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Abstract

Oscillating discrete autonomous dynamical systems admit multiple oscillatory solutions in the advent of periodic forcing.
The multiple cycles are out of phase, and some of their averages may resonate with the forcing amplitude while others
attenuate. In application to population biology, populations with stable inherent oscillations in constant habitats are predicted
to develop multiple attracting oscillatory final states in the presence of habitat periodicity. The average total population size
may resonate or attenuate with the amplitude of the environmental fluctuation depending on the initial population size. The
theory has been tested successfully in the laboratory by subjecting cultures of the flour beetleTribolium to habitat periodicity
of various amplitudes. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although all natural populations suffer temporal environmental fluctuations on some scale, experimental and
theoretical studies of population response to habitat fluctuation remain relatively rare. Few controlled experimental
studies address the effect of time-varying habitats, and most mathematical population models are autonomous.
In recent years, nonautonomous versions of classical model equations have been investigated in order to deter-
mine the extent to which fundamental theoretical principles remain valid in fluctuating environments, e.g., see
[1]. However, few connections exist between controlled, replicated experimental data and rigorously validated
models.

An exception is the controlled laboratory experiment of Jillson [2] and the subsequent model-based explanation,
predictions, and further experimentation of Henson and Cushing [3], Costantino et al. [4], and Henson et al. [5].
Jillson placed flour beetles in volumes of flour that periodically alternated between 32 and 8 g every two weeks.
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The control cultures remained in a constant volume of 20 g. Total population numbers in the alternating habitat
were more than twice those in the constant habitat even though the average flour volume was the same in both
environments.

Henson and Cushing [3] and Costantino et al. [4] extended the modeling hypotheses of the LPATribolium
model of Dennis et al. [6,7] and Costantino et al. [8,9] to include habitat periodicity. The resulting “periodic LPA
model” explained the increased average biomass observed in the 32–8 g habitat as a type of resonance in which
the inherent biological oscillation resonates with the periodic habitat [4]. Furthermore, the periodic LPA model
generated unexpected new predictions which were then tested in the laboratory [5]. When the relative amplitude
of oscillating flour volume in the periodic LPA model was set at 40% to simulate a 28–12 g alternating habitat, the
model predicted multiple attracting final states: two different 2-cycles out of phase with each other and differing
in average magnitude of animal numbers. This model forecast was successfully tested in the laboratory by placing
beetle cultures in the different (model predicted) basins of attraction of the two locally stable 2-cycles.

The resonance and multiple attractor predictions of the periodic LPA model constitute one incarnation of a general
nonlinear phenomenon. This paper presents general results concerning multiple attractors and resonance in periodi-
cally forced discrete dynamical systems. The contextual application will be periodic habitats in population biology.

Discrete autonomous (semi)dynamical systems with periodic solutions admit multiple oscillatory solutions in the
advent of periodic forcing. In general, the multiple cycles are mutually out of phase, and some of the cycle averages
may increase with the forcing amplitude while others decrease. In terms of population biology, a population which
cycles in a constant habitat is predicted to have multiple attracting oscillatory final states in the presence of habitat
periodicity. The multiple cycles differ in phase, and may differ in average total population size as well. Thus,
depending on the initial population vector, the average total population size in the fluctuating habitat may be larger
or smaller than it would have been in the constant habitat.

In this paper “resonance” (attenuation) refers to an increase (decrease) in theaverageof an output oscillation
in response to an increase in theamplitudeof an input oscillation. Specifically, resonance will be studied as an
increased average output in the advent of periodic forcing (that is, as the forcing amplitude increases from zero). In
the context of our application, resonance occurs when the average total population size of an oscillating population
increases with the onset of habitat periodicity. Attenuation refers to a decrease in average total population size with
the introduction of forcing.

Section 2 presents general results concerning multiple attractors and resonance as predicted by periodically forced
discrete models. Section 3 briefly illustrates the mathematical theory with a one-dimensional map for a theoretical
population. Section 4 presents the experimentally verified predictions of the multivariate periodic LPA model as a
specific application of the theory.

2. Periodic forcing in discrete models

Let t be a nonnegative integer, andHn
p the Hilbert space ofp-periodic sequencesx = {x(t)}∞t=0 of vectors

x(t) ∈ Rn, with inner product

〈x, y〉 =
p−1∑
t=0

x(t) · y(t),

and norm‖x‖ = √〈x, x〉. Identify each sequence{x(t)}∞t=0 ∈ Hn
p with the finite sequence of the firstp terms

{x(t)}p−1
t=0 , and definex(t) = x(t modp) for t ≥ p. NoteHn

p also contains “degenerate”p-cycles; that is, it
contains all cycles of minimal periodq such thatq dividesp, including constant cycles withq = 1.
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LetB denote the set ofp-periodic sequences of real numbers having cycle average zero and supremum one

B =

b = {β(t)}p−1

t=0 ∈ H 1
p

∣∣∣∣∣∣
p−1∑
t=0

β(t) = 0 and sup|β(t)| = 1


 .

Note that anyp-periodic real oscillationz(t) with cycle averagezave = (1/p)
∑p−1
t=0 z(t) can be written in the

form z(t) = zave[1 + αβ(t)] for some “relative amplitude”α ∈ R and someb ∈ B. To do this, we choose
α = sup|(z(t)− zave)/zave| ≥ 0 and, ifα 6= 0, let

β(t) = z(t)− zave

αzave
.

(If α = 0, then anyb ∈ B will do.)
Assume
(A1) F(η, x) : R × Rn → Rn isC2 in η andx; and
(A2) K : R × B ×Hn

p → Hn
p is a nonlinear operator defined by

K(α,b, x) = {x(t + 1)− F(1 + αβ(t), x(t))}p−1
t=0 .

Fix b = {β(t)}p−1
t=0 ∈ B. Consider solutionsx ∈Hn

p of the operator equation

K(α,b, x) = 0. (1)

In (1), 1+ αb may be thought of as an “input” forcing oscillation with amplitudeα. We will study the “output”
oscillationx as a function ofα.

Solving (1) inHn
p corresponds to findingp-periodic solutions of thep-periodically forced discreten-dimensional

(semi)dynamical system

x(t + 1) = F(1 + αβ(t), x(t)). (2)

In this context, properties of the output oscillationx(t) vary as a function of the amplitudeα of the input forcing
oscillation 1+ αβ(t).

In terms of the application, (2) is a population model with lifestage or subpopulation vectorx(t). The model is
periodically forced in a habitat variableη. The next assumption posits an “inherent” population oscillation of period
p in the absence of periodic forcing:

(A3) There existsx0
0 ∈ Hn

p such thatK(0,b, x0
0) = 0. (That is, the autonomous system

x(t + 1) = F(1, x(t)) (3)

has ap-periodic solution given by the sequence ofp vectorsx0
0(0), x

0
0(1), . . . , x

0
0(p − 1) ∈ Rn.)

Each phase shift of this solution is also a solution of (3). Denote thep phase shifted solutions byx0
0, x

1
0, . . . , x

p−1
0 ,

where

x0
0 = {x0

0(t)}p−1
t=0 ,

x1
0 = {x1

0(t)}p−1
t=0 = {x0

0(t + 1)}p−1
t=0 ,

...

xp−1
0 = {xp−1

0 (t)}p−1
t=0 = {x0

0(t + p − 1)}p−1
t=0 .
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Note the identity

xi0(t + j) = x
(i+j)modp
0 (t). (4)

If p is the minimal period ofx0
0, then thep phase shiftsx0

0, x
1
0, . . . , x

p−1
0 will be distinct. If the minimal period is

q < p, then the firstq phase shiftsx0
0, x

1
0, . . . , x

q−1
0 will be distinct, while the rest will be duplicates under the

identityxj0 = xj modq
0 . In this case identity (4) becomes

xi0(t + j) = x
(i+j)modq
0 (t). (5)

Stability results will require a hyperbolicity assumption:
(A4) The matrix

0∏
t=p−1

Fx(1, x
0
0(t)),

whereFx is the Jacobian ofF , has no eigenvalues of modulus one.
A weaker hypothesis may be substituted for (A4) when results are independent of stability:
(A4*) The matrix

I −
0∏

t=p−1

Fx(1, x
0
0(t))

is invertible.
(A4) implies (A4*). Since the set of eigenvalues of the product matrixAB is the same as the set of eigenvalues

of BA [10], each of thep matrices
∏0
t=p−1Fx(1, x

i
0(t)) = ∏0

t=p−1Fx(1, x
0
0(t + i)), i = 0,1, . . . , p − 1, of

permuted Jacobian products has the same set of eigenvalues. This fact has two relevant consequences. First, since
(A4*) holds if and only if the matrix

∏0
t=p−1Fx(1, x

0
0(t)) does not have an eigenvalue of one, assumption (A4*) is

equivalent to the invertibility of each of the matricesI −∏0
t=p−1Fx(1, x

i
0(t)) for i = 0,1, . . . , p−1. Second, since

the stability of the cyclexi0 depends on the eigenvalues of
∏0
t=p−1Fx(1, x

i
0(t)), all of the phase shifted solutions

x1
0, x

2
0, . . . , x

p−1
0 must have the same stability properties when they are hyperbolic (see, e.g., [11], Theorem 9.14):

Theorem 1. Assume(A1)–(A4).The phase shifted solutionsx0
0, x

1
0, . . . , x

p−1
0 are either all locally asymptotically

stable, or they are all unstable.

2.1. Multiple perturbed cycles

When small amplitude periodic forcing is introduced into the habitat of an oscillating population, the population
is perturbed to a new oscillatory state. The next theorem guarantees each phase shiftedp-cycle solutionx = xi0 of
the autonomous equationK(0,b, x) = 0 is perturbed into a continuousα-branchxiα of p-cycle solutions of the
nonautonomous equationK(α,b, x) = 0 asα is increased from zero.

Theorem 2. Assume(A1)–(A3) and (A4∗). Let i ∈ {0,1, . . . , p − 1}. Then there existδ > 0 andγ > 0 and a
C1 functionψ : (−δ, δ) → Hn

p such thatψ(0) = xi0 andK(α,b, ψ(α)) = 0 for all |α| < δ. Furthermore, if

K(σ,b, z) = 0 with |σ | < δ and‖z − xi0‖ < γ , thenz = ψ(σ). If (A4) also holds, thenδ can be chosen so that
ψ(α) has the same stability asxi0 for all |α| < δ.
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Proof. The result follows from the Implicit Function Theorem as long as the Frechét derivative ofK with respect
to x evaluated atα = 0 andx = xi0 is nonsingular, andK isC1 in x andα.

The Frechét derivatives ofK(α,b, x) with respect tox andα are the linear operatorsLx : Hn
p → Hn

p and
Lα : R → Hn

p defined by

111x 7→Lx {1x(t + 1)− Fx(1 + αβ(t), x(t))1x(t)}p−1
t=0 ,

1α 7→Lα {−Fη(1 + αβ(t), x(t))β(t)1α}p−1
t=0 ,

which are continuous inx andα by (A1).
The Frechét derivative ofK(α,b, x) with respect tox evaluated atα = 0 andx = xi0 is the linear operatorL

defined by

111x
L7→{1x(t + 1)− Fx(1, x

i
0(t))1x(t)}p−1

t=0 .

If w ∈ Hn
p is in the kernel ofL, it must satisfy the recursion formula

w(t + 1) = Fx(1, x
i
0(t))w(t)

for t = 0,1, . . . , p − 1. Thus

w(0) =

 0∏
t=p−1

Fx(1, x
i
0(t))


w(0)

and so
I −

0∏
t=p−1

Fx(1, x
i
0(t))


w(0) = 0.

SinceI − ∏0
t=p−1Fx(1, x

i
0(t)) is invertible by assumption (A4*),w(0) = 0, which impliesw = 0. Hence the

operatorL is nonsingular. �

Denoteψ(α) = xiα. Then for smallα, xiα is aC1α-branch of solutions ofK(α,b, x) = 0 for which limα→0xiα =
xi0. The branch may be expanded inα asxiα = xi0 + uiα + O(α2). Properties of the first-order termui will play a
large role in our study of the perturbed cycles.

If the inherent cyclex0
0 has minimal periodq ≤ p, then theq distinct phase shifted solutionsxi0 are perturbed

into q distinct branchesxiα of p-cycle solutions asα increases from zero. By continuity, the cycles on each branch
xiα are in phase with the parent cyclexi0; hence, theq distinctp-cycles are mutually out of phase. Furthermore, if
assumption (A4) holds, then by an eigenvalue continuity argument theq perturbed cycles are locally asymptotically
stable (unstable) ifx0

0 is locally asymptotically stable (unstable).
Now suppose the inherent cyclexi0 has minimal periodq and the input oscillationb has minimal periodr. The

smallest value ofp for which Theorem 2 applies is the least common multiple ofq andr:p = lcm(q, r). Thus,
the inherentq-cycle is perturbed intoq out of phasep-cycles asα increases from zero. Two questions are in order.
First, what is theminimalperiod of the perturbed cycles? Second, how many perturbedp-cycles are theremodulo
phase shifts?

With regard to the first question, “generically” one expects the output cycles to have minimal periodp = lcm(q, r);
however, a counter example satisfying hypotheses (A1)–(A4) demonstrates this is not necessarily the case. Consider
the scalar map

x(t + 1) = 3[1 + α(−1)t ]x(t).
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The autonomous map (α = 0) has exactly one periodic solution: the equilibriumx = 0 (periodq = 1). When
forcing of minimal periodr = 2 is introduced into the map (α > 0), the equilibriumx = 0 remains as the only
periodic solution. In particular, there are no solutions of minimal period 2= lcm(1,2). The problem is that the
functionF(η, x) = 3ηx is independent ofη whenx = 0. These kinds of degeneracies are ruled out ifF , when
evaluated at the inherent cycle, is invertible as a function ofη. This is condition (6) in the next lemma and theorem.

With regard to the second question, condition (6) also implies gcd(q, r) of the perturbed cycles are distinct
modulo phase shifts, where gcd(q, r) denotes the least common divisor ofq andr. We now turn to the proof of
these remarks.

Lemma. Assume(A1)–(A3) and (A4*). Suppose thexi0 have minimal periodq and b has minimal periodr,
and thatxiα, i = 0,1,2, . . . , q − 1, are theq perturbed branches ofp-cycles guaranteed by Theorem 2, where
p = lcm(q, r). Assume further that

F(η1, x
i
α(t)) = F(η2, x

i
α(t)) ⇒ η1 = η2, (6)

for all t and all i = 0,1,2, . . . , q − 1 and all sufficiently smallα. Then for sufficiently smallα, a phase shift
xiα(t +m) of a solutionxiα(t) of (2) is itself a solution if and only ifm is a multiple ofr.

Proof. Consider the phase shiftzα(t) = xiα(t +m), with m = kr andk ∈ {0,1,2, . . . , (p/r)− 1}. Then

zα(t + 1) = xiα(t + kr + 1) = F(1 + αβ(t + kr), xiα(t + kr)) = F(1 + αβ(t), zα(t)),

and sozα(t) is a solution.
Conversely, ifz(t) = xiα(t +m) is a solution, then

F(1 + αβ(t), xiα(t +m)) = F(1 + αβ(t), z(t)) = z(t + 1) = xiα(t +m+ 1)
= F(1 + αβ(t +m), xiα(t +m))

for all t , and soβ(t) = β(t +m) for all t by (6). Hencem is a multiple ofr sinceb has minimal periodr. �

Theorem 3. Under the assumptions of the preceding lemma, for sufficiently smallα the perturbed cyclesxiα
have minimal periodp = lcm(q, r). Moreover, modulo phase shifts, gcd(q, r) of these perturbed cycles are
distinct.

Proof. Supposexiα has minimal periodm. Then

F(1 + αβ(t), xiα(t)) = xiα(t + 1) = xiα(t +m+ 1) = F(1 + αβ(t +m), xiα(t +m))

= F(1 + αβ(t +m), xiα(t))

for all t , and soβ(t) = β(t +m) for all t by (6). Sinceb has minimal periodr, we concludem must be a multiple
of r. Also, limα→0xiα = xi0 has periodm by continuity, and sommust also be a multiple ofq sincexi0 has minimal
periodq. Sincexiα does in fact have periodp = lcm(q, r), it follows thatm = p = lcm(q, r).

By the preceding lemma, each of theq solutionsxiα hasp/r phase shifts which are also solutions. Indeed, given
the phase shiftzα(t) = xiα(t + kr), we have

lim
α→0

zα(t) = lim
α→0

xiα(t + kr) = xi0(t + kr) = x
(i+kr)modq
0 (t)

by identity (5), and sozα(t) = x
(i+kr)modq
α (t) by the uniqueness result of Theorem 2. Thus, we may partition

theq solutions by phase shift into equivalence classes of sizep/r. There areq ÷ p/r = qr/p = gcd(q, r) such
classes. �
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For example, suppose the inherent 6-cycle(q = 6) with phasesx0
0, x

1
0, . . . , x

5
0 is perturbed by 4-periodic forcing

(r = 4) into six out of phase 12-cyclesx0
α, x

1
α, . . . , x

5
α(p = lcm(6,4) = 12). Then there are gcd(6,4) = 2

equivalence classes modulo phase shifts:{x0
α, x

4
α, x

2
α} and{x1

α, x
5
α, x

3
α}.

Roughly speaking, Theorem 3 says the result of forcing with minimal periodr an inherent oscillation of minimal
periodq is the creation ofq out of phase cycles of minimal period lcm(q, r) which live on gcd(q, r) different
attractors. Two extremes deserve mention. First, if an inherent cycle of minimal periodp is forced with minimal
periodp, the result isp out of phasep-cycles, none of which are related by phase shifts. Second, if an inherent
cycle of minimal periodq is forced with minimal periodr whereq andr are relatively prime, the result isq out of
phaseqr-cycles, all of which are phase shifts of each other.

Thus if a population oscillates with minimal periodq in a constant habitat, it will, according to its initial state,
settle on one ofq possible out of phase oscillations when it is placed in a habitat fluctuating with small amplitude
and minimal periodr. The oscillations in the periodic habitat will have minimal period lcm(q, r). Some of theq
multiple oscillations may be phase shifts of each other, but gcd(q, r) of them will be unrelated by phase shifts and
presumably will have different cycle averages. The next section investigates the averages of the perturbed cycles.

2.2. Resonance and attenuation

Define the numberdxe to be the sum of then scalar components of the vectorx ∈ Rn. Define dxe =
(1/p)

∑p−1
t=0 dx(t)e for x ∈ Hn

p . Note thatd·e is a linear operation; that is,dcx + ye = cdxe + dye. If x is a
periodic sequence of population vectorsx(t), thendx(t)e is the total population size at timet , while dxe is the
average total population size over one period of the cycle. We call a population cycleresonant (attenuant)if the
average total population sizedxe increases (decreases) in the advent of periodic forcing.

Definition. The branchxiα is resonant (attenuant) atα = 0 if and only if there existsδ > 0 such thatdxiαe > dxi0e
(dxiαe < dxi0e) for all α ∈ (0, δ).
The goal is to develop formulae to determine whether a branch of perturbed cycles is resonant or attenuant.

Consider the cyclexi0 for whichK(0,b, xi0) = 0. SinceHn
p is isomorphic toRnp, one can identify the sequence

xi0 = {xi0(t)}p−1
t=0 of p vectors as a column vector inRnp consisting of a vertical stack of thep column vectors from

Rn:

xi0 =




xi0(0)

xi0(1)
...

xi0(p − 1)


 .

By Theorem 2, the cyclexi0 is perturbed into a cyclexiα which can be expanded as

xiα = xi0 + uiα + O(α2). (7)

That is


xiα(0)

xiα(1)
...

xiα(p − 1)


 =




xi0(0)

xi0(1)
...

xi0(p − 1)


+




ui(0)

ui(1)
...

ui(p − 1)


α + O(α2)
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or

xiα(t) = xi0(t)+ ui(t)α + O(α2) = x0
0(t + i)+ ui(t)α + O(α2)

for all t .
Thus, the resonance or attenuation ofxiα atα = 0 is determined by

ddxiαe
dα

∣∣∣∣
α=0

= 1

p

p−1∑
t=0

ddxiα(t)e
dα

∣∣∣∣
α=0

= 1

p

p−1∑
t=0

⌈
dxiα(t)

dα

∣∣∣∣
α=0

⌉
= 1

p

p−1∑
t=0

dui(t)e = duie.

If duie > 0, xiα is resonant atα = 0; if duie < 0, xiα is attenuant. Ifduie = 0, higher order terms must be calculated.
For example, this is generally the case when a system at equilibrium is subjected to 2-periodic forcing. Calculation
of higher order terms can be a difficult problem. For some helpful techniques, see [3,12].

We wish to determine the sign ofduie. SinceK(α,b, xiα) = 0, thexiα(t) must satisfy the recursion formula

xiα(t + 1) = F(1 + αβ(t), xiα(t)). (8)

Differentiating both sides of Eq. (8) with respect toα and evaluating atα = 0 produces a nonhomogeneous linear
recursion formula for first order terms:

ui(t + 1) = Fx(1, x
i
0(t))u

i(t)+ Fη(1, x
i
0(t))β(t). (9)

By (9) and identity (4),

−Fx(1, x0
0(t + i))ui(t)+ ui(t + 1) = Fη(1, x

0
0(t + i))β(t). (10)

When evaluated at thep valuest = p − i, p − i + 1, . . . ,2p − i − 1, the vector equation (10) gives rise to a
nonhomogeneous linear system ofp vector equations in thep unknown vectorsui(p−i), ui(p−i+1), . . . , ui(2p−
i − 1)

−Fx(1, x0
0(0))u

i(p − i)+ ui(p − i + 1) = Fη(1, x0
0(0))β(p − i),

−Fx(1, x0
0(1))u

i(p − i + 1)+ ui(p − i + 2) = Fη(1, x0
0(1))β(p − i + 1),

...

−Fx(1, x0
0(p − 1))ui(2p − i − 1)+ ui(2p − i) = Fη(1, x0

0(p − 1))β(2p − i − 1).

This system can be written in block matrix form as

999vi = Dbi ,

where

999 =




−Fx(0) I 0 · · · 0

0 −Fx(1) I 0 0
...

. . .
. . .

...

0 0 0 −Fx(p − 2) I

I 0 · · · 0 −Fx(p − 1)



,

with

Fx(t) = Fx(1, x
0
0(t))
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and

D = diag[Fη(0), Fη(1), . . . , Fη(p − 1)],

with

Fη(t) = diagFη(1, x
0
0(t))

and

vi =




ui(p − i)

ui(p − i + 1)
...

ui(2p − i − 1)


 ,

1 =




1
...

1


 ∈ Rn,

bi =




1β(p − i)

1β(p − i + 1)
...

1β(2p − i − 1)


 .

Here the JacobiansFx(t) and the identityI aren×nmatrices, and so the block matrix999 isnp×np. Fη(1, x0
0(t)) is

a column vector inRn, soFη(t) is ann×n diagonal matrix with the elements ofFη(1, x0
0(t)) on the diagonal. Thus,

D is anp × np diagonal matrix.vi andbi are column vectors inRnp. Note that
∑p−1
i=0 bi = 0 anddvie = duie.

It is straightforward to check that [999]−1 = MP, where

M = diag




I −

j∏
t=p−1+j

Fx(t)




−1


p−1

j=0

,

P =




∏1
t=p−1Fx(t)

∏2
t=p−1Fx(t) · · · Fx(p − 1) I

I
∏2
t=pFx(t) · · · Fx(p)

Fx(p + 1) I · · · ∏p

t=p+1Fx(t)

...
...

...
. . .

...∏p+1
t=2p−2Fx(t)

∏p+2
t=2p−2Fx(t) · · · I

∏p

t=2p−2Fx(t)



.

Thus

vi = MPDbi . (11)

Theorem 4. Assume(A1)–(A3) and(A4*), and letui be as in Eq.(7). If there existsi such thatduie 6= 0, then at
least one of the perturbed branchesxiα must be resonant atα = 0, and at least one must be attenuant.
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Proof.

p−1∑
i=0

duie =
p−1∑
i=0

dvie =
p−1∑
i=0

dMPDbie =

MPD

p−1∑
i=0

bi


 = d0e = 0.

Thus, there existj, k ∈ {0,1, . . . , p − 1} such thatduj e > 0 andduke < 0. �

In our application, Theorem 4 asserts that (generically speaking) the average total population size for at least one
of the multiple attracting oscillatory states in the periodic habitatexceedsthe total population size in the constant
habitat. Furthermore, at least one of the multiple attracting states in the periodic habitat has average total population
size less thanthat in the constant habitat. These results hold only for “small” forcing amplitudes; however, in
many situations the resonant and/or attenuant cycles may persist for significantly large values ofα, as illustrated in
Examples 1 and 2.

3. Example 1: a one-dimensional map

Let F : R1+ × R1+ → R1+ be the generalized Ricker mapF(η, x) = bηxe−cx + (1 − µ)x, andβ(t) = (−1)t . In
this example,n = 1 andp = 2. Eq. (2) becomes

x(t + 1) = b[1 + α(−1)t ]x(t)e−cx(t) + (1 − µ)x(t).

x(t) is the population size at timet, µ the per capita probability of dying during one time interval, e−cx(t) the
fractional reduction of new recruits due to density dependent effects, andb[1 + α(−1)t ] the seasonal recruitment
rate, which fluctuates around an average ofb with periodr = 2 and relative amplitudeα ∈ [0,1).

Whenα = 0, the autonomous model predicts 2-cycles at many values of its parameters(q = 2). For example,
if b = 40, c = 1, andµ = 0.93, the sequencex0

0 = [x0
0(0), x

0
0(1)]

T = [1.035, 14.78]T is a locally stable 2-cycle
solution (to four significant figures). The phase shifted sequencex1

0 = [14.78, 1.035]T is also a locally stable
2-cycle solution. Asα is increased from zero, the inherent 2-cyclesx0

0 andx1
0 are perturbed into two out of phase

branches of locally stable 2-cyclesx0
α andx1

α.
Straightforward calculations givedu0e = 7.638 anddu1e = −7.638. The cycle perturbed fromx0

0 is therefore
resonant atα = 0, while the cycle perturbed fromx1

0 is attenuant.
The Ricker-type model illustrates another typical phenomenon. The autonomous model has a unique equilibrium

x = c−1 ln(b/µ) ≈ 3.762 which can be found by solving the fixed point equationx = bxe−cx + (1 − µ)x. The
equilibrium is unstable at the given parameter values ofb, c, andµ. The unstable equilibrium of the autonomous
model is perturbed into anunstablebranch of 2-cycle solutions whenα is increased from zero. Fig. 1, computed
numerically, illustrates the maximum and minimum values of all three perturbed cycles as functions of the amplitude
parameterα. As α increases, the unstable cycle and the attenuant stable cycle of the same phase annihilate each
other in a saddle-node bifurcation, while the resonant stable cycle persists for allα < 1.

4. Example 2: periodic LPA model

A final example illustrates the theory by means of aTriboliummodel for beetle cultures maintained in a habitat in
which the flour medium alternates every two weeks with average 20 g and relative amplitudeα. The model predicts
resonant and attenuant 2-cycles for a fairly large range ofα values. Laboratory experiments were designed and
executed to test the prediction of these multiple attractors [5].
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Fig. 1. 2-cycle solutions of the periodically forced Ricker-type map, shown as functions of amplitudeα. Whenα = 0, there are two stable
2-cycles which are simply time shifts of each other, and an unstable fixed point. Asα increases from zero, one of the two locally stable 2-cycles
increases in average (solid lines), while the other decreases in average (dashed lines). The unstable fixed point is perturbed into an unstable
2-cycle (dotted lines). The attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant
stable cycle persists for allα < 1.

In this example the dynamical systemx(t + 1) = F(η, x(t)) is the periodic LPA model



L(t + 1)

P (t + 1)

A(t + 1)


 =




bA(t)exp

(−cel

η
L(t)− cea

η
A(t)

)

(1 − µl)L(t)

P (t)exp

(−cpa

η
A(t)

)
+ (1 − µa)A(t)


 , (12)

whereη = 1 + α(−1)t . Heren = 3, r = 2, andβ(t) = (−1)t . L(t) denotes the number of (feeding) larvae,P(t)

the number of pupae (nonfeeding larvae, pupae, and callow adults), andA(t) the number of adults. The discrete time
interval is two weeks. The coefficientb > 0 denotes the average number of larvae recruited per adult per unit time
in the absence of cannibalism, andµl , µa ∈ (0,1) are the larval and adult probabilities of dying from causes other
than cannibalism. The exponentials represent the probabilities that individuals in 20η g of flour survive cannibalism
one unit of time, with cannibalism ratescel/η, cea/η, cpa/η > 0.

The periodic LPA model obtained from the autonomous LPA model under the (independently tested) assumption
that cannibalism rates are inversely proportional to habitat volume. The model derivation appears in [3–5]. Relevant
mathematical facts about the periodic LPA model appear in [3].

We used a parametrization of the autonomous LPA model obtained from a constant habitat historical data set.
The unmanipulated parameters, reported in [9], were

b = 6.598, cpa = 0.004700, µl = 0.2055.

The remaining three parameters were manipulated in the laboratory at

cea = 0.01, cel = 0.1, µa = 0.1,

using the protocol explained in [5].
At these parameter values, the LPA model withα = 0 predicts a stable 2-cycle (rounded to the nearest beetle)

and its phase shift
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Fig. 2. (a) Larval component of 2-cycle solutions of the periodic LPA model. The unstable 2-cycle is not shown. At approximately 0.42 the
attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant stable cycle persists for all
α < 1. The arrows locate the experimental treatments atα = 0,0.4, and 0.6. (b) Same as (a), except shown for total population size.

x0
0 =

(
x0

0(0)

x0
0(1)

)
=







162

0

243







0

129

219






, x1

0 =
(
x1

0(0)

x1
0(1)

)
=







0

129

219







162

0

243






,

as well as an unstable saddle equilibriumx = [23,19,10]T.
The matricesM ,P, andD, and the vectorsb0,b1, v0, v1,u0, andu1 appear in Appendix A. From those calcu-

lations,

du0e = −376.1, du1e = 376.1.

As α is perturbed away from zero, that is, as habitat periodicity is introduced into the system, the stable 2-cyclex0
0

decreases in average, whilex1
0 increases in average. The unstable saddle equilibrium becomes an unstable saddle

2-cycle with the introduction of periodic forcing. Furthermore, numerical calculations indicate the attenuant stable
2-cycle and the unstable 2-cycle annihilate each other in a saddle-node bifurcation atα0 ≈ 0.42, while the resonant
stable 2-cycle persists for allα (Fig. 2).
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Fig. 3. Model predictions (including transients) for each of the six treatments, shown in L-stage time series and composite phase space. The
squares correspond to times when flour volume is high. The solid circles in phase space represent equilibria of the first composite map. The
upper (lower) composite fixed point forα = 0.4 corresponds to the resonant (attenuant) 2-cycle.

The model therefore predicts three asymptotic regimes as indexed by the relative amplitudeα of the habitat
fluctuation: forα = 0, the stable cyclex0

0 and its time shiftx1
0 of opposite phase; for 0< α < α0, the locally stable

resonant and attenuant cyclesx1
α andx0

α, respectively; and forα > α0, the stable resonant cyclex1
α.

We studied three habitat sequences: a constant 20 g habitat (α = 0), an alternating 28–12 g habitat (α = 0.4), and
an alternating 32–8 g habitat (α = 0.6). In each of the three habitats, we used two initial conditions, [150,200,150]T

and [150,0,150]T, for a total of six treatments. There were three replicates in each of the six treatments for a total
of 18 cultures. The detailed experimental protocol appears in [5].

The model predictions for each of the six treatments appear in Fig. 3. The model trajectories are presented both
as time series and as orbits in “composite” phase space. The latter are actually orbits of the (autonomous) first
composite map, and correspond to every other step of the time series. Black squares correspond to times when the
flour volume is high. Whenα = 0, the model orbits for both initial conditions approach the inherent cyclex0

0. When
α = 0.4, the initial condition [150,200,150]T lies in the basin of attraction of the resonant 2-cyclex1

0.4, while
[150,0,150]T lies in the basin of attraction of the attenuant 2-cyclex0

0.4. Whenα = 0.6, both initial conditions lead
to model orbits approaching the resonant cyclex1

0.6.
Fig. 4 presents the first 40 weeks of data from six replicates, organized in the same format as Fig. 3. The multiple

cycles are seen clearly in the data whenα = 0.4. The complete results of this experiment and those of a follow-up
experiment are reported in detail in [5].
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Fig. 4. The first 40 weeks of experimental data for representative replicates in each of the six treatments, given in the same format as Fig. 3. The
data are stochastic and thus show a scattering of points in the vicinity of the deterministic attractors.

5. Summary

An autonomous discrete dynamical system with an oscillatory solution develops multiple oscillatory solutions
in the advent of periodic forcing. The multiple cycles are out of phase and may differ in average. Generically, the
average of at least one of the cycles will resonate with the forcing, while the average of at least one other will
attenuate.

In terms of population dynamics, a population which oscillates in a constant environment develops multiple
possible oscillatory final states in the presence of small amplitude habitat periodicity. Generically, some of the final
state averages are resonant, and some are attenuant; that is, periodic habitats may enhance or depress average total
population size, depending on the initial population vector.

In an empirical test of the theory as applied to the periodic LPA model,Tribolium populations were maintained
in periodically forced flour habitats of constant 20 g, alternating 28–12 g, and alternating 32–12 g. The treatments
placed in the previously studied 20 g constant habitat and 32–8 g habitat regimes served as “controls” for the
investigation of the multiple attractors predicted in the 28–12 g habitat. Treatments were started in each basin of
attraction. Fortunately, the basins were “simple”, with “smooth” boundaries; had they been riddled or marbled with
fractal boundaries, stochastic effects might have made it impossible to locate the multiple attractors. Furthermore,
the predicted cycles differed not only in average, but also in phase, thus increasing the possibility of unambiguous
empirical detection. The “bracketing” treatment regimes of constant 20 and 32–8 g habitats displayed the features
of the model predictions, and the intermediate 28–12 g habitat treatments evidenced the existence of the resonant
and attenuant 2-cycles.
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Appendix A

In Example 2, denote the inherent cycles by

x0
0 =

(
x0

0(0)

x0
0(1)

)
=






L(0)

P (0)

A(0)






L(1)

P (1)

A(1)






.

Then

L(0)= 162.1, P (0) = 0.00001020, A(0) = 242.8,

L(1)= 0.00001283, P (1) = 128.8, A(1) = 218.5.

Thus,Fx(t) =Fx(t) =Fx(t) =


−celbA(t)exp(−celL(t)− ceaA(t)) 0 (1 − ceaA(t))b exp(−celL(t)− ceaA(t))

1 − µl 0 0

0 exp(−cpaA(t)) −cpaP(t)exp(−cpaA(t))+ 1 − µa


 ,

and

999 =
(

−Fx(0) I

I −Fx(1)

)
,

Fη(t) = diag



(celL(t)+ ceaA(t))bA(t)exp(−celL(t)− ceaA(t))

0

cpaA(t)P (t)exp(−cpaA(t))


 ,

D =
(
Fη(0) 0

0 Fη(1)

)
,

bi =







1

1

1


β(2 − i)




1

1

1


β(3 − i)




=




(−1)2−i

(−1)2−i

(−1)2−i

(−1)3−i

(−1)3−i

(−1)3−i



,
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M =
(

[I − Fx(1)Fx(0)]−1 0

0 [I − Fx(0)Fx(1)]−1

)
,

P =
(
Fx(1) I

I Fx(0)

)
,

By Eq. (11) and the program Maple,

v0 =
(
u0(0)

u0(1)

)
=







−162.2

3.700× 10−4

−242.8







4.656× 10−4

−128.8

−218.5






,

and

v1 =
(
u1(1)

u1(0)

)
=







162.2

−3.700× 10−4

242.8





−4.656× 10−4

128.8
218.5






.

Hence

u0 =
(
u0(0)

u0(1)

)
=







−162.2

3.700× 10−4

−242.8







4.656 × 10−4

−128.8

−218.5






,

u1 =
(
u1(0)

u1(1)

)
=







−4.656× 10−4

128.8

218.5







162.2

−3.700× 10−4

242.8






.
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