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Mathematically, chaotic dynamics are not devoid of order but
display episodes of near-cyclic temporal patterns. This is illustrated,
in interesting ways, in the case of chaotic biological populations.
Despite the individual nature of organisms and the noisy nature of
biological time series, subtle temporal patterns have been de-
tected. By using data drawn from chaotic insect populations, we
show quantitatively that chaos manifests itself as a tapestry of
identifiable and predictable patterns woven together by stochas-
ticity. We show too that the mixture of patterns an experimentalist
can expect to see depends on the scale of the system under study.

The concept of chaos, i.e., that simple deterministic rules can
produce complex fluctuations that look stochastic, has fas-

cinated scientists for decades. The suggestion of May (1), that
simple deterministic rules might explain the complex fluctua-
tions observed in animal abundances, led to an intense search for
chaos in extant population data (2–11). The results have been
suggestive but equivocal (7, 12–19), and May’s hypothesis re-
mains the subject of lively debate (20–22). Taking a different
approach, Costantino and coworkers (23–25) induced chaos in
laboratory insect populations. These chaotic cultures were main-
tained for �8 years (�70 generations). The resulting long time
series afford a unique opportunity to study how chaos is actually
expressed in population data (21, 26) and, more generally, to
develop better methods of teasing out the deterministic com-
ponents of natural population fluctuations.

In a pair of pioneering contributions, Schaffer and coworkers
(27, 28) drew attention to the fact that chaotic dynamics display
episodes of predictable cyclic patterns and that this feature
distinguishes them from purely stochastic dynamics. Neverthe-
less, the perception persists that the inclusion of stochasticity in
chaotic models invariably ‘‘washes out’’ such fine detail (see
chapter 3 in ref. 29). In this work, we show to the contrary that
stochasticity in fact may help to reveal underlying deterministic
patterns and, in particular, that subtle temporal patterns asso-
ciated with deterministic chaos can indeed make themselves
manifest. Our study of these data illustrates that, when influ-
enced by deterministic chaos, biological population fluctuations
can be expected to display a tapestry of identifiable and pre-
dictable near-cyclic patterns woven together by stochasticity.

The experiments that documented chaos in laboratory popu-
lations were guided by a discrete-time, continuous-state, stage-
structured population model, the so-called larva, pupa, adult
(LPA) model (Eq. 1). Manipulation of a demographic parameter
induced a sequence of model-predicted dynamic transitions
(bifurcations) including a transition to chaos. These studies
revealed that, in biological population data, the signal of deter-
ministic chaos is modulated in two important ways. First, the
discreteness of individual organisms creates recurrent patterns
(termed lattice effects), the structure of which depends on the
granularity of system states (30, 31). Second, because births and
deaths do not conform to a rigid schedule, variability in the
timing of these events, otherwise known as demographic sto-
chasticity, is present in even the most carefully controlled
experiments (24). To take account of the discreteness of indi-

viduals, we formulated the deterministic discrete-state (or lat-
tice) LPA model (Eq. 2). To account for demographic stochas-
ticity, we formulated a stochastic discrete-state LPA model
(Eq. 3).

Deterministically chaotic systems vary over a continuum of
system states and display intricate transient temporal structures.
These structures are associated with cycles of saddle stability-
type, which cause near-cyclic patterns to recur in time series (27,
28, 30, 32–39). When system states are discretized, as in Eq. 2,
the chaotic attractor, in general, is broken into multiple cycles
with patchy basins of attraction. Fluctuations are cyclic, with
periods dependent on initial conditions (40, 41). If stochasticity
is introduced into such a system, as in Eq. 3, the system
episodically visits each of the cycles, weaving them together in
such a way as to recover the signal of the chaotic dynamics. This
is the analogue of chaos in a noisy discrete-state system.

Models and Predicted Cycles
The continuous-state deterministic LPA model is

Lt�1 � bAt exp��
cea

V
At �

cel

V
Lt�,

Pt�1 � (1 � �l)Lt, [1]

At�1 � Pt exp��
cpa

V
At� � (1 � �a)At.

Here Lt, Pt, and At are the number of feeding larvae at time t, the
number of nonfeeding larvae, pupae, and callow adults at time
t, and the number of sexually mature adults at time t, respectively.
The unit of time is 2 weeks, the approximate amount of time
spent in each of the L and P classes under our experimental
conditions. b � 0 is the average number of larvae recruited per
adult per unit time in the absence of cannibalism, and the
fractions �a and �l are the adult and larval probabilities,
respectively, of dying from causes other than cannibalism in one
time unit. The exponentials represent the fractions of individuals
surviving cannibalism one unit of time, with ‘‘cannibalism
coefficients’’ cea�V, cel�V, and cpa�V � 0. Habitat size V has units
equal to the volume occupied by 20 g of flour, the amount of
medium routinely used in our laboratory.

In the experiment to document chaos (see Appendix), the
parameters �a and cpa were manipulated by means of the
necessarily integerized equation

At�1 � round�Pt exp��
cpa

V
At�� � round[(1 � �a)At],

Abbreviations: LPA, larva, pupa, adult; LMC, lag-metric comparison.
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where ‘‘round’’ denotes the operation of rounding to the nearest
integer (0.5 rounded up). Thus, one possible deterministic
discrete-state model for the experiment in question, and the one
we used, is

Lt�1 � round�bAt exp��
cea

V
At �

cel

V
Lt��,

Pt�1 � round[(1 � �l)Lt], [2]

At�1 � round�Pt exp��
cpa

V
At�� � round[(1 � �a)At].

The stochastic discrete-state model used here is

Lt�1 � round���bAt exp��
cea

V
At �

cel

V
Lt� � E1t�2�,

Pt�1 � round�(�(1 � �l�Lt � E2t)2], [3]

At�1 � round�Pt exp��
cpa

V
At�� � round[(1 � �a)At],

where E1t and E2t are normal random variables with mean zero
and variance–covariance matrix �. Parameter values are given in
Appendix. In simulations, when a large negative Eit causes a
negative value inside a square, we set the right-hand side of that
equation equal to zero.

In the continuous-state LPA model (Eq. 1), the dynamics are
chaotic and strongly influenced by a saddle-cycle of period 11
(35) (Fig. 1). In the discrete-state LPA model (Eq. 2), all
trajectories are eventually periodic, and in fact each trajectory
quickly settles onto one of precisely nine periodic orbits. How-
ever, these nine orbits fall into three groups of different peri-
odicity: 3-cycles, 6-cycles, and 8-cycles. Furthermore, the orbits
within each group lie near one another on the lattice, differing
from one another by 	30 animals. To clarify the presentation,
we chose one representative cycle from each group (Fig. 1). We
set out to determine whether these model-predicted temporal
patterns were distinguishable in experimental data.

Pattern Identification
Because the continuous- and discrete-state deterministic models
are intimately related, it is not surprising to find that the patterns
predicted by the two models have much in common (see Fig. 1).
To identify model-predicted cycles in either experimental or
simulated data, we used a method we call the lag-metric com-
parison (LMC). Heuristically, the LMC quantifies the distance
(in three-dimensional state space) from a data orbit to a
model-predicted periodic orbit of period T, or T-cycle. A precise
definition of the LMC is given in Appendix.

Pattern identification is aided by means of a plot of LMC vs.
time as a braid with one strand for each phase. A low LMC value
is an indication that the data lie close to the model-predicted
cycle and have done so over the course of the preceding T time
units. On the other hand, a high LMC value indicates poor
correspondence between the data and the model cycle. For
example, in Fig. 2B the data are compared with the model
11-cycle. The LMC for each phase of the 11-cycle is given over
the 424-week length of the data. The LMC values range from 0
(which indicates an exact match between the model-predicted
11-cycle and an observed length-11 segment of the data) to 300
(which indicates that the observed length-11 segment is an
average of 300 animals from the model-predicted 11-cycle).

In the LMC plot, time intervals over the course of which the
data resemble the model-predicted cycle (‘‘cycle episodes,’’ for
short) are clearly indicated by corresponding unplaited portions
of the braid. Over these intervals, one strand, corresponding to

a particular phase of the T-cycle, remains low. Intervals during
which the data do not resemble the model-predicted cycle
appear tightly plaited. This plaiting and unplaiting of the LMC
strands is the characteristic feature of the dynamics we observe,
both in simulations of Eqs. 1 and 3 and in experimental data. To
illustrate, consider the LMC for the 11-cycle as given in Fig. 2B.
At the outset of the experiment, the strands are collectively
unplaited. However, around week 50, the strands of the LMC
start to entwine, indicating that the time series of data have
diverged from the model 11-cycle.

The complete 424-week L-stage data time series is shown in
Fig. 2 A (but keep in mind that all life stages are used in
computing the LMC). The LMCs for the experimental data with
respect to each of the continuous-state and discrete-state model-
predicted cycles are shown in Fig. 2 B–E: 11-cycle, 8-cycle,
6-cycle, and 3-cycle, respectively. In each, cycle episodes appear
as unplaited portions of the LMC braid, and intervals during
which the data do not resemble the corresponding cycle appear
tightly plaited. Simultaneously, reading down and across these
four panels (from left to right) we can visualize the changes in
the dynamic behavior of the beetle population. At the start of the
experiment, the population trajectory follows the period-11
saddle cycle. Notice that during this opening interval the lattice
8-cycle is also in evidence. In fact, these two cycles have much
in common (see Fig. 1) and occur together during two separate
time intervals. After the 11-cycle�8-cycle sequence, the 6-cycle

Fig. 1. Model-predicted continuum and lattice cycles. In the central graph,
all cycles that play a role in the present article are superimposed on the chaotic
attractor of the deterministic model (Eq. 1). The surrounding graphs depict the
four cycles individually. The 11-cycle is from the continuous-state model (Eq.
1); the 8-, 6-, and 3-cycles are from the discrete-state deterministic model (Eq.
2). The phase-space graphs were generated by using conditional least-squares
parameter estimates (24).
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is identified. In the vicinity of week 100, another interval of the
11-cycle�8-cycle sequence returns. A brief interval of the 3-cycle
is noted beginning at week 150. At week 200, a 130-week inter-
val of the 6-cycle begins. The 11-cycle is noted again around
week 350.

A summary of the classification of the observed time segments
is given in Fig. 2 F and G. The criterion used to assign a data
segment to a particular model cycle is given in Appendix. We
interpret the classification with caution, recognizing that the
rigid placement of segments is far less important than the overall
appreciation that the dynamics reflect a mixture of identifiable
model-predicted cycles.

Although direct plots of the LMC vs. time, as in Fig. 2, contain
the essence of the episode-identification procedure, it is reveal-
ing to see the cycle episodes as they are reflected in the data
themselves. In Fig. 3, we plot the data the same way we presented
the model-predicted cycles in Fig. 1. The large graph at the
center of the figure shows all the data, and the surrounding
graphs show the data decomposed into the four model-predicted
cycles. The characteristic patterns drawn from both the contin-
uous- and discrete-state models make up the anatomy of the
chaotic attractor as it is seen in the experimental data.

In addition to the patterns associated with the chaotic attrac-
tor and its discrete-state analogue, the influence of the contin-
uous-state model’s unstable equilibrium is clearly seen in these
data (25, 42). Applied to an equilibrium, or 1-cycle, the LMC is
nothing more than the distance to the equilibrium. Fig. 4 shows
the passage of the data through the vicinity of this unstable
equilibrium (a so-called fly-by of the unstable equilibrium).
Notice that during this interval the LMCs of the other model-
predicted cycles are tightly plaited, as seen in Fig. 2.

The models expressed in Eqs. 1 and 2 are deterministic and
thus themselves cannot generate the mixture of cycle patterns
seen in the data. We examined the stochastic model (Eq. 3) to
verify that it is capable of generating patterns similar to those
observed. We computed LMCs for orbits of the stochastic
model. Typical results are shown in Fig. 5. Note that, although
the particular sequence of cycle episodes in any stochastic

Fig. 2. Lag metrics in the data. The LMC is defined in Appendix. (A) Raw
time-series data. For clarity, only the L-stage numbers are shown. (B–F) LMC
with respect to the model-predicted cycles: continuous-state model saddle
11-cycle (B); discrete-state model 8-cycle (C); discrete-state model 6-cycle (D);
and discrete-state model 3-cycle (E). During intervals for which the ‘‘braid’’
appears tightly plaited, the data bear little or no resemblance to the corre-
sponding model-predicted cycle. Unplaited portions of the braid correspond
to intervals for which the data closely resemble the model cycle. As shown in
F, we identified T-cycle episodes by setting the threshold number of animals
� � 55 (dashed line) and threshold duration K � 12 (see Appendix) for all
model-predicted cycles. Thus, to be identified as a T-cycle episode in F, non-
equilibrium patterns were required to be in evidence for 24 consecutive weeks
(more than seven generations), a very stringent requirement. The effects of
varying � and�or K on the episodes identified can be readily seen from
inspection of the LMC plots in B–E. (G) L-stage time-series data as in A, with 11-,
6-, and 3-cycle episodes identified by red, green, and magenta, respectively,
corresponding to Figs. 1 and 3.

Fig. 3. Cycle episodes in the data. The central graph is a phase-space plot of
all data. Data points belonging to identified cycle episodes (see Fig. 2) are red,
green, and magenta, corresponding to Figs. 1 and 2. In the surrounding
graphs, data points corresponding to particular cycle episodes are isolated;
some points are connected to indicate the temporal sequence. The black dots
are data points not assigned to one of the model-predicted cycles.
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realization differs from that in the data, the model shows a
similar mixture of cycle episodes.

It is important to note that the mixture of patterns generated
by the stochastic model (Eq. 3) depends markedly on the habitat
size, V. In particular, as the parameter V is increased, the
attractors of the discrete-state deterministic model (Eq. 2)
change in complicated ways despite the fact that the chaotic
attractor of the continuous-state model (Eq. 1) is unchanged (30,
31). In contrast to the case for which V � 1, when V � 3
(corresponding to a 60-g habitat), the discrete-state determin-
istic model (Eq. 2) has but one attractor: a 14-cycle. Correspond-
ingly, the stochastic model (Eq. 3) displays a less-rich mixture of
recurrent patterns in this case (Fig. 6). Indeed, the 14-cycle is
overwhelmingly in evidence. Moreover, for reasons discussed in
ref. 30, the 11-cycle embedded in the chaotic attractor of Eq. 1
is more prominent at the larger habitat size. The implication for
biologists is that an experiment or observation can uncover very
different images of the underlying chaotic dynamics depending
on the scale of the system.

Discussion
Other authors have noted transient periodicity in data. Lathrop
and Kostelich (32) and So et al. (43) applied nonparametric
nonlinear forecasting techniques to long series of data from the
Belousov–Zhabotinskii reaction and neuronal electrophysiolog-
ical recordings, respectively, and found evidence for saddle
cycles in the data. Schaffer et al. (27) observed similarities
between saddle cycles predicted by an epidemiological model
and historical measles case-report data. The present study builds
on these successes and goes further to show quantitative agree-
ment between model-predicted periodic behaviors and experi-
mental data. Two developments have made this possible.

The first is an appreciation for the dynamical effects of
individuation, system size, and the stochastic nature of demo-
graphic events. Mathematically, discreteness of individuals gives
state space a granularity that alters and diminishes the set of
possible dynamical behaviors. The set of behaviors depends on
the degree of state-space granularity, which in turn depends on
the system size (30, 44). In such a system, stochasticity acts not
to obliterate but to reveal the deterministic signal through the
continual reexcitation of transients.

The second is the development of new techniques for identi-
fying subtle transient patterns in relatively short time series. The
LMC, introduced in the present contribution, is a direct com-
parison between data and model-predicted cycles, designed to
detect complex and episodic temporal patterns. Naturally, the
noise level and time-series length impose limits on the resolution
of this tool. Similarly, the noise intensity sets the maximum
resolvable cycle period (cf. refs. 38 and 45). Thus, although the

3-cycle and 6-cycle are distinguishable in the data presented
here, it would be futile to attempt to distinguish the model-
predicted 11-cycle from closely related cycles of higher period,
such as its period-doubled descendant cycles of periods 22, 44,
88, etc., which are also present in the deterministic dynamics of
Eq. 1.

Our results shed additional light on the manner in which
deterministic chaos can be expected to leave its mark on
population data. In particular, it is the transient but recurrent
cyclic patterns generated by chaotic attractors and their discrete-
state analogues, woven together by stochasticity, that distinguish
chaos as it is manifested in noisy, discrete-state population
systems. The unambiguous identification of chaos or, more
generally, deterministic signals, in natural populations will re-
main a difficult challenge, in part because ecological time series
tend to be short. An understanding of the mode in which

Fig. 4. Equilibrium fly-by. (A) L-stage time-series data. (B) Distances from
data points to the unstable equilibrium of the deterministic continuous-state
model (Eq. 1). The equilibrium fly-by is indicated by arrows. Note that the LMCs
for other cycles (Fig. 2) are tightly plaited during the fly-by.

Fig. 5. Lag metrics in a stochastic realization. The same procedure used to
generate Fig. 2 has been applied to a realization of the discrete-state stochas-
tic model (Eq. 3). (A) L-stage time-series data. (B–F) LMC with respect to the
model-predicted cycles: continuous-state model saddle 11-cycle (B); discrete-
state model 8-cycle (C); discrete-state model 6-cycle (D); discrete-state model
3-cycle (E); and continuous-state model unstable equilibrium (1-cycle) (F). (G)
Intervals identified as cycle episodes are depicted (see Appendix for a descrip-
tion of the procedure we used). (H) L-stage time-series data as in A, with 11-,
6-, and 3-cycle episodes identified in red, green, and magenta corresponding
to Figs. 1–3.
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complex dynamics are expressed in real data is therefore essen-
tial for continued progress.

Appendix
Experimental Protocol. The experiment reported in refs. 23–25 was
designed to test for a predicted sequence of changes in dynamical
behavior as a demographic parameter was varied. We experi-
mentally set the adult mortality rate at �a � 0.96 and manipu-

lated the adult recruitment rate such that the number of new
adults at time t would equal Pt exp(�cpa At) with values of cpa set
at 0.00, 0.05, 0.10, 0.25, 0.35, 0.50, and 1.00.

There was also an unmanipulated control treatment. Twenty-
four cultures of the RR strain of the flour beetle Tribolium
castaneum (Herbst) were initiated with 250 L-stage insects, 5
P-stage animals, and 100 A-stage sexually mature young adults.
Three populations were assigned randomly to each of the eight
treatments. Each population was maintained in a half-pint
(237-ml) milk bottle with 20 g of standard medium and kept in
an unlighted incubator at 32°C. Every 2 weeks the L, P, and A
stages were counted and returned to fresh medium, and dead
adults were counted and removed. In this article, we present data
for one replicate of the cpa � 0.35 treatment, maintained under
the laboratory protocol mentioned above for 424 weeks (8.1
years) of biweekly counts, or �70 generations of flour beetles.

Parameter Estimates. The model parameters were estimated on
the basis of the first 80 weeks of data, as described in ref. 24.
Point estimates (95% confidence intervals) of the parameter
values are b � 10.45 (10.04,10.77), �l � 0.2000 (0.1931,0.2068),
cea � 0.1310 (0.01285,0.01340), and cel � 0.01731
(0.01611,0.01759). For the variance–covariance matrix, we used
the following values estimated in ref. 24: 
11 � 2.332, 
22 �
0.2374, 
12 � 
21 � 0.0071. Dennis et al. (24) concluded that the
populations were strongly influenced by chaotic dynamics.

LMC. Given a length-N sequence of data vectors, d � {dt}t�0
N�1, and

a model T-cycle, {mt}t�0
� (mt�T � mt), we define the LMC of d

and m at lag s and time t by the formula

LMC(s, t) �
1
T 	

q�0

T�1

�dt � mt�s�q�,

s � 0, . . . , T � 1, t � T � 1, . . . , N � 1,

where �x� �  x1 �  x2 �  x3 is a norm on the three-
dimensional state space. In Figs. 2 and 4–6, we plotted LMC(s, t)
against t directly. To aid in the interpretation of these graphs, one
can fix a threshold number of animals � and threshold duration
K, picking out as T-cycle episodes those intervals [t1, t2] for which
(i) there is a single phase s such that LMC(s, t) 	 �, for all t �
[t1, t2] and (ii) t2 � t1 � K � T. That is, we identify as T-cycle
episodes those intervals for which the lowest strand of the LMC
braid remains low for a long time. The effects of varying � and
K are immediately evident from examination of the LMC braid
plots.
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