model 6-

cycle; and (E) discrete-state model 3-cycle. During intervals for which the “braid” 

appears tightly plaited, the data bear little or no resemblance to the corresponding model-

predicted cycle. Unplaited portions of the braid correspond to intervals for which the data 

closely resemble the model cycle. As shown in panel (F), we identified T-cycle episodes 

by setting the threshold number of animals 55θ =  (dashed line) and threshold duration 

12K =  for all model-predicted cycles. Thus, to be identified as a T-cycle episode in 

panel (F), non-equilibrium patterns were required to be in evidence for 24 consecutive 

weeks (more than seven generations), a very stringent requirement. The effects of varying 

θ  and/or K  on the episodes identified can be readily seen from inspection of the LMC 

plots in panels B-E. 
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