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Abstract

Oscillating discrete autonomous dynamical systems admit multiple oscillatory solutions in the advent of periodic forcing.
The multiple cycles are out of phase, and some of their averages may resonate with the forcing amplitude while others
attenuate. In application to population biology, populations with stable inherent oscillations in constant habitats are predicted
to develop multiple attracting oscillatory final states in the presence of habitat periodicity. The average total population size
may resonate or attenuate with the amplitude of the environmental fluctuation depending on the initial population size. The
theory has been tested successfully in the laboratory by subjecting cultures of the flouTbieelilem to habitat periodicity
of various amplitudes. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although all natural populations suffer temporal environmental fluctuations on some scale, experimental and
theoretical studies of population response to habitat fluctuation remain relatively rare. Few controlled experimental
studies address the effect of time-varying habitats, and most mathematical population models are autonomous.
In recent years, nonautonomous versions of classical model equations have been investigated in order to deter-
mine the extent to which fundamental theoretical principles remain valid in fluctuating environments, e.g., see
[1]. However, few connections exist between controlled, replicated experimental data and rigorously validated
models.

An exception is the controlled laboratory experiment of Jillson [2] and the subsequent model-based explanation,
predictions, and further experimentation of Henson and Cushing [3], Costantino et al. [4], and Henson et al. [5].
Jillson placed flour beetles in volumes of flour that periodically alternated between 32 and 8 g every two weeks.
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The control cultures remained in a constant volume of 20g. Total population numbers in the alternating habitat
were more than twice those in the constant habitat even though the average flour volume was the same in both
environments.

Henson and Cushing [3] and Costantino et al. [4] extended the modeling hypotheses of tfeithdtilim
model of Dennis et al. [6,7] and Costantino et al. [8,9] to include habitat periodicity. The resulting “periodic LPA
model” explained the increased average biomass observed in the 32—8 g habitat as a type of resonance in which
the inherent biological oscillation resonates with the periodic habitat [4]. Furthermore, the periodic LPA model
generated unexpected new predictions which were then tested in the laboratory [5]. When the relative amplitude
of oscillating flour volume in the periodic LPA model was set at 40% to simulate a 28-12 g alternating habitat, the
model predicted multiple attracting final states: two different 2-cycles out of phase with each other and differing
in average magnitude of animal numbers. This model forecast was successfully tested in the laboratory by placing
beetle cultures in the different (model predicted) basins of attraction of the two locally stable 2-cycles.

The resonance and multiple attractor predictions of the periodic LPA model constitute one incarnation of a general
nonlinear phenomenon. This paper presents general results concerning multiple attractors and resonance in periodi-
cally forced discrete dynamical systems. The contextual application will be periodic habitats in population biology.

Discrete autonomous (semi)dynamical systems with periodic solutions admit multiple oscillatory solutions in the
advent of periodic forcing. In general, the multiple cycles are mutually out of phase, and some of the cycle averages
may increase with the forcing amplitude while others decrease. In terms of population biology, a population which
cycles in a constant habitat is predicted to have multiple attracting oscillatory final states in the presence of habitat
periodicity. The multiple cycles differ in phase, and may differ in average total population size as well. Thus,
depending on the initial population vector, the average total population size in the fluctuating habitat may be larger
or smaller than it would have been in the constant habitat.

In this paper “resonance” (attenuation) refers to an increase (decrease)awetiageof an output oscillation
in response to an increase in tamplitudeof an input oscillation. Specifically, resonance will be studied as an
increased average output in the advent of periodic forcing (that is, as the forcing amplitude increases from zero). In
the context of our application, resonance occurs when the average total population size of an oscillating population
increases with the onset of habitat periodicity. Attenuation refers to a decrease in average total population size with
the introduction of forcing.

Section 2 presents general results concerning multiple attractors and resonance as predicted by periodically forced
discrete models. Section 3 briefly illustrates the mathematical theory with a one-dimensional map for a theoretical
population. Section 4 presents the experimentally verified predictions of the multivariate periodic LPA model as a
specific application of the theory.

2. Periodic forcing in discrete models

Let s be a nonnegative integer, artff; the Hilbert space op-periodic sequences = {x(1)};2, of vectors
x(¢t) € R", with inner product

p—1
(X, y) =Y x(t) - y(@),
t=0
and norm||x|| = /{x, x). Identify each sequende (1)};2, € H, with the finite sequence of the firgt terms

{x(r)}f’;ol, and definex(r) = x(rmodp) for > p. Note H, also contains “degeneratgf-cycles; that is, it
contains all cycles of minimal periagsuch thay divides p, including constant cycles withh = 1.
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Let B denote the set gb-periodic sequences of real numbers having cycle average zero and supremum one
p—1

> B =0 and supB()| =1

=0

B = [B =B}y € H}

Note that anyp-periodic real oscillatiory(z) with cycle averageae = (1/ p)Zfz_olz(t) can be written in the
form z(¢t) = zave[l+ aB(2)] for some “relative amplitude& € R and some3 € B. To do this, we choose
o = sup|(z(t) — zave)/zavel > 0 and, ifa # 0, let

z(t) — zave

B(1) =

QZave

(If « =0, then anyp € B will do.)
Assume
(A1) F(n,x) : R x R" — R"is C?in nandx; and
(A2) K : R x B x H, — H, is anonlinear operator defined by

K@ B.X) = {x(t + 1) — F(L+af(®). x(O)} o
Fix B = {,B(t)}” ! ¢ B. Consider solutions €H), of the operator equation
K(a,B,x) =0. (1)

In (1), 1+ «B may be thought of as an “input” forcing oscillation with amplitugeWe will study the “output”

oscillationx as a function o#.
Solving (1) inH}; corresponds to finding-periodic solutions of the-periodically forced discrete-dimensional

(semi)dynamical system
x(t4+1) =FQA+af@), x(1)). (2)

In this context, properties of the output oscillatie() vary as a function of the amplitudeof the input forcing
oscillation 1+ a8 ().

In terms of the application, (2) is a population model with lifestage or subpopulation vgejoiThe model is
periodically forced in a habitat variabte The next assumption posits an “inherent” population oscillation of period
p in the absence of periodic forcing:

(A3) There exists<8 € Hj such thatk (0, B, x8) = 0. (That is, the autonomous system

x(t+1) =F(@, x(t) 3)
has ap-periodic solution given by the sequencepofectorsxJ(0), xJ(1), ... ,xJ(p — 1) € R".)
Each phase shift of this solution is also a solution of (3). Denotg fitease shifted solutions bxg x(l), .. xg 1,
where

X3 = {xQ()} 0,
XO = {xo(t)}t o = {xo(t + 1)}t o ,

X0 = b OV = 100+ p — DY
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Note the identity

(i+j) modp

xo(t + ) = xg (1). (4)
If p is the minimal period ok, then thep phase shifts<8, x%, e ,ngl will be distinct. If the minimal period is
g < p, then the firsiy phase shifts<8, xé, . ,xg_l will be distinct, while the rest will be duplicates under the

identityx! = xJ ™% In this case identity (4) becomes
Xt 4 j) = xg T mod gy (5)

Stability results will require a hyperbolicity assumption:
(A4) The matrix

0
[ Fe@ x5,

t=p—1

whereF, is the Jacobian of’, has no eigenvalues of modulus one.
A weaker hypothesis may be substituted for (A4) when results are independent of stability:
(A4*) The matrix

0
= J] Fe@ x5

t=p—1

is invertible.
(A4) implies (A4*). Since the set of eigenvalues of the product maiixis the same as the set of eigenvalues
of BA [10], each of thep matrices[];_,_; Fr(1 x5(1) = [To-,_1Fr(Lx3(t +i)).i = 0,1,....p— 1, of
permuted Jacobian products has the same set of eigenvalues. This fact has two relevant consequences. First, since
(A4*) holds if and only if the matrix]'[?zp_lFx(l, xg(t)) does not have an eigenvalue of one, assumption (A4*) is

equivalent to the invertibility of each of the matrides I—[?=p,1Fx(1, xé(t)) fori =0,1,..., p—1.Second, since

the stability of the cycle<fJ depends on the eigenvalueslf[f’zp_lFx(l, xé(r)), all of the phase shifted solutions

xé, xg, R x{)’_1 must have the same stability properties when they are hyperbolic (see, e.g., [11], Theorem 9.14):

Theorem 1. AssumgA1)—(A4). The phase shifted solutiowg, x%, e x{)’fl are either all locally asymptotically
stable, or they are all unstahle

2.1. Multiple perturbed cycles

When small amplitude periodic forcing is introduced into the habitat of an oscillating population, the population
is perturbed to a new oscillatory state. The next theorem guarantees each phasestyiftiedsolutionx = xg of
the autonomous equatidi(0, B, x) = 0 is perturbed into a continuousbranchx;, of p-cycle solutions of the
nonautonomous equatidti(a, B, X) = 0 asa is increased from zero.

Theorem 2. AssumgA1)—(A3) and (A4*). Leti € {0,1,..., p — 1}. Then there exist > Oandy > O0and a
c! functiony : (=8,8) — Hp such thaty (0) = xg and K (a, B, ¥ (a)) = Ofor all |«| < §. Furthermore, if
K(o,B,2) =0with o] < § and|z— x6|| < y,thenz = ¥ (o). If (A4) also holds, theld can be chosen so that
¥ (a) has the same stability ag, for all |o| < 4.
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Proof. The result follows from the Implicit Function Theorem as long as the Frechét derivatiendth respect
to x evaluated at = 0 andx = X} is nonsingular, and is C* in x ande.

The Frechét derivatives of («, B, x) with respect tox and« are the linear operatos, : H; — H, and
Ly,:R— H[’,' defined by

Axi>LfAx(t + 1) — Fo(L+ aB(0), x(0) Ax (D)5,
Aar>Le{—Fy(L+aB@), x(1)B(1) Aa),

which are continuous im anda by (Al).
The Frechét derivative ok (a, B, x) with respect toax evaluated atr = 0 andx = x{) is the linear operatoL.
defined by

AXS {Ax(t + 1) — F (L xh(0) Ax (D)}

If w e Hj is in the kernel ofZ, it must satisfy the recursion formula
w(t +1) = Fe(1, xh(0)w(r)

fortr=0,1,...,p—1.Thus

0
w© = | [] Fe@ x4(0) | w(0)

t=p—1

and so

0
- ][] @ x(i)(t))) w(0) = 0.

t=p-1

Sincel — ]_[?:p_lFx(l, xé(t)) is invertible by assumption (A4*)w(0) = 0, which impliesw = 0. Hence the
operatorL is nonsingular. |

Denotey () = x,. Then for smalk, x!, is aCla-branch of solutions ok («, B, X) = 0 for which lim,_, ox/, =
x5. The branch may be expandeddrasxi, = X + u’a + O(a?). Properties of the first-order tera’ will play a
large role in our study of the perturbed cycles.

If the inherent cycle<8 has minimal periodg < p, then theyg distinct phase shifted solutiorx.g are perturbed
into ¢ distinct brancheg!, of p-cycle solutions a& increases from zero. By continuity, the cycles on each branch
xi, are in phase with the parent cyodg; hence, they distinct p-cycles are mutually out of phase. Furthermore, if
assumption (A4) holds, then by an eigenvalue continuity argumentpleeturbed cycles are locally asymptotically
stable (unstable) iig is locally asymptotically stable (unstable).

Now suppose the inherent cyotg has minimal period and the input oscillatiofs has minimal period. The
smallest value op for which Theorem 2 applies is the least common multiple @ndr:p = lcm(g, r). Thus,
the inhereng-cycle is perturbed intg out of phasey-cycles as increases from zero. Two questions are in order.
First, what is theminimalperiod of the perturbed cycles? Second, how many pertusbegtles are therenodulo
phase shift3

With regard to the first question, “generically” one expects the output cycles to have minimalpetitmn(q, r);
however, a counter example satisfying hypotheses (A1l)—(A4) demonstrates this is not necessarily the case. Consider
the scalar map

x(t+1) =31+ a(—=1D"x@).
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The autonomous mapx (= 0) has exactly one periodic solution: the equilibrium= 0 (periodg = 1). When
forcing of minimal period- = 2 is introduced into the map:(> 0), the equilibriumx = 0 remains as the only
periodic solution. In particular, there are no solutions of minimal peried Em(1, 2). The problem is that the
function F (n, x) = 3nx is independent off whenx = 0. These kinds of degeneracies are ruled out,ifvhen
evaluated at the inherent cycle, is invertible as a functiop @his is condition (6) in the next lemma and theorem.

With regard to the second question, condition (6) also impliegggad of the perturbed cycles are distinct
modulo phase shifts, where ged ) denotes the least common divisorgandr. We now turn to the proof of
these remarks.

Lemma. AssumgAl)—(A3) and (A4*). Suppose thex{, have minimal period; and B has minimal period,
and thatx’,,i = 0,1,2,...,q — 1, are theq perturbed branches gf-cycles guaranteed by Theorem 2, where
p = Ilcm(q, r). Assume further that

F(n, xL(0) = F(n2, xL,(1)) = n1 = 2, (6)

forall rand alli = 0,1,2,...,9 — 1 and all sufficiently smalk. Then for sufficiently smalt, a phase shift
xé (t+m)ofa solutionxg (t) of (2) is itself a solution if and only if: is a multiple ofr.

Proof. Consider the phase shift () = xf;l (t +m), withm =krandk € {0,1,2,...,(p/r) — 1}. Then
2+ D) =xi(+kr+1) = FL4+aB +kr), x'(t +kr)) = F(L+ af(t), 24 (1)),

and soz, (¢) is a solution.
Conversely, ifz(¢) = xg (t +m) is a solution, then

Fl+aB@), xi(t+m)) = F(L+aB(t),z(t)) = z2(t + 1) = xL(t + m + 1)
=FQ+aB(t +m),xé(t +m))

for all r, and s08(¢) = B(¢r + m) for all ¢ by (6). Hencen is a multiple ofr since has minimal period. |

Theorem 3. Under the assumptions of the preceding lemma, for sufficiently sméle perturbed cycleg!,
have minimal periodp = Icm(g, r). Moreover, modulo phase shiftgcdq, r) of these perturbed cycles are
distinct

Proof. Suppose, has minimal periodz. Then

F(l—‘,—Ol,B(l),xé(t)) =xé(t+1) =xé(t+m+1) = F(l—l—aﬁ(l—i—m),xé(t—i-m))
= F(14 af(t + m), x. (1))

for all ¢, and soB(¢) = B(t + m) for all ¢ by (6). Since} has minimal period, we concluden must be a multiple
of r. Also, limy_ox!, = xg has periodn by continuity, and sa: must also be a multiple ofsincexg has minimal
periodg. Sincex!, does in fact have periog = lcm(q, r), it follows thatm = p = lcm(q, r).

By the preceding lemma, each of thesolutionsx, hasp/r phase shifts which are also solutions. Indeed, given
the phase shift, (t) = x’ (¢t + kr), we have

M 2o, (1) = 1M xk (¢ + kr) = xb(t + kr) = x§ 7 ™0% (1)
a—0 a—0

by identity (5), and saq (1) = x& ™% 1) py the uniqueness result of Theorem 2. Thus, we may partition
the g solutions by phase shift into equivalence classes of gjze There arey ~ p/r = gr/p = gcd(g, r) such
classes. |
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For example, suppose the inherent 6-cy(gle= 6) with phases<8, xé, cee xg is perturbed by 4-periodic forcing
(r = 4) into six out of phase 12-cycle£,xg, ,Xg(p = lcm(6,4) = 12). Then there are g6, 4) = 2
equivalence classes modulo phase shi$; x%, x2} and(x2, x3, x3}.

Roughly speaking, Theorem 3 says the result of forcing with minimal peré&dinherent oscillation of minimal
periodg is the creation of; out of phase cycles of minimal period I¢g r) which live on gcdg, r) different
attractors. Two extremes deserve mention. First, if an inherent cycle of minimal peiofbrced with minimal
period p, the result isp out of phasep-cycles, none of which are related by phase shifts. Second, if an inherent
cycle of minimal period; is forced with minimal perioad whereg andr are relatively prime, the result isout of
phasegr-cycles, all of which are phase shifts of each other.

Thus if a population oscillates with minimal perigdn a constant habitat, it will, according to its initial state,
settle on one of possible out of phase oscillations when it is placed in a habitat fluctuating with small amplitude
and minimal period-. The oscillations in the periodic habitat will have minimal period {gmr). Some of they
multiple oscillations may be phase shifts of each other, bugged of them will be unrelated by phase shifts and
presumably will have different cycle averages. The next section investigates the averages of the perturbed cycles.

2.2. Resonance and attenuation

Define the numbefx] to be the sum of the: scalar components of the vecter € R". Define [x] =
(1/p)Zf’:_01rx(t)1 for x € Hj. Note that[-] is a linear operation; that i§ex +y1 = c[x] + [y]. If x is a
periodic sequence of population vectarg), then[x(z)] is the total population size at tinre while [x] is the
average total population size over one period of the cycle. We call a populationregoleant (attenuanty the
average total population siZ&] increases (decreases) in the advent of periodic forcing.

Definition. The brancrxfx is resonant (attenuant) at= 0 if and only if there exist§ > 0 such thafx,] > fxé}
(Ixi,1 < [x§1) for all a € (0, 8).

The goal is to develop formulae to determine whether a branch of perturbed cycles is resonant or attenuant.

Consider the cycl&{) for which K (0, B, xg) = 0. SinceH}; is isomorphic toR"”, one can identify the sequence
x6 = {x{)(t)}f:_1 of p vectors as a column vector Ri*” consisting of a vertical stack of thecolumn vectors from
R":

x4(0)
x6(1D)

xh(p— 1)

By Theorem 2, the cyclg)) is perturbed into a cycle/, which can be expanded as

xfx = Xé + Ul + O(a?). (7)
That is
x%,(0) x}(0) u' (0)
x} (D) x5(D) u' (1)

= ] + ] o+ O(az)

x,(p—1 xp(p— 1) u'(p—1)
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or
x (1) = xb(@) + u' (Ha + O@?) = xJ(t + i) + u' (H)a + O(a?)

for all .
Thus, the resonance or attenuatioxpfata = 0 is determined by

1”‘dei ) 1 127t 4
=— ¢ =—) [u'(t)] =[ul.
2| |, p;) u

a=0 P =0
If Tu’] > 0, x!, isresonantat = 0;if [u'] < 0, X!, is attenuant. Ifu’] = 0, higher order terms must be calculated.
For example, this is generally the case when a system at equilibrium is subjected to 2-periodic forcing. Calculation
of higher order terms can be a difficult problem. For some helpful techniques, see [3,12].
We wish to determine the sign ¢’ ]. Sincek («, B, x,) = 0, thex/,(¢) must satisfy the recursion formula

x,(t+1) = F(L+aB(0), x},(1). (®)

Differentiating both sides of Eg. (8) with respectd@nd evaluating at = 0 produces a nonhomogeneous linear
recursion formula for first order terms:

drx;, 1
da

B 1”2‘:1 dre} (1)1

w=0 P do

u'(t +1) = Fe(1, xh(0))u' (t) + Fy (L, xb(0)B(0). )
By (9) and identity (4),

—Fo (L x8(t 4 i)' (1) +u' (t + 1) = Fy(L, x3(t 4 i) B(0). (10)
When evaluated at the valuest = p —i,p —i +1,...,2p —i — 1, the vector equation (10) gives rise to a
nonhomogeneous linear systenpofector equations in the unknown vectors’ (p—i), u! (p—i+1), ... , u' 2p—

i—1)

—Fe(L,x§(O)ul (p — i) +u'(p —i + 1) = F(1, x30)B(p — i),
—FLx§Wui(p—i+ 1D +u'(p—i+2) =FLx3W)Bp —i+1),

—Fo(Lx§(p —Duip—i =D +u'p —i) = F(L, xJ(p — D)BR2p —i — D).

This system can be written in block matrix form as

wv' = Dp’,
where
—F,(0) I 0 0
0 —F (1) | 0 0
v = . . . . )
0 0 0 —F(p—2 |
| 0 0 —F(p—1)
with

Fo(t) = Fy(L, x3(1))



S.M. Henson/Physica D 140 (2000) 33-49 41
and
D = diag[F;,(0), Fy(D), ..., Fy(p — 1],
with
F,(t) = diagF, (1, x0(1))

and
u'(p —i)
. ul(p—i+1)
Vi = ,
ui(2p —i—1
1
1=|:]|eR",
1
18(p — i)
. Bp—-i+1
B =
18(2p —i — 1)

Here the Jacobians, (1) and the identity aren x n matrices, and so the block matdkisnp x np. F,(1, xg(t)) is
acolumn vectorirR", soF,(¢) is ann x n diagonal matrix with the elements 6% (1, xg(t)) on the diagonal. Thus,
Dis anp x np diagonal matrixy’ and’ are column vectors i®"?. Note thatZ{’:_c,lBi =0and[vi] = [u'].

It is straightforward to check tha@{]~! = MP, where

. —1\ p-1
M = diag {I - ﬁ Fx(t):| ,
t=p—1+j =0
[l 1Fe®) Ty 1Fc(@® - Fe(p—1) !
| M2, Fe) - Fe(p)
P=| Fp+D I e =1 Fx (@)
[ oFc ) 172 R o 1 1y oFe®
Thus
vi = MPDP'. (12)

Theorem 4. AssuméA1)—(A3) and (A4*), and letu’ be as in Eq(7). If there exists such thatfu’] # 0, then at
least one of the perturbed brancheésmust be resonant at = 0, and at least one must be attenuant
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Proof.
p—1 p—1 p—1 p—1
> rui1=)"v1=> [MPDB1= | MPD) B’ | = 0] =0.
i=0 i=0 i=0 i=0
Thus, there exisf, k € {0, 1, ..., p — 1} such thafu’/] > 0 and[u*] < 0. |

In our application, Theorem 4 asserts that (generically speaking) the average total population size for at least one
of the multiple attracting oscillatory states in the periodic halsteteedshe total population size in the constant
habitat. Furthermore, at least one of the multiple attracting states in the periodic habitat has average total population
size less thanthat in the constant habitat. These results hold only for “small” forcing amplitudes; however, in
many situations the resonant and/or attenuant cycles may persist for significantly large valugsittistrated in
Examples 1 and 2.

3. Example 1: a one-dimensional map

Let F : R} x R} — R! be the generalized Ricker maf(n, x) = bnxe=¢* + (1 — p)x, andp(t) = (-1 In
this exampler = 1 andp = 2. Eq. (2) becomes

x(t+1) =b[1 +a(—=D)1x()e” D + (1 — wx ().

x(7) is the population size at time . the per capita probability of dying during one time intervat®¢”) the
fractional reduction of new recruits due to density dependent effects;[dnd a(—1)’] the seasonal recruitment
rate, which fluctuates around an averagé wiith periodr = 2 and relative amplitude < [0, 1).

Whena = 0, the autonomous model predicts 2-cycles at many values of its paramgter). For example,
if b =40, ¢ = 1, andu = 0.93, the sequence = [xJ(0), x3(1)]T = [1.035 14.78] is a locally stable 2-cycle
solution (to four significant figures). The phase shifted sequxéce [14.78, 1.035] is also a locally stable
2-cycle solution. Asy is increased from zero, the inherent 2—cyot§sandxg are perturbed into two out of phase
branches of locally stable 2-cyclg$ andx’.

Straightforward calculations giviu®] = 7.638 and[ul] = —7.638. The cycle perturbed from‘g is therefore
resonant a& = 0, while the cycle perturbed fronxg is attenuant.

The Ricker-type model illustrates another typical phenomenon. The autonomous model has a unique equilibrium
x = ¢ tIn(b/u) ~ 3.762 which can be found by solving the fixed point equaticg bxe * + (1 — u)x. The
equilibrium is unstable at the given parameter values, of and ... The unstable equilibrium of the autonomous
model is perturbed into amnstablebranch of 2-cycle solutions whenis increased from zero. Fig. 1, computed
numerically, illustrates the maximum and minimum values of all three perturbed cycles as functions of the amplitude
parameterr. As « increases, the unstable cycle and the attenuant stable cycle of the same phase annihilate each
other in a saddle-node bifurcation, while the resonant stable cycle persistsdozdll

4. Example 2: periodic LPA model

A final example illustrates the theory by means afioliummodel for beetle cultures maintained in a habitat in
which the flour medium alternates every two weeks with average 20 g and relative amgliftitemodel predicts
resonant and attenuant 2-cycles for a fairly large range whlues. Laboratory experiments were designed and
executed to test the prediction of these multiple attractors [5].
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25|

-0.1 0.1 03 0.5 0.7 0.9 1.1

Fig. 1. 2-cycle solutions of the periodically forced Ricker-type map, shown as functions of amplitMdeena = 0, there are two stable

2-cycles which are simply time shifts of each other, and an unstable fixed poiatirdseases from zero, one of the two locally stable 2-cycles
increases in average (solid lines), while the other decreases in average (dashed lines). The unstable fixed point is perturbed into an unstable
2-cycle (dotted lines). The attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant
stable cycle persists for all < 1.

In this example the dynamical systertr + 1) = F(n, x(¢)) is the periodic LPA model

—Cel Cea
Le+1) bA(t) exp( L(t) — TAU))
P+ | = (L= pu)L(0) : (12)
AC+D) P(1) exp(_;"aA(o) + (1 w2 AG)

wheren = 1+ a(—1)". Heren = 3,r = 2, andB(r) = (—1)!. L(r) denotes the number of (feeding) larva#&y)

the number of pupae (nonfeeding larvae, pupae, and callow adults)(antie number of adults. The discrete time
interval is two weeks. The coefficieht> 0 denotes the average number of larvae recruited per adult per unit time
in the absence of cannibalism, and ©a € (0, 1) are the larval and adult probabilities of dying from causes other
than cannibalism. The exponentials represent the probabilities that individuabtsgro2@our survive cannibalism

one unit of time, with cannibalism rateg/n, cea/n, cpa/n > 0.

The periodic LPA model obtained from the autonomous LPA model under the (independently tested) assumption
that cannibalism rates are inversely proportional to habitat volume. The model derivation appears in [3-5]. Relevant
mathematical facts about the periodic LPA model appear in [3].

We used a parametrization of the autonomous LPA model obtained from a constant habitat historical data set.
The unmanipulated parameters, reported in [9], were

b=6598 pa=0.004700 p =0.2055

The remaining three parameters were manipulated in the laboratory at
cea=0.01, ¢ =0.1 ua=0.1,

using the protocol explained in [5].

At these parameter values, the LPA model wita= 0 predicts a stable 2-cycle (rounded to the nearest beetle)
and its phase shift
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Fig. 2. (a) Larval component of 2-cycle solutions of the periodic LPA model. The unstable 2-cycle is not shown. At approximately 0.42 the
attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant stable cycle persists for all
«a < 1. The arrows locate the experimental treatmenés&t0, 0.4, and 0.6. (b) Same as (a), except shown for total population size.

162 0
0 129
Q= <x8<0>> _|Lassl | <x3<0>> _ | L2,
X3 0 Y X 1627 |’
129 0
| 219 | | 243

as well as an unstable saddle equilibrimm: [23, 19, 10]".
The matricedM, P, andD, and the vector®, p*, v, v, u®, andu® appear in Appendix A. From those calcu-
lations,

u®] = —3761, [ul] = 3761

As « is perturbed away from zero, that is, as habitat periodicity is introduced into the system, the stable@-cycle
decreases in average, Whidé increases in average. The unstable saddle equilibrium becomes an unstable saddle
2-cycle with the introduction of periodic forcing. Furthermore, numerical calculations indicate the attenuant stable
2-cycle and the unstable 2-cycle annihilate each other in a saddle-node bifurcatjors 8t42, while the resonant

stable 2-cycle persists for all (Fig. 2).
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Fig. 3. Model predictions (including transients) for each of the six treatments, shown in L-stage time series and composite phase space. The
squares correspond to times when flour volume is high. The solid circles in phase space represent equilibria of the first composite map. The
upper (lower) composite fixed point far= 0.4 corresponds to the resonant (attenuant) 2-cycle.

The model therefore predicts three asymptotic regimes as indexed by the relative amplatittee habitat
fluctuation: fore = 0, the stable cyclgg and its time shiﬁxé of opposite phase; for @ o < «ag, the locally stable
resonant and attenuant cycbeg‘ﬁandxg, respectively; and fax > «p, the stable resonant cyolg.

We studied three habitat sequences: a constant 20 g hab#af, an alternating 28—12 g habitat £ 0.4), and
an alternating 32—8 g habitat & 0.6). In each of the three habitats, we used two initial conditions,,[26Q 150]"
and [1500, 150]", for a total of six treatments. There were three replicates in each of the six treatments for a total
of 18 cultures. The detailed experimental protocol appears in [5].

The model predictions for each of the six treatments appear in Fig. 3. The model trajectories are presented both
as time series and as orbits in “composite” phase space. The latter are actually orbits of the (autonomous) first
composite map, and correspond to every other step of the time series. Black squares correspond to times when the
flour volume is high. When = 0, the model orbits for both initial conditions approach the inherent os%:lé\/hen
a = 0.4, the initial condition [150200, 150]" lies in the basin of attraction of the resonant 2-cyc8§, while
[150, 0, 150]" lies in the basin of attraction of the attenuant 2-cy(3.g. Whena = 0.6, both initial conditions lead
to model orbits approaching the resonant cy«%{g.

Fig. 4 presents the first 40 weeks of data from six replicates, organized in the same format as Fig. 3. The multiple
cycles are seen clearly in the data whes 0.4. The complete results of this experiment and those of a follow-up
experiment are reported in detail in [5].
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Fig. 4. The first 40 weeks of experimental data for representative replicates in each of the six treatments, given in the same format as Fig. 3. The
data are stochastic and thus show a scattering of points in the vicinity of the deterministic attractors.

5. Summary

An autonomous discrete dynamical system with an oscillatory solution develops multiple oscillatory solutions
in the advent of periodic forcing. The multiple cycles are out of phase and may differ in average. Generically, the
average of at least one of the cycles will resonate with the forcing, while the average of at least one other will
attenuate.

In terms of population dynamics, a population which oscillates in a constant environment develops multiple
possible oscillatory final states in the presence of small amplitude habitat periodicity. Generically, some of the final
state averages are resonant, and some are attenuant; that is, periodic habitats may enhance or depress average total
population size, depending on the initial population vector.

In an empirical test of the theory as applied to the periodic LPA mddédplium populations were maintained
in periodically forced flour habitats of constant 2Cadternating 28—12 gand alternating 32—-12 d he treatments
placed in the previously studied 20 g constant habitat and 32-8 g habitat regimes served as “controls” for the
investigation of the multiple attractors predicted in the 28-12 g habitat. Treatments were started in each basin of
attraction. Fortunately, the basins were “simple”, with “smooth” boundaries; had they been riddled or marbled with
fractal boundaries, stochastic effects might have made it impossible to locate the multiple attractors. Furthermore,
the predicted cycles differed not only in average, but also in phase, thus increasing the possibility of unambiguous
empirical detection. The “bracketing” treatment regimes of constant 20 and 32—-8 g habitats displayed the features
of the model predictions, and the intermediate 28—-12 g habitat treatments evidenced the existence of the resonant
and attenuant 2-cycles.
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Appendix A

In Example 2, denote the inherent cycles by
L(0)
P(0)
0 <x8(0)> _| \ao

o\ 3 L(D)
P(1)
A1)

Then

L(0)=1621, P(0) = 0.00001020 A(0) = 2428,
L(1)=0.00001283 P(1) = 1288, A(l) = 2185.

Thus,Fy(t) =
—celbA(t) eXp(—celL(F) — cead(?)) 0 (1 — ceaA (1)) b XP(—celL(1) — ceaA(t))
11— 0 0 )
0 exp(—cpaA(t)) —cpal ()EXp(—cpaA(t)) + 1 — ua
and

v (—FX(O) | )
I —F (D)

(celL(7) + ceal (1))DA(1) €XP(—CelL(7) — Cea(?))
F,(t) = diag 0

o_ (PO o
0 F@m)/’

(1] (—n*
1|p@—-i) (-1
1 (—n*
1 (_1)371'
1(B8@—i) (—1)3
1 (_1)34
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([I — F()F,(0)] ¢ 0 )
M = ,
0 [l — Fe(0)Fy (D] 72

PZ(@@) | )
I Fy(0)

By Eq. (11) and the program Maple,

—1622
3.700x 1074
0 u%(0) —2428
v <u0(1)> ~ | aes6x 104\ |
—1288
—2185

and

1622
—3.700x 104

Ao (ulﬂJ) _ 2428
u*(0) _4.656% 104

1288

2185

Hence
—-1622

3.700x 104
0 u%(0) —2428

) (u%b)zz 4.656 x 1074\ |’
—1288
—2185

—4.656x 1074
1288

AR O) 2185

- (uldJ) B 1622

—3.700x 10°4
2428
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