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Summary

1.

 

In this journal 35 years ago, P. H. Leslie, T. Park and D. B. Mertz reported compet-
itive exclusion data for two 

 

Tribolium

 

 species. It is less well-known that they also
reported ‘difficult to interpret’ coexistence data. We suggest that the species exclusion
and the species coexistence are consequences of a stable coexistence two-cycle in the
presence of two stable competitive exclusion equilibria.

 

2.

 

A stage-structured insect population model for two interacting species forecasts that
as interspecific interaction is increased there occurs a sequence of dynamic changes
(bifurcations) in which the classic Lotka–Volterra-type scenario with two stable
competitive exclusion equilibria is altered abruptly to a novel scenario with three locally
stable entities; namely, two competitive exclusion equilibria and a stable coexistence
cycle. This scenario is novel in that it predicts the competitive coexistence of two nearly
identical species on a single limiting resource and does so under circumstances of
increased interspecific competition. This prediction is in contradiction to classical tenets
of competition theory.
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Introduction

 

Thomas Park (1948) deliberately chose two closely
related species, 

 

Tribolium confusum

 

 Duval and 

 

Tribo-
lium castaneum

 

 Herbst, for his long-term study of
interspecies competition. Park found support for using
related species in a comment by Darwin (1859: Chapter
III), ‘As the species of the same genus usually have,
though by no means invariably, much similarity in
habitats and constitution, and always in structure,
the struggle will generally be more severe between them,
if  they come into competition with each other, than
between the species of distinct genera.’ In three differ-
ent experiments Park (1948, 1954, 1957) found that one
of the two species always became extinct.

During the years following Park’s experiments, when
the theories of competitive exclusion and ecological

niche were being debated, many researchers studied
Park’s 1954 data carefully (Costantino & Desharnais
1991). The main conclusion from these studies was that
Park’s experimental results supported the tenet that
two nearly identical species cannot coexist on a single
limiting resource. In these studies the beetle experi-
ments were interpreted in terms of the classical Lotka–
Volterra scenario in which the coexistence equilibrium
is unstable and two competitive exclusion equilibria are
stable. In this scenario one or the other species survives,
depending on initial population numbers, and coexist-
ence is not possible. As a result of this interpretation,
the beetle competition experiments (Park 1948, 1954,
1957) have often been invoked in support of the funda-
mental principles of competitive exclusion, limiting
similarity and ecological niche (Gause 1934; Cole
1960; Hardin 1960; May 1974).

Park was not completely convinced, however, that

 

Tribolium

 

 species could not coexist. He wrote (Park
1957: 35), ‘The general conclusion is that these two spe-
cies, rather similar to each other in their ecology, do not
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coexist when exploiting a shared habitat in the labor-
atory … This, now rather hoary, conclusion runs the risk
of becoming dogma. Indeed, it would be quite an excit-
ing counterirritant if  exceptions, derived from careful
study and meaningful design, could be found.’ Park
continued his study of this question in a later experi-
ment. Eight genetic strains were developed to further
examine competition. Following very extensive com-
petition experiments with these genetic strains Park,
Leslie & Mertz (1964: 150) wrote, ‘It is true that one
species always excluded the other when these particular
strains were competing together. But, if  we accept the
logical consequences of the way two species may be
interrelated in terms of the model, it would follow that
other strains of the two 

 

Tribolium

 

 might in time be found,
which would exhibit the phenomenon of coexistence of
both species in a competitive system. Theoretically speak-
ing, the so called Gause’s Principle does not necessarily
hold in all possible cases.’ It is clear that Park was still
not convinced that coexistence was unattainable.

Park’s final experiment (Leslie, Park & Mertz 1968),
concluding a 20-year programme on species competi-
tion, can be summarized as follows: in 24 of a total of
25 mixed species cultures one or the other of the species
went extinct. There was, however, a glaring exception.
In one culture the two species coexisted for 960 days
(over 30 generations). From a theoretical viewpoint,
the outcome of the experiment is consistent with a sys-
tem in which there is stable coexistence together with
two stable, competitive exclusion equilibria, i.e. some
initial conditions lead to the extinction of 

 

T. castaneum

 

,
other initial conditions to the extinction of 

 

T. confusum

 

and still others lead to species coexistence. In the con-
text of the classical two-species Lotka–Volterra model
this dynamic scenario is not possible. Leslie 

 

et al

 

.
(1968) were unable to explain these observations satis-
factorily and concluded, seemingly reluctantly, that
coexistence was not observed. We would like to suggest
another hypothesis to explain these data 

 

−

 

 a hypothesis
that includes the coexistence of the two beetle species.

Our paper is organized as follows. We begin with a
review of the experimental protocol and the results of
the competition experiment conducted by Leslie 

 

et al

 

.
(1968). The time–series data of the culture in which the
two 

 

Tribolium

 

 species coexisted for 960 days will be the
central focus of  our analysis. Next we describe how
a well-validated discrete, non-linear stage-structured
model for flour beetles (Cushing 

 

et al

 

. 2003) can be
extended to include two interacting species (Edmunds
2001). From this two-species model we will establish
a multiple attractor, coexistence hypothesis of non-
Lotka–Volterra type. Finally, using this hypothesis, we
will propose an explanation of both species exclusion
and species coexistence observed by Leslie 

 

et al

 

. (1968).

 

‒‒ 

 

We state briefly the laboratory protocol of the Leslie

 

et al

 

. (1968) experiment. Full details are given in the

original publication. Populations initiated in all com-
binations of 0, 4, 8, 16, 32 and 64 adults of 

 

T. castaneum

 

cIV-a and 

 

T. confusum

 

 bI were cultured in shell vials
with 8 g of standard medium and maintained in an
incubator at 29 

 

°

 

C, 70% relative humidity. The popu-
lations were censused at 30-day intervals at which time
the medium was changed. Only the adult stage was
counted. All life stages (eggs, larvae, pupae and adults)
were returned to fresh medium. The experiment ended
after the census taken on day 960.

The time–series data of the ‘coexistence’ culture,
which was initiated with four adults of 

 

T. castaneum

 

and 32 adults of 

 

T. confusum

 

, are given in the top panel
of Fig. 1. The time–series data for a culture started with
eight adults of 

 

T. castaneum

 

 and 64 adults of 

 

T. con-
fusum

 

 are given in the bottom panel. We quote the
description of these data (referred to as systems A and
B) given by Leslie 

 

et al

 

. (1968: 18):

The initial rise in adult numbers of both species was
followed as usual by a gradual fall until, by day 270,
there were less than 10 adult cIV-a surviving, com-
pared with more than 100 adult bI. At this point, one
might have expected the numbers of cIV-a to con-
tinue to decrease until this species became extinct.
This expected elimination of 

 

T. castaneum

 

 occurred
on day 510 in systems B and C; but the subsequent
course of events after day 270 in system A was very
different.

Instead of disappearing, the numbers of adult cIV-a
remained at a fairly steady level of some 10–21 indi-
viduals for nearly a year, between days 330 and 660,
during which the numbers of bI slowly decreased from
120 to 55 adult individuals. At this point it appeared
as though the latter strain would gradually be elimi-
nated, although its adult age-groups were probably
still being recruited by a certain number of emergences
from the pupal stage, as indicated by the continued
presence of small numbers of ‘callow’ bI dead. The
events after day 660, however, were rather difficult to
interpret. During this last period of nearly a year in
the history of this system, there were two sudden rises
in the adult numbers of both species, which occurred
more or less simultaneously, the peak numbers in
both cases being reached on days 720 and 870. Given
the known voracious cannibalism of this 

 

T. castaneum

 

strain, the effect of which had been so manifest in the
other systems in this experiment, it was difficult to
understand why these sudden rises in adult numbers
of bI should have occurred at times when the num-
bers of 

 

T. castaneum

 

 seemed sufficiently high to pre-
vent any such relatively massive recruitments of the
adult bI population from taking place.

To study these data Leslie 

 

et al

 

. (1968) used a discrete-
time stochastic model for two species proposed a
decade earlier by Leslie & Gower (1958). The deter-
ministic model,
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where 

 

N

 

t

 

 and 

 

M

 

t

 

 are the number of adults of species 1
and 2 at time 

 

t

 

, respectively, and 

 

λ

 

1

 

, 

 

λ

 

2

 

, 

 

α

 

1

 

, 

 

α

 

2

 

, 

 

β

 

1

 

, 

 

β

 

2

 

 are
positive constants, provides theoretical predictions for
the long-term outcome of the competitive interaction.
This ‘Leslie–Gower model’, all of whose orbits asymp-
totically approach an equilibrium, provides (when 

 

λ

 

1

 

and 

 

λ

 

2

 

 > 1) only three dynamic scenarios, the same
three possibilities associated with the well-known
Lotka–Volterra competition model. If  interspecies
competition is sufficiently strong (

 

β

 

1

 

 > 

 

α

 

2

 

(

 

λ

 

1

 

 − 

 

1) / (

 

λ

 

2

 

 − 

 

1)
and 

 

β

 

2

 

 > 

 

α

 

1

 

(

 

λ

 

2

 

 − 

 

1)/(

 

λ

 

1

 

 − 

 

1)), then orbits approach an
equilibrium in which one species is absent. The later

case occurs in two fundamentally different ways that
depend on the values of the model parameters: either
all initial states of  the two populations approach
asymptotically the same competitive exclusion equi-
librium (so that the same species is always eliminated)
or the final competitive exclusion state depends on the
initial states (so that which species is eliminated depends
on the initial states). The second case is distinguished
by the existence of  a coexistence equilibrium which,
however, is unstable. This equilibrium is a ‘saddle’ and
there is a one-dimensional ‘stable manifold’ of orbits
that approach it. This manifold forms a boundary
that separates initial conditions that approach the different
competitive exclusion equilibria. The third possibility
occurs when interspecies competition is sufficiently
weak (

 

β

 

1

 

 < 

 

α

 

2

 

(

 

λ

 

1

 

 − 

 

1) / (

 

λ

 

2

 

 − 

 

1) and 

 

β

 

2

 

 < 

 

α

 

1

 

(

 

λ

 

2

 

 − 

 

1) /
(

 

λ

 

1

 

 − 

 

1)) and all initial states approach a coexistence
equilibrium in which both species are present.
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Fig. 1. Adult time–series for two cultures in the Leslie et al. (1968) experiment. In the top panel a culture started with four adults
of T. castaneum strain cIV-a (circles) and 32 adults of T. confusum strain bI (triangles). In the bottom panel a culture started with
eight adults of T. castaneum strain cIV-a (circles) and 64 adults of T. confusum strain bI (triangles).



 

706

 

J. Edmunds 

 

et al.

 

© 2003 British 
Ecological Society, 

 

Journal of Animal 
Ecology

 

, 

 

72

 

,
703–712

 

With parameters estimated from the data, the
Leslie–Gower model predicts an unstable coexistence
(saddle) equilibrium (Leslie 

 

et al

 

. 1968: 11). Thus, some
initial conditions lead to the extinction of 

 

T. castaneum

 

and others to the extinction of 

 

T. confusum

 

. As a result,
the model does not provide an explanation for the
possible species coexistence observed in Fig. 1.

Leslie 

 

et al

 

. (1968: 23) fully appreciated not only the
role of models in their ecological research but also the
powerful future role of connecting data to biologically
based mathematical models:

Despite the simplicity of the assumptions involved,
the model has proved an invaluable interpretative
aid and has even been predictive over a wide range
of 

 

Tribolium

 

 experiments involving different genetic
strains which possess differing competitive mecha-
nisms. We do not understand why the model should
be so successful but the fact of our success suggests
that experimentally we are dealing with a set of
interlocking biological mechanisms, nearly all of
which are reconcilable (at least as a first approxima-
tion) with the structure and resulting properties
of the model itself. We consider that this wedding
of theory with fact has added a new, though pre-
liminary, dimension to the understanding of ecolog-
ical phenomena; and we believe that this type of
approach will prove to be even more rewarding in the
future.

We continue in the tradition set by Leslie, Park and
Mertz with the introduction of a new two-species
model applied to 

 

Tribolium

 

.

 

 

 

T R I B O L I U M

 

 

 

The Leslie–Gower model has several shortcomings for
describing the interaction between two species of 

 

Tri-
bolium

 

. In the experiment only the adults of each species
were counted, so a model with only adults seemed to
them to be an asset; nevertheless, the model formulation
does not identify specifically the important interspecific
and intraspecific interactions occurring among the dif-
ferent life stages. Because the primary source of inter-
action in these species is cannibalism of eggs by larvae
and adults and of pupae by adults, an effective model
must consider the individual life stages as separate
entities. However, cannibalism was not acknowledged
fully as the primary mechanism responsible for the
species interaction in 

 

Tribolium

 

 until 1970 (Park 

 

et al

 

.
1970). Another limitation of the Leslie–Gower formulation
is that the long-term behaviour of  the population
will always be an equilibrium state, whether or not the
species coexist. In fact, 

 

Tribolium

 

 populations often
oscillate. As discussed above, the dynamic possibil-
ities provided by the Leslie–Gower model are identical
to those of the Lotka–Volterra model.

The LPA model is a system of three discrete time dif-
ference equations that relate the numbers of larvae,

pupae and adults at time 

 

t

 

 to the numbers in these
stage-classes at time 

 

t +

 

 1:

Here 

 

L

 

t

 

, 

 

P

 

t

 

 and 

 

A

 

t

 

 are, respectively, the number of feed-
ing larvae, the number of non-feeding larvae, pupae
and callow adults, and the number of sexually mature
adults at time 

 

t

 

. The unit of time is 2 weeks, which is the
approximate amount of time spent in each of the 

 

L

 

 and

 

P

 

 classes under experimental conditions. 

 

B >

 

 0 is the
average number of larvae recruited per adult per unit
time in the absence of cannibalism, and the fractions 

 

µ

 

A

 

and 

 

µ

 

L

 

 are the adult and larval probabilities of dying
from causes other than cannibalism in one time unit.
The exponentials represent the fractions of individuals
surviving cannibalism one unit of time, with ‘cannibal-
ism coefficients’ 

 

c

 

EL

 

/V, cEA/V, cPA/V > 0. Habitat size V
has units equal to the volume occupied by 20 g of
flour, the amount of  medium routinely used in our
laboratory.

The LPA model has explained and predicted suc-
cessfully non-linear phenomena in a variety of con-
texts, including transitions between dynamic regimes
(Dennis et al. 1995, 1997, 2001; Costantino et al.
1997), multiple attractors and resonance (Costantino
et al. 1998; Henson et al. 2002), phase switching
(Henson et al. 1998), saddle influences (Cushing et al.
1998), the use of small perturbations to control insect
outbreaks (Desharnais et al. 2001), and lattice effects
(Henson et al. 2001; King et al. 2002). Several aspects
of this research are described in Cushing et al. (2003).

The two-species deterministic competition LPA
model is a direct extension of the single species model:

For notational convenience, ‘species one’ is rep-
resented by lower-case letters, while ‘species two’ is
represented by upper-case letters. Each species has its
own larval recruitment and death rates, and in addition
to the intraspecific non-linearities there are non-linear
interactions between the two species. Each species
preys on the eggs and pupae of the other species, as well
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as cannibalizing its own. For example, the coefficient ceL

represents the consumption of species 1’s eggs by the larvae
of species 2, cEl represents the consumption of species
2’s eggs by the larvae of species 1, and cel and cEL are the
intraspecific cannibalism coefficients. The other canni-
balism coefficients are interpreted in similar fashion.
The model has 12 competition coefficients in all: six
intraspecific coefficients and six interspecific coefficients.

Results

 

We want to emphasize that the parameter values we use
are consistent with the biology of the flour beetle; how-
ever, we did not fit the LPA model statistically to the
adult time–series data reported by Leslie et al. (1968).
Indeed, those data are inadequate for that purpose.
Our interest is to examine the dynamics of one of Park’s
classic Tribolium experiments using the two-species
LPA model with biologically reasonable parameters.
We let ‘species 1’ (represented by lower-case letters) be
T. confusum and ‘species 2’ (given by upper-case letters)
be T. castaneum.

In the experiment reported by Leslie et al. (1968), the
habitat size was 8 g. Because the habitat size V in the
LPA model is expressed in units equal to the volume
occupied by 20 g of standard medium, we set V = 8/
20 = 0·4. For the other parameter values we use rounded
values in the range of the parameters estimated from
recent laboratory experiments with T. castaneum cul-
tured in a 20-g habitat (Dennis et al. 2001): b = B = 10,
µl = µL = 0·2, µa = µA = 0·02, cel = cEL = cEl = ceL =
0·01, cea = cEA = cEa = ceA = 0·01. With these parameter
values, a positive equilibrium exists when interspecific
competition represented by cPa and cpA is less than
intraspecific competition represented by cpa and cPA

(Edmunds 2001). Inequalities such as cPa < cpA < cpa < cPA

are sufficient (but not necessary). We use the para-
meters cPa = 0·005, cpA = 0·008, cpa = 0·01 and cPA = 0·012.

 

The bifurcation diagram presented in Fig. 2 is a sum-
mary of the dynamics of the two species system as the
interspecific coefficients ceL and cEl change simultane-
ously from 0·016 to 0·032 with all other parameters
held constant. There are five distinct regions in the fig-
ure which we denote by the letters A, B, C, D and E. We
now discuss the general dynamic features of each
region. The graphs in Fig. 3 present projected phase
space depictions of representative model orbits in each
of the five different regions.

Regions A and B contain classical Lotka–Volterra
dynamic scenarios. In region A there is a globally
attracting coexistence equilibrium. In region B there is
a globally stable competitive exclusion equilibrium,
implying persistence of T. castaneum and the extinction
of T. confusum.

In region C there is a stable positive equilibrium
which exists in the presence of a stable exclusion equi-
librium. This is an unusual, non-Lotka–Volterra sce-
nario. However, these dynamics exist for only a small
range of parameters. Certain initial conditions for which
T. confusum has a significant advantage result in coex-
istence. Other initial conditions lead to the extinction
of T. confusum and an equilibrium for T. castaneum.

In region D there are two competitive exclusion
equilibria, with some initial conditions leading to the
extinction of T. confusum and others leading to the
extinction of  T. castaneum. The coexistence equi-
librium is an unstable saddle. This is a classical
Lotka–Volterra outcome and was the hypothesis used by
Leslie et al. (1968: 11) to explain the outcomes of their
experiment.

In region E there is a stable, positive two-cycle with a
large basin of attraction, which exists in the presence of
two stable competitive exclusion equilibria. Certain
initial conditions for which one species has a large
advantage result in the extinction of the other; initial
conditions with roughly equal numbers of each species
result in two-cycle coexistence. This multiple attractor
mix of initial state-dependent coexistence and com-
petitive exclusion is a non-Lotka–Volterra scenario.
This unexpected prediction of the competition LPA
model is robust both in the sense that the set of initial
conditions that lead to coexistence is large and that
the dynamics in region E persist for arbitrarily large
values of ceL = cEl.

Although region D displays the familiar Lotka–
Volterra dynamics described above, there is a fascinat-
ing non-linear dynamic phenomenon which occurs in
this region. The presence of stable two-cycle coexist-
ence attractor for slightly higher values of ceL = cEl (in
region E) has the effect of  causing long transient
coexistence in region D before eventual extinction.

     
  

The original interpretation of the Leslie experiment
was based on the Leslie–Gower model. We are suggest-
ing an alternative interpretation for these data based
on the competition LPA model. Interestingly, in some
circumstances the models have remarkably similar
dynamic properties, while in other circumstances they
can have significant differences. Our interpretation of
the Tribolium data leans on both the similarities and
the differences. First, we point out a similarity. The
LPA model (in region D) and the Leslie–Gower model
(as parameterized in Leslie et al. 1968) forecast the
same long-term outcome for each of the 25 mixed spe-
cies cultures: species exclusion. Moreover, both models
are in agreement with each other and with the experi-
mental observations (see Table 3 in Leslie et al. 1968)
as to which species is excluded (see Fig. 3, Region D).
Secondly, we point out a model difference. A property of
the LPA model, which is not a feature of the Leslie–Gower
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formulation, is that an increase in interspecific
interaction can result in a stable coexistence two-cycle.
Beyond the grasp of the Leslie–Gower model but well
within the context of the Leslie experiment we discover
that coexistence in Tribolium is possible.

Our hypothesis for the explanation of the Leslie
experiment and, in particular, the time–series data in
the top panel of Fig. 1 is as follows. In the context of the
competition LPA model, we interpret the Leslie experi-
ment in terms of the dynamics forecast by region D of
the bifurcation diagram given in Fig. 2. Leslie et al.
state that change of some sort may have occurred in the
‘coexistence’ culture during the nearly 3-year experi-
ment. In a discussion of the type of competitive system
between T. confusum bI and T. castaneum cIV-a (Leslie
et al. 1968: 11), we find the statement: ‘It was quickly
apparent from an analysis of the adult numbers at the
time of the second census on day 60, that a change had

occurred in the strain bI and that it now had, relatively
speaking, a much greater “effect”, presumably by way
of cannibalistic powers, on cIV than it possessed ori-
ginally.’ Consistent with the latter statement (although
far from definitive proof), we speculate that a small
increase in interspecific competition occurred such that
the ‘coexistence’ culture moved from region D into the
neighbouring region E where there is model-predicted
coexistence.

We now turn to the data. In Table 7 of Leslie et al.
(1968), the adult census histories of three cultures are
given: the ‘coexistence’ culture started with 4 cIV-a
adults and 32 bI adults, a culture started with 8 cIV-a
adults and 64 bI adults, and a culture started with 4
cIV-a adults and 64 bI adults. These data are presented
on the left-hand side of Fig. 4. Even in the laboratory,
noise is common to all ecological systems. Conse-
quently, we used a stochastic version of the competition

Fig. 2. The bifurcation diagram shows the dynamic behaviour of the two-species LPA model as ceL and cEl change simultaneously
from 0·016 to 0·032. The five regions are denoted by the letters A, B, C, D and E. The solid lines indicate stable equilibria and stable
cycles. The broken lines identify unstable equilibria and unstable cycles. See text and Fig. 3 for further details.
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Fig. 3. Phase space graphs of representative deterministic LPA model orbits for the regions A, B, C, D and E given in Fig. 2. Region A, ceL = cEl = 0·018:
classical Lotka–Volterra type dynamics with a globally attracting equilibrium; all positive initial conditions result in equilibrium coexistence. Region B,
ceL = cEl = 0·022: classical Lotka–Volterra type dynamics with a globally attracting axis equilibrium; all positive initial conditions result in the extinction
of T. confusum and an equilibrium state for T. castaneum. Region C, ceL = cEl = 0·0244: non-classical Lotka–Volterra-type dynamics. A saddle node
bifurcation gives rise to a stable coexistence equilibrium which exists in the presence of a stable axis equilibrium. Some initial conditions result in
coexistence, while others lead to the extinction of T. confusum and an equilibrium state for T. castaneum. Region D, ceL = cEl = 0·028: classical Lotka–
Volterra-type dynamics with two stable axis equilibria and an unstable coexistence equilibrium. Together with Leslie et al. (1968), we use this hypothesis
to explain the outcomes of their 1968 experiment. The basin boundary separates initial conditions which result in the extinction of T. castaneum from those
which result in the extinction of T. confusum. Asterisks denote those initial conditions used in the 1968 Leslie experiment. Region E, ceL = cEl = 0·032: non-
classical Lotka–Volterra dynamics. A saddle-node bifurcation of the composite map gives rise to a stable, positive two-cycle with a large basin of attraction,
which exists in the presence of stable equilibria on both axes. We place the ‘coexistence culture’ (bI = 32, cIV-a = 4) in this region.

LPA model to obtain model predicted time–series.
The stochastic version of the model adds random noise
on a square root scale (Dennis et al. 2001; Cushing
et al. 2003). On the right-hand side of Fig. 4 are rep-
resentative stochastic model orbits corresponding to
each of the observed adult census histories. In each
case, there is a stunning degree of similarity between
the data and the corresponding stochastic simulation.
The introduction of stochastic population models was
an important contribution to ecology by Park and
colleagues (Simberloff  1980). Stochastic population
models continue to enhance our understanding of
ecological dynamics. Stochasticity incorporated as an
integral component of the model provides explana-
tions of patterns appearing in data that are not
explained by either deterministic or stochastic forces
alone (Bjornstad & Grenfell 2001; Benton et al. 2002;
Cushing et al. 2003).

Discussion

The implications of the famous Lotka–Volterra com-
petition model have played a large role in ecological
theory and practice. The principle of competitive
exclusion (Hardin 1960; Grover 1997) was formulated
to a large extent from this and other mathematical
models of competition that predict the coexistence of
no more than one species on one limiting resource
(Smith & Waltman 1995). Mathematicians, however,
have known of theoretical exceptions to this principle
for many years. The classical Lotka–Volterra type
competition models incorporate several homogeneity
assumptions that greatly limit the possible competitive
outcomes. These include the assumptions that popula-
tions live in a homogeneous habitat under constant
temporal conditions and consist of identical individuals.
The limited number of Lotka–Volterra competition
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scenarios allow (asymptotically) only equilibrium
dynamics and, when interspecific competition is suffi-
ciently severe, only one surviving species. An example is
the Leslie–Gower model that was applied to the his-
toric Tribolium experiments of  Park. Under more
general assumptions, however, the outcomes predicted
by theoretical competition models are not always so
limited and do not necessarily support the classical
competitive exclusion principle (Koch 1974; McGehee
& Armstrong 1977; Levins 1979; Cushing 1980; de
Mottoni & Schiaffino 1981; Cushing 1983; Waltman
1983; Cushing & Saleem 1984; Namba 1984; Chesson

1985; Cushing 1986; Namba 1986; Freedman et al. 1989;
Crowe 1991; Namba & Takahashi 1993; Loreau
& Ebenhoh 1994; Smith & Waltman 1995; Cushing
1998; Huisman & Weissing 1999, 2001; Li 2001). These
theoretical results are not known widely to ecologists,
perhaps because they have never been tied to any specific
biological examples or data. Unlike the competition
LPA model, however, we know of no theoretical model
that predicts the simultaneous occurrence of both
coexistence and exclusion attractors.

A notable feature of the theoretical models that con-
tradict the classical competitive exclusion principle is

Fig. 4. Data and stochastic model simulations. Three observed adult time–series data are presented on the left hand side: (a) the
‘coexistence’ culture started with 4 cIV-a adults (circles) and 32 bI adults (triangles); (b) a culture started with 8 cIV-a adults and
64 bI adults in which cIV-a went extinct at day 510; and (c) a culture stated with 4 cIV-a adults and 64 bI adults in which cIV-a
went extinct at day 510. On the right-hand side of the figure are representative stochastic model orbits with the same initial
conditions as in the experimental cultures; (d) ceL = cEl = 0·031, region E in Fig. 2; (e) ceL = cEl = 0·028, region D in Fig. 2;
(f ) ceL = cEl = 0·028, region D in Fig. 2.
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that they allow for non-equilibrium coexistence. As we
have seen in this paper, the competition LPA model is
an example that permits the coexistence of two species
in periodically oscillating states. Moreover, in the cir-
cumstances investigated in this paper, the competition
LPA model predicts oscillatory coexistence when inter-
specific competition is sufficiently strong. This is an
unexpected result from the viewpoint of  classical
competition theory, which is founded on the opposite
notion, namely that competitive exclusion occurs when
interspecific competition is strong. Recently, in a con-
sumer/resource model, Vandermeer et al. (2002) also
show the counterintuitive result that increased com-
petition can promote species coexistence. Their model
involves an entirely different ecological scenario
from that of the competition LPA model and entails
increased competition by means of an increase in the
number of competing species present in an ecological
system.

It is intriguing that Park’s competition experiments,
although cited widely for over half  a century as evid-
ence of  competitive exclusion, may include evidence
of its failure. The competition LPA model provides an
explanation for the ‘difficult to interpret’ Tribolium
data reported by Leslie et al. (1968) that could not
be obtained by these authors using Lotka–Volterra
dynamics. The LPA model does this by allowing for the
simultaneous occurrence of coexistence and exclusion
attractors, specifically in this case, two competitive
exclusion equilibria and a coexistence two-cycle. With
a Lotka–Volterra mindset, Leslie et al. (1968) could
not explain coexistence in the presence of two empiric-
ally observed exclusion equilibria.

The experimental data from Park’s experiments
cannot be tied to the competition LPA model with the
rigour that this model has been tied to recent (single
species) Tribolium experiments (Dennis et al. 1995;
Dennis et al. 2001; Cushing et al. 2003). We do not
have all of Park’s data; moreover, he did not census lar-
val and pupal stages and he did not census on the time
scale of the LPA model. None the less, we can say that
competitive coexistence is predicted by the LPA com-
petition model for parameter values very near those
estimated in recent experiments. We plan to design and
implement experiments with two species of Tribolium
in an effort to investigate the coexistence predicted by
the LPA model in more detail. Should this contradic-
tion to the classical principle of competitive exclusion
be documented further by future experiments, a natural
question arises regarding the nature of  biological
mechanisms and interactions that occur when two very
similar species coexist in an oscillatory fashion. That is
to say, is there some biological explanation for ‘how’
two such species manage coexistence in this way? One
possible hint lies in the LPA model predictions them-
selves. The model predicted coexistence two-cycles do
not oscillate out of phase (which, had they done so,
might have suggested a kind of temporal sharing of
their niche). Instead, the life-cycle stages oscillate in

phase, which in effect decreases the interactions among
the cannibalistic (adult and larval) stages and the egg
and pupal stages. This reduces the ‘amount’ of inter-
specific competition on the victim stages. Counterintu-
itively, in order to establish the oscillations necessary
for this synchronization of the life-cycle stages, the
competitive ‘intensity’ of the interspecific cannibalism
must be sufficiently strong (i.e. the per adult or larva
cannibalism rates sufficiently high). It remains to be
seen whether this particular mechanism will provide an
explanation for coexistence in Tribolium, or whether
some other explanation will surface. Nevertheless,
we see from this example that the kinds of biological
factors ignored by the Lotka–Volterra theory allow a
rich variety of competitive scenarios and provide oppor-
tunities for species coexistence and ecological diversity.
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