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Smooth autonomous scalar maps with locally asymptotically stable equilibria have
families of asymptotically constant solutions which decay geometrically to the equilibria.
Locally, all transients converging to the equilibria have this form.
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1. THE PROBLEM

Consider the autonomous scalar map

x(t+1) =f(x(1)) (1)

with locally asymptotically stable equilibrium (fixed point) x.. Under
what conditions does (1) have what we shall call geometric transient
solutions, that is, solutions of the form
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for real coefficients ¢; and some fixed real number r satisfying
0 < |r| < 17 Under what conditions do all solutions starting sufficiently
close to x, have this form?

Let Ja, b[ denote an open interval. We will reserve the notation (x, y)
for ordered pairs. Let R denote the set of real numbers, R, the set of
positive real numbers, and N={1,2,3,...}. In our applications, r is
positive; we assume r €0, 1].

Fix r€]0, 1], and let H, be the set of all real sequences of the form
{00 enr™} 2, such that >°0° |¢,| converges. H, is a Hilbert space
under the inner product

(Sl A5t ) S
n=0 t=0 —0 t=0 =0

with norm || -|| defined by

o0 o0
H { Cn rnr }
n=0 =0

We seek solutions of (1) in H,.

If all initial conditions sufficiently close to the stable equilibrium x,
give rise to solutions in H,, we will say x, is locally H,-stable according
to the following definition.

2 00
72 : 2
= Cn'

n=0

DeriniTion 1 Let r€]0, 1[. A locally asymptotically stable equilib-
rium x, of the map x(z+1)=f(x(?)) is locally H,-stable ifft 3 6 >0
such that V x, we have

|xo — Xe| <6 = {x/}2) €H,

We study equilibrium H,-stability of Eq. (1) in the context of
bifurcation theory. Specifically, we consider a general one-parameter
family of maps of the form

x(t+ 1) :f(aax(t))a f(Cl,O) =0 (2)

for a€ R and study the H,-stability of both the trivial equilibrium
x.=0 and nontrivial equilibria x,(a) which depend on a. This bi-
furcation theoretic approach has been used to study similar questions
about other types of equations. For example, the bifurcation of
asymptotically periodic solutions (including equilibria) was studied for
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systems of Volterra type integral equations in [4] and for systems of
discrete renewal difference equations in [3]. These results do not apply,
however, to one dimensional maps of the form (2).

We consider Eq. (2) under the assumption (Al) below.

(A1) f:R, x R— R has a Maclaurin series expansion in x which
converges for all x € R, and satisfies f(a,0)=0 and f\(a,0)=a for all
a€ R . Thus,

x(t+ 1) =f(a,x(t) = ax(t) + h(a,x(1)) (3)

where

X\ 19f ;
hia,x) = ;E(‘)x" (a,0)x".

An ordered pair (a,x) € R, x H,is a ““solution pair” if the sequence
x = {x(1)},5, € H, is a solution of (3) associated with parameter value
a. An ordered pair (a,x,) is an “equilibrium pair” if x, = {x.},o
where x, is a fixed point of (3).

Note that (a,0), where 0 = {0},2, is an equilibrium pair for all
values of a€ R . From the point of view of bifurcation theory, this
constitutes a continuum (called the ““trivial branch”) of equilibria in
R, x H,. The zero equilibrium is locally asymptotically stable for
a<1 and unstable for a> 1. Given (Al), bifurcation theory also
guarantees the existence of a continuum of nontrivial equilibrium pairs
(a,x,) bifurcating (transcritically) from the trivial branch at the
equilibrium pair (1, 0) [5]. The direction of bifurcation and the stability
of the equilibria along this branch depend on the properties of /. For
some of the most common maps of interest in both applied and pure
studies the branch of positive equilibria is locally asymptotically stable
near the bifurcation point and bifurcates “to the right”, i.e.,
corresponds to a>1. Many maps of interest, such as the logistic
map f(a, x)=ax(1—x) and the Ricker map f(a, x)=axe™ " fall into
this category. In this paper we restrict our attention to such maps.
Therefore, we assume:

(A2) There is an a. > 1 such that for each a€]l,a.[ there exists a
positive equilibrium solution x.(a) of (3) with 0 < f\(a, x.(a)) < 1 such
that x,.(a) is continuous in « and lim,_,;+ x.(a) = 0.
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Our goal is to show that the locally asymptotically stable equilibria
corresponding to a €10, 1[ and a €]1, a,,[ are all locally H,-stable for an
appropriate choice of r.

2. LINEAR THEORY

Fix r, a€]0,1[. Consider the homogeneous and nonhomogeneous
linear equations

is a member of H,. We have the following Fredholm Alternative:

THEOREM 2 Either a#r" for any n€ N, in which case (H) has no
nontrivial solution in H,. and (NH) has a unique solution in H, generated
by the initial condition

or else a=r" for some m € N, in which case (H) has nontrivial solutions
in H, and (NH) has a solution in H, if and only if d,,=0.

Proof The solution of (H) is x(f) = a’x(0), and the solution of (NH)
is

x(t) = a'x(0) + Y a'b;
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Suppose a#r" for all neN. In this case (H) has no nontrivial
solution in H,, and the solution

n=0 i=0 a
X 1= ("/a)
=a'x(0)+da ' d, p
; L= (r/a)
t _ n n_ nt
=a (x(O) ;rn—a> +;rn_a

Now suppose a =" for some m € N. Then the solution x(7) = a'x(0)
of (H) is a member of H, for every x(0) € R, and the solution

00 t—1 1 i
x(1) = r"x(0) + "0y " d, <>
rﬂ
0

n=0

o0 t
— rmtx(o) + rm(tfl) Z d, 11 - (r”/rm) N tdmrm(tfl)

= _ (r”/r’")
— (O) _ c dn o dn n 4 g m(t—1)
- * Zrn_rm +Zrn_rmr + tdpr
n=0 n=0
nm n#m
of (NH) is in H, if and only if d,,=0. [ |

Now define the linear operator L: H.,— H, by
L{x()}2o = {x(t + 1) — ax() },5,
so that (H) and (NH) become
ILx=10 (4)

Lx=b (5)

for x, b€ H,, where x = {x(#)},°, and b = {b(2)}2,.
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If the kernel of L (denoted ker L) is nontrivial, that is, if a =" for
some meN, then it is spanned by v={r"}° €H, From the
Fredholm Alternative above, we see that the range of L (denoted
ran L) is (ker L)". Thus, the restriction of L to ran L is a bijection on
ran L, so L has a right inverse L~ ' on ran L. Define the projection
P:H,— H, onto ran L by

Pb=Db— (b,v)v

Then I— P is a projection onto ker L and ker (I— P)=ran L. Note that
every element be H, can be expressed uniquely as Pb+(/— P)b by
means of the splitting H, = (ker L)y-®ker L =ran L®ker L.

The Fredholm Alternative can be restated in H, as follows.

THeEOREM 3 Let b€ H,. Either ker L={0}, in which case (5) has a
unique solution L™ 'be H,; or else ker L# {0}, in which case (5) has a
solution in H, if and only if (I— P)b=0.

From a bifurcation point of view we say the homogeneous equation
(4) has a “vertical bifurcation” of nontrivial solutions in H, from the
trivial (zero) solution whenever the bifurcation parameter a=r" for
some m € N. It is precisely at these critical values of a that we look for
bifurcations in the associated nonlinear equation.

3. NONLINEAR THEORY
Consider the nonlinear equation
x(1+1) =f(a,x(1)) = ax(t) + h(a, x(1)) (6)

for fixed r€]0, 1]. We first study solutions in H, which bifurcate from
the trivial equilibrium at the critical values " of the parameter a.

3.1. Bifurcations from Zero

Assume (Al). Fix m€ N. Write the nonlinear equation as

x(t+1) = r"x(t) = (a — r)x(t) + h(a, x(1)).
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Define the linear operator L: H,— H, by

L{x(t)} ;=g = {x(t+ 1) = ""x(0)} 5,

and the nonlinear operator B: H,— H, by

Bla, {y()}:Z9) = {(a = r")y(1) + h(a, y(1)) },Zo-

Note that L has a nontrivial kernel spanned by v = {r"}2.
To solve the operator equation

Lx = B(a,x)
for nontrivial x€ H,. near a=r", we use the Liapunov-Schmidt
method [1, 2] and propose the Ansatz solution
X = eV + ew(e)
a=r"+Xe)
where ¢ is a small real parameter, A(0)=0, w(0)=0, w(c) =
{w(t,e)};2o €H,, and (v,w(e)) =0 for all . Note that

w(t,e) = wo(e) + wi(e)r' +wa(e)r? +---
wn(e) =0 forall e

(7)

since (v,w(¢)) =0. Substitution of the Ansatz into the operator
equation gives

L(ev+ew(e)) = B(r" 4+ Ae),ev + ew(e)). (8)
Since Bis O(¢?), the corresponding equations for first and higher order
terms in € are
Lv=0 9)
Lw(e) =T(e,\,w) (10)
where T(e, A, w) = (1/)B(r"" 4+ \(€), ev+ew(e)) is O(e).
Apply first the projection P, and then /— P, to both sides of (10) to
obtain
Lw(e) = PT (e, \,w)
0=(I—P)T(c,\,w).



68 S. M. HENSON AND J. M. CUSHING

Since PT(e, A\, w) €ran L, we may invert L to obtain

0=w(c) — L 'PT(e,\, W) (11)
0=(I—P)T(s,\,w). (12)

Because of the uniqueness of representation in the direct sum H,=
ran L @ ker L, the system of Eqgs. (11)—(12) is equivalent to (8). The
goal is to show the existence and uniqueness of A(¢) and w(e) for
small e.

Define the operator I': R x R x H.— H, by

T(e,\,w)= (I — P)T(g, A\, w).

Then T'(0,0,0)=0 since T is O(e). The Fréchet derivative of T" with
respect to A evaluated at (0,0, 0) is the linear operator

AXN— {FPANYE,

which is nonsingular. Hence, the Implicit Function Theorem [1] allows
us to solve Eq. (12) uniquely for A= M\(e,w) where A(0,0)=0. Sub-
stitution of A(e, w) into Eq. (11) leads to

0=w—L'T(c,\(e,w),w).

Another straightforward application of the Implicit Function Theo-
rem yields the existence of a solution w=w(e) of this equation which
is infinitely differentiable in ¢ and for which lim, _ qw(g) =0.

Thus, we have shown the following result.

THEOREM 4 Assume (Al). For fixed me N and r€]0,1[ and for all
sufficiently small e, there exists a unique continuum (a(e),x(g)) €
R, X H, of mnontrivial solution pairs of Lx=B(a,x) bifurcating
from (i",0), i.e., satisfying lim. _ o(a(e), x(e)) = (", 0).

For each ¢, a pair (a(e),x(¢)) = (a(e), {x(t,¢)},=,) from the con-
tinuum in Theorem 4 is a solution pair of the difference Eq. (6), i.e.,
{x(t,¢)};2, € H, solves (6) with parameter value a = a(e).

3.1.1. Direction of Bifurcation

If m =1 the bifurcation in Theorem 4 occurs at the solution pair (r, 0).
If ¢ is small, then a(e) is close to r (and hence a(¢) < 1) so the solution
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x(t,€) =er' +ew(t,e) must decay to zero as t— oo (since the zero
equilibrium is locally asymptotically stable for a < 1). Thus, wy(e) is
identically zero in the expansion (7) of w(t,¢), and hence we have
w(t, €) = wr(e)r* +ws(e)r’’ + - - - . If we examine Eq. (10) in its com-
ponent form

w(t+1,e) —rw(t,e) = Xe)[r' + w(t,e)] + éh(r + Ae),er' + ew(t,€))

for terms containing ', we find
0=M\e)

for each €. Hence, for each € we have a(e) = r and the solution pairs on
the bifurcating branch of Theorem 4 may be written (a(e),x(¢)) =
(r,x(g)). We call such a bifurcation “vertical”.

If m= M > 1, a branch of solutions in R, x H, bifurcates from the
point (r™,0) by Theorem 4. We wish to know the direction of this
bifurcation. Replacing r by ¥ and m by 1 in Theorem 4 gives a branch
of solution pairs in R, x H.x which also bifurcates from the point
(r™,0); and by the argument in the previous paragraph, this bi-
furcation is vertical. Since H,» C H,, these two branches are identical
by uniqueness. Thus, the bifurcation of solutions in R, x H, is also
vertical.

During the above discussion r€]0, 1] has been fixed and we have
considered vertical bifurcations of solutions in R x H, at a countable
number of critical values a,,=r,r*,r°, ... of the parameter a. From
another point of view, at each fixed value of a €]0, 1] there is a vertical
bifurcation of solutions in R, x H, (where a now plays the role of r).
These solutions are nonconstant (since the zero equilibrium is stable)
and are geometric transients with convergence rate r equal to the
eigenvalue « at zero:

THEOREM 5 Assume (Al). For each fixed a€]0,1[ there exists a
vertical continuum (a,x(¢)) € R, x H, of nontrivial solution pairs of
Lx = B(a,x) bifurcating from the trivial solution pair (a,0), i.e.,
satisfying lim. _ o(a, x(€)) =(a,0). For each fixed ¢ sufficiently small,
lim; _, ,ox(t,e)=0.

The branch of solution pairs described in Theorem 5 is a branch of
solution pairs of the difference Eq. (3). The branch bifurcates vertically
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from the equilibrium pair (a,0) on the branch of trivial equilibria.
Thus, each pair (a,x(g)) = (a,{x(,€)},,) on the branch provides
a solution x(t,¢) of the difference Eq. (3) that tends geometrically
to 0.

In the next section we see that if the difference Eq. (3) also satisfies
assumption (A2), we can extend the bifurcation result in Theorem 5
to each equilibrium pair (a,X,) lying on the branch of nontrivial
(positive) equilibrium pairs. This result will yield solutions of (3) that
tend geometrically to the equilibrium x,.

3.2. Bifurcations from the Positive Equilibrium Branch

Assume (A1)—(A2). Fix a€]l, a.[ and let x.(a) be the corresponding
positive, stable equilibrium of Eq. (3). Then (a, x.(a)) is a solution pair
of Lx = B(a,x). The variation equation for y(f) = x(f) — x.(a) may be
written

y(t+1) = ay(t) +n(y(1)) (13)

where a=f(a, x(a))=a+h(a, x(a)).

Equation (13) satisfies (A1), with « replacing a in the statement of
(A1). Since a€]0, I[ by (A2), an application of Theorem 5 to this
variation equation gives a vertical continuum (o, y(e))€ R, x H, of
nontrivial solution pairs of (13) bifurcating from the trivial solution
pair (a,0). Each solution pair (a,y(e))€ R, x H, on this branch
corresponds to a solution pair (a,x(¢))€ R, x H, of Lx= B(a,x),
where x(¢) = y(e) + X,.

THEOREM 6 Assume (Al)—(A2). Fix a€ll,a.| and let r=a+
h(a,x/a)). There exists a vertical continuum of nontrivial solution
pairs (a,x(€))€ R, x H, of Lx= B(a,x) such that lim._ (a,x(e)) =
(a, x.(a)). For each fixed e sufficiently small, lim,_, ..x(t,€) = x.(a).

The branch of solution pairs described in Theorem 6 is a branch of
solution pairs of the difference Eq. (3). The branch bifurcates vertically
from the equilibrium pair (a,x.(a)) on the branch of positive
equilibria. Each pair (a,x(¢)) = (a,{x(2,€)},2,) on the vertical branch
provides a solution x(z,¢) of the difference Eq. (3) that tends
geometrically (as t— oo) to the equilibrium x.(a), with geometric
convergence rate r =f\(a, x,(a)) = a+h(a, x(a)).
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In the next section we use Theorems 5 and 6 to obtain H,-stability
results for the equilibria of (3).

3.3. H,-stability

We have studied the maps

X(t+ 1) =fla,x(1)) = ax(t) + Y | %;’fo (a,0)x’

i=2

under conditions (Al) and (A2) with locally asymptotically stable
trivial equilibria for each a €10, 1] and locally asymptotically stable
positive equilibria x.(a) for each a€]l,a.[. Theorems 5 and 6 show
that each of these locally stable equilibria has a one-parameter family
of geometric transient solutions converging to it. For a€]0, 1], the
geometric transients have the form

and decay to zero as t— oo. For a€]l, a.[, the geometric transients
have the form

o0
x(t) = x.(a) +er' +e Z car™,
n=2

where r=f(a, x,(a)), and decay to x.(a) as t — co.

Do the geometric transients account for all solutions which
converge to the stable equilibria, at least locally?

For a€]0,1[, the initial conditions for the family of geometric
transient solutions converging to zero are given by

x(0) = 6(1 + nzoj;cn)

for sufficiently small €. For a€]l,a.|, the initial conditions for the
family of geometric transients converging to x.(a) are given by

x(0) = x.(a) + 5(1 + i})
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for sufficiently small €. In both cases, for fixed a these initial conditions
account for all possible initial conditions within a sufficiently small
neighborhood of the associated equilibrium. Thus we have shown the
following result.

THEOREM 7  Assume (A1)—(A2) for x(t+1)=f(a, x(¢)). Then for each
a€l0, 1[ the zero equilibrium is H,-stable; and for each a€ll,a,,| the
positive equilibrium x,(a) is H,-stable, where r = f.(a, x.(a)).

4. EXAMPLE: CALCULATING SOLUTIONS
OF THE LOGISTIC MAP

Having established the existence of geometric transient solutions, it is
in principle straightforward to calculate their coefficients. By way of
example, consider the logistic map

x(t+ 1) = ax()[1 — x(1)]

and a solution of the form x(¢) = >"°, c,". Equating coefficients on
like powers of r, we generate the sequence of equations

co = aco(1 —¢o)
rcy = acy — 2acycy

7’262 = ac; — 2acycy — ac%

All possible solutions are classified by the decision tree

c1=0 =0
1= cl=¢
/] | | N
2 2 _
a=0 7% 4 Lse? =256 TTETY =0
Cr=¢ =€
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The left half of the tree corresponds to a < 1, while the right half
corresponds to @ > 1. The leftmost path down the tree corresponds to
the trivial solution branch, while the rightmost path gives the branch
of positive equilibria. Every other path down the tree corresponds to
the vertical branch of geometric transients.
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