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Abstract

We used small perturbations in adult numbers to control large fluctuations in the
chaotic demographic dynamics of laboratory populations of the flour beetle Tribolium
castaneum. A nonlinear mathematical model was used to identify a sensitive region of
phase space where the addition of a few adult insects would result in a dampening of
the life stage fluctuations. Three experimental treatments were applied: one in which
perturbations were made whenever the populations were inside the sensitive region
(“in-box treatment”), another where perturbations were made whenever the
populations were outside the sensitive region (“out-box treatment”), and an
unperturbed control. The in-box treatment caused a stabilization of insect densities
at numbers well below the peak wvalues exhibited by the out-box and control
populations. This study demonstrates how small perturbations can be used to
influence the chaotic dynamics of an ecological system.
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INTRODUCTION

Sensitivity to initial conditions is a key characteristic of
chaos. This has led to suggestions on how small
perturbations might be used to influence the dynamics
of chaotic systems (e.g. Shinbrot et al 1993; Ott et al.
1994; Kapitaniak 1996). One idea is to “nudge” the
parameters or state variables at points in the trajectory
where the system is sensitive to changes, producing a
large desired effect from small perturbations. This
approach has been demonstrated in a variety of physical
and chemical systems (Ditto et /. 1990; Hunt 1991; Singer
et al. 1991; Gills et al. 1992; Petrov et al. 1993) and in vitro
expetiments on myocardial (Garfinkel ez @l 1992) and
brain tissues (Schiff er al 1994). There have been
discussions about using this method for population
control in ecology (Doebeli 1993; Hawkins & Cornell
1999; Shulenburger et al. 1999; Solé et al. 1999), but no
test of the procedures. In the present study, we apply this
technique to laboratory populations of the flour beetle
Tribolium castaneum, and show how small demographic
perturbations can be used to dampen large chaotic
fluctuations in the densities of the life stages.

MATHEMATICAL MODEL

Previous work (Dennis ez al. 1995, 1997, 2001; Costantino
et al. 1995, 1997; Cushing er al. 1996, 1998) has shown that
changes in the densities of flour beetle life stages in
laboratory cultures can be predicted accurately using a
system of three deterministic difference equations known
as the “LPA” model. The numbers of animals at time zare
related to the number of animals at time #— 1 using

L=0bA,_, exp(—cgr, L—1—caa Ai—1),
P=1L 4 (1 — U,
A= Py exp(—epp Aim1) T Ay (1—pa), M

where L, is the number of feeding larvae, P, is the number
of large nonfeeding larvae, pupae and callow adults, and
A, is the number of sexually mature adults at time # The
unit of time is two weeks and is, approximately, the
amount of time spent in the feeding larval stage under our
experimental conditions. The unit of time is also,
approximately, the duration of the P-stage. The quantity
b is the number of larval recruits per adult per unit of time
in the absence of cannibalism. The fractions ty, and p, are
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the larval and adult rates of mortality in one time unit.
The exponential nonlinearities account for the cannibal-
ism of eggs by both larvae and adults and the cannibalism
of pupae by adults. The fractions exp(— gy, L,—1) and
exp(—cga A;—1) arte the probabilities that an egg is not
eaten in the presence of L, larvae and A, adults in one
time unit. The fraction exp(—epa A;—1) is the survival
probability of a pupa in the presence of A, adults in one
time unit.

For a range of parameter values that are attainable
through flour beetle husbandry techniques, the model (1)
predicts a variety of dynamical behaviours from stable
equilibria, to “quasiperiodic” oscillations, to chaotic
oscillations, to periodic cycles. These behaviours have
been demonstrated experimentally (Costantino et al. 1997).
In particular, populations have been shown to exhibit
fluctuations around a chaotic attractor (Costantino et al.
1997; Dennis et al. in press; Cushing et al. 2001).

HOT REGION OF THE ATTRACTOR

The chaotic strange attractor predicted by the LPA model
using previously derived parameter estimates (Dennis ez
al. in press) has regions of differing sensitivities to initial
conditions (Fig. 1a). For each of 2000 points on the
attractor we computed the three ecigenvalues of the
Jacobian matrix of the deterministic LPA model. Each
point was coloured according to A, the logarithm of
largest modulus of the three eigenvalues: blue for negative
values, orange for moderate positive values, and red for
large positive values. These numbers, which ranged from
—1.03 to 3.92, are the “local Liapunov exponents” for
one step in the orbit (Bailey ez 4l 1997). They measute the
effect of small perturbations on the population trajectory.
Values of 4,> 0 indicate regions of phase space where
nearby trajectories diverge in the next time step; values of
A, < 0 are regions where nearby trajectories converge.
The red colour indicates a “hot” region of the attractor
where larval and adult numbers are small and numbers of
pupae are large. Small perturbations in this region can
have a large effect on the population.

We followed closely orbits of simulated populations
and noticed that differences of a few adults in the “hot
region” of the attractor led to widely divergent trajec-
tories. This led to the identification of two rules which we
subsequently used as the experimental protocol. The first
or “in-box” rule, which forecasts a reduction in larval
numbers with small perturbations in the number of adult
beetles, is as follows. If the life stage vector [L, P, A]] is
such that L, < 150 and A, < 3 then three adults are added
to the culture; otherwise no perturbation is made. We
developed a second or “out-box” rule to demonstrate that
it is the dynamics associated with the “hot spots” on the
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Figure 1 Chaotic attractor of the deterministic LPA model in
phase space. The pictures were generated from 2000 iterations of
the LPA model after the initial transients disappeared. The
attractor is coloured according to A, the logarithm of largest
moduli of the three eigenvalues of the Jacobian matrix of the
LPA model (1) evaluated at the point (L, P, A, using the
following conditional least squares parameter estimates (Dennis
et al. 2001): b6=1045 ¢ =0.01731, ¢4 = 0.01310,
i, = 0.2000, with puy = 0.96 and epp = 0.35 both set experi-
mentally. The colours range from blue for negative values
(A, < 0), to orange for moderate values (0 < A, < 3), to red for
large positive values (A, > 3). (A) The full attractor has “hot
regions” (red) where the trajectories show strong divergence and
“cold regions” (blue) where trajectories converge. (B) The axis
scale for adult numbers is changed to magnify the base of the
attractor. The grids show the boundary of the “in-box” and
“out-box” regions used in the experimental design described in
the text. The “hot spots” of the attractor fall mostly within
this box.
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chaotic attractor that are responsible for the reduction in
larval numbers and not simply the fact that adults were
added to the culture. Under this rule, if the life stage
vector [L, P, Aj] is such that L, > 150 or A, > 3 then three
adults are added to the culture; otherwise no manipulation
is made. The regions where the in-box and out-box
perturbations are applied are represented in Fig. 1(B).

MATERIALS AND METHODS

We conducted an experimental evaluation of the predicted
perturbation responses by establishing nine laboratory
populations of the RR strain of the flour beetle 7.
castaneum. As in a previous study designed to demonstrate
chaotic population dynamics (Costantino ez al 1997,
Dennis er al. in press), we experimentally set the adult
mortality rate at pn = 0.96 and manipulated the adult
recruitment rate so that it would equal P,_; exp(—cpa
A;—1) with ¢ = 0.35. Each population was maintained
in a half-pint (237 mL) milk bottle with 20 g of standard
media and kept in a dark incubator at 32 °C. Every two
weeks the larval, pupal and adult stages were counted and
returned to fresh media, and dead adults were counted and
removed. Adult mortality was set by removing or adding
adults at the time of a census to make the fraction of
adults that died during the interval equal to 0.96.
Recruitment rates into the adult stage were manipulated
by removing or adding young adults at the time of a
census to make the number of new adult recruits
consistent with the value of ¢y = 0.35. To counter the
possibility of genetic changes in life-history character-
istics, at every other census the adults returned to the
population after the census were obtained from separate
stock cultures maintained under standard laboratory
conditions. Three of the populations formed an experi-
mental control treatment where no perturbations were
applied for the duration of the experiment. For the six
remaining cultures, the above procedure was continued
for 132 weeks; however, at week 134 and thereafter, in
addition to manipulating p, and ¢, we applied the in-
box perturbation rule to three populations and the out-
box rule to three populations until the termination of the
experiment at week 210.

STOCHASTIC SIMULATIONS

Since noise is common to all ecological systems, even in
the laboratory, the model-predicted time series were
obtained using a stochastic LPA model. Realizations
representing demographic stochasticity wetre obtained by
adding random noise on a square root scale (Dennis ez a/.
in press). Applying the square root transformation to
equations (1-3) and adding noise, yields

VI = \/171‘1:—1 exp(—eurLi—1 — csadi—1) + Ei;

V P = AV Lz—l(l - ML) + B,

VA = \/sz1 exp(—madi—1) + A1 (1 — pa) + B (2)

The terms E, = [E|, E,, E3;]’ constitute a random noise
vector assumed to have a joint normal probability
distribution with a mean vector of zeros and a variance—
covariance matrix denoted by 2. The deterministic
skeleton of the model (1) is obtained by setting X = 0,
or equivalently, by letting Ey, E, and E;, equal zero. The
demographic nature of the stochasticity would stipulate
that the noise variables are uncorrelated with each other
within a time unit (off-diagonal elements of the matrix are
zero) as well as uncorrelated through time. In a previous
study using different data (Dennis ez 4. in press), the first
two diagonal elements of X were estimated as oy = 2.332
and 0O = 0.2374. We used these estimates in our
simulations. Since both ¢py and p, were fixed experi-
mentally, adult numbers followed (1); therefore, we set
E;5, = 0. In rare cases when one of the equations gave a
negative value in a simulation, the value for that life stage
was set equal to zero.

RESULTS

Predicted and observed time series for larval numbers are
shown in Fig. 2. The panels on the left side of the figure
show realizations from the stochastic version of the LPA
model (2) with parameters estimated from a previous study
(Dennis et al. in press). The panels on the right side are for
one representative replicate population from each of the
three experimental treatments. Both the simulated and
observed populations in the unperturbed control treatment
(Fig. 2a,b) show large chaotic fluctuations in larval
numbers similar to those observed in previous studies
with flour beetles (Costantino ez al. 1997; Dennis et al. in
press). The in-box perturbations, which were designed to
decrease the amplitude of the fluctuations in insect
numbers, had the desired effect. The model and experi-
mental populations in the in-box treatment exhibit large
amplitude fluctuations prior to the in-box perturbations
(blue symbols in Fig. 2¢,d), but these oscillations dampened
dramatically after the in-box perturbations were applied
(red symbols in Fig. 2¢,d). On the other hand, as predicted
by the model, the out-box populations continued to exhibit
large amplitude fluctuations in larval numbers before and
after the out-box perturbations were applied (Fig. 2e,f).
This was despite the fact that, in accordance with
experimental protocol, the out-box perturbations were
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Figure 2 Time series plots of numbers of
larvae for the stochastic model and experi-
mental data. The simulations are from the
stochastic LPA model (2) with the experi-
mental initial conditions and the same para-
meter values as Fig. 1. The blue symbols are
for the unperturbed populations; the red
symbols are for data collected after the
perturbation protocols were started at week
134 (dashed lines). The small inverted trian-
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applied more often than the in-box perturbations (small
triangles in Fig. 2). This demonstrates that the dampening
effect of the in-box treatment was due to the timing of the
perturbations to coincide with the occurrence of life stage
numbers in a sensitive region of phase space (box in
Fig. 1b).

Another perspective on this experiment is provided by
viewing the data in phase space. Figure 3 shows plots of
the data for all nine experimental populations and nine
model populations simulated with the experimental initial
conditions and protocols. To eliminate transient changes
and emphasize the asymptotic dynamics, the first eight
data points from the beginning of the experiment were
eliminated for all populations (experimental and simu-
lated), and the first eight data points following the start of
the perturbation protocols were excluded for populations
(experimental and simulated) in the in-box and out-box
treatment groups. The data for the unperturbed experi-
mental populations in the control treatment fill phase
space in a pattern that is similar to that predicted by the
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stochastic LPA model (Fig. 3a,b). This pattern resembles
a “fuzzy” version of the chaotic strange attractor
predicted by the deterministic LPA model (Fig. 1a). This
pattern is also observed in the simulation and experi-
mental data prior to imposition of the in-box and out-box
perturbation rules (blue symbols in Fig. 3c—f). However,
the in-box perturbations caused the life stage densities to
contract towards the origin as predicted by the model (red
symbols in Fig. 3c,d). (The deterministic LPA model with
the in-box protocol predicts another chaotic attractor with
small amplitude fluctuations.) By contrast, the distribu-
tion of life stage densities following the out-box
perturbations is similar to the distribution before the
perturbations were imposed [red vs. blue symbols in

Fig. 3e,f).

DISCUSSION

We emphasize that relatively small perturbations were
used to obtain the large decrease in the amplitude of the
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Figure 3 Phase space plots of numbers of larvae,
pupae, and adults for the stochastic model and A
experimental data. The simulations are from the
stochastic LPA model (2) with the same initial
conditions, number of replicates, and number of
census points as the experimental treatments and
the same parameter values as Fig. 1. To de-
emphasize the effects of transient changes,
excluded from the plots are all simulated and
observed data for weeks 0-14 and all simulated
and observed data for weeks 134-148 in the in-
box and out-box treatments. The blue symbols

are for the unperturbed populations; the red
symbols are for data collected after the perturba-
tion protocols were started at week 134. (A)
Data from three independent realizations of the
stochastic LPA model. (B) Data from the three
replicate experimental populations in the control
treatment group. (C) Data from three indepen-
dent realizations of the stochastic LPA model
using the in-box perturbation protocol. (D) Data
from the three replicate experimental popula-
tions in the in-box treatment group. (E) Data
from three independent realizations of the
stochastic LPA model using the out-box pertur-
bation protocol. (F) Data from the three
replicate experimental populations in the out-
box treatment group.

fluctuations seen in the in-box populations. Over the
period during which the treatment perturbations were
applied (weeks 134-210), a total of 156 adults were added
to the three experimental cultures in accordance with the
in-box rule. During the same period we counted a total of
6545 adults in the three unperturbed control populations.
Thus the perturbations represent only 2.4% of the
number of adults we could have expected if the
perturbations were not applied. Nevertheless, these in-
box perturbations resulted in a 82.7% decrease in the
number of adults and a 48.3% decrease in the total
number of insects (adults + pupae + larvae) counted
during this period relative to the unperturbed controls.
By contrast, over the same period, we added a total of 234
adults to the out-box populations and obtained only a
4.3% decrease in the total number of adults and a 3.7%
decrease in the total number of insects relative to the
unperturbed controls.

Stochastic model

Experimental data

The stochastic LPA model (2) was remarkably
effective at predicting the dynamical behaviour of the
experimental populations. Model simulations exhibited
the same amplitude and general pattern of fluctuations as
seen in the experimental data (Fig. 2). The model also
predicted correctly the tresponse of the experimental
cultures to the in-box and out-box perturbations (Figs 2
and 3). This is particularly impressive considering that
parameter values used here were obtained from a
previous study (Dennis ez 4/. in press) and were estimated
using separate data; the model was not ““fit” to the data
from the current experiment.

We were able to use small perturbations of the state
variables to influence the dynamics of the insect
populations in our experimental study because the life
stage numbers repeatedly entered a region of phase space
where the dynamics are sensitive to change. According
to the LPA model (1), a portion of the asymptotic
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attractor for this system occupies a sensitive region of
phase space (Fig. 1). In general, this will be true if the
attractor of a dynamical system is chaotic, since these
attractors have a long-term sensitivity to initial condi-
tions. However, a chaotic attractor is not a prerequisite
for the use of small perturbations to influence dynamics.
Portions of nonchaotic attractors, such as cycles and
invariant loops, may also extend into sensitive regions of
phase space where small perturbations can have large
effects, even though the “averaged” motion on the
attractor does not produce long-term sensitivity to initial
conditions. By targeting perturbations to coincide with
times when the system is in the sensitive region, small
inputs can still produce large effects. For example, if we
let ¢pa = 0.50 in the deterministic LPA model, the
attractor is a cycle of period three with large amplitude
fluctuations (Dennis e al. in press) and one of the points
of the three-cycle lies inside the “box” shown in Fig.
1(B). Numerical studies with the stochastic LPA model
(2) suggest that the in-box experimental protocol would
be highly effective in reducing the amplitudes of the
fluctuations in this nonchaotic case.

Can small perturbations be used to influence the dynamics
in real ecosystems? An answer to that question remains
ahead of us. Here we have made the step from theoretical
possibility to demonstration in the laboratory. The
prerequisite for a similar approach to be effective in field
populations is a good working model of the dynamics of the
system which can be used to make accurate predictions.
Such models will come from careful studies of the
mechanisms that determine ecological change (Kendall ez
al. 1999; Perry et al. 2000; Turchin & Ellner 2000).
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