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Many species show considerable variation in behaviour among individuals. We show that some behav-
iours are largely deterministic and predictable with mathematical models. We propose a general differen-
tial equation model of behaviour in field populations and use the methodology to explain and predict the
dynamics of sleep and colony attendance in seabirds as a function of environmental factors. Our model
explained over half the variability in the data to which it was fitted, and it predicted the dynamics of
an independent data set. Differential equation models may provide new approaches to the study of behav-
iour in animals and humans.
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Animal behaviour arises from a complicated interaction of
internal and external factors. Many species show signifi-
cant variation in behaviour among individuals (Slater
1978), thus confounding efforts to predict a wide array
of important variables, such as social and economic
trends, population dynamics, habitat occupancies and
the spread of behaviourally driven diseases. Accurate pre-
dictions of behavioural dynamics require the construction
of mathematical models that operate on scales at which
deterministic trends emerge from variability among indi-
viduals (Levin 1992).
The dynamics of behaviour typically are modelled with

game theory, Markov chains and individual-based models

(Mangel & Clark 1988; Gottman & Roy 1990; Dugatkin &
Reeve 1998; Railsback 2001). Historically, ordinary differ-
ential equations (ODEs) with ‘motivational’ dependent
variables were developed in the context of control theory
as qualitative models of the behaviour of individuals
(McFarland 1971; Hazlett & Bach 1977). These ODE
models were not tied rigorously to field data because mo-
tivational variables are not measurable, and because many
‘action patterns’ are variable rather than fixed (Slater
1978).
Here we re-examine ODEs as models of animal behav-

iour, propose a general methodology for the quantitative
prediction of behaviour in field populations, and use the
methodology to explain and predict the dynamics of sleep
and habitat occupancy in a seabird colony.

GENERAL MODEL

The general methodology that we use requires an in-
terdisciplinary paradigm drawn from recent advances in
the interface between dynamical systems theory and
population biology (Cushing et al. 2003). First, individuals
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are categorized into mutually exclusive ‘compartments’,
eachofwhich represents a specificbehavioural state at a spe-
cific spatial location. We previously used compartmental
models to predict the diurnal movements of animals be-
tween habitat patches (Henson et al. 2004, 2005; Damania
et al. 2005; Hayward et al. 2005); here we view transitions
between behavioural states as conceptually equivalent to
transitions between spatial habitats. Second, the state vari-
ables (dependent variables) track the numbers of individ-
uals in each compartment. Thus, the state variables are
measurable. They are also robust with respect to variability
among individuals in the sense that they track patterns in
frequencies of behaviour in an aggregate rather than pat-
terns in an individual’s behaviour. Data consist of time
series of compartment censuses taken at intervals short
enough to capture system dynamics. Third, temporal fluc-
tuations in the data are of two types: deterministic fluctua-
tions that are explained by the model, and stochastic
fluctuations that make up the variability unexplained by
the model (Cushing et al. 2003). Fourth, factors are classi-
fied as ‘demographic’ or ‘environmental’ rather than inter-
nal or external. We define demographic factors as those
experienced independently by single individuals or small
subsets of individuals, and environmental factors as those
experienced by all individuals in a population (Cushing
et al. 2003). Finally, both deterministic and stochastic fluc-
tuations can be driven primarily by demographic factors,
environmental factors, or a mixture of the two.
A model of b behaviours in h habitats has at most

m ¼ bh compartments, each of which represents a specific
behaviour in a specific habitat. The model is the system of
ODE balance equations for the inflow and outflow rates
for each compartment. For example, a model of seabird
preening (two ‘behaviours’, preening and not preening)
without regard to location (one habitat) would have two
compartments. The model would be

dB

dt
¼ rBEfBE � rEBfEB

dE

dt
¼ rEBfEB � rBEfBE;

where B denotes the number of animals preening, E de-
notes the number not preening, fij denotes the number
of individuals in compartment j that are eligible to move
to compartment i, and rij denotes the per capita rate at
which eligible individuals move from compartment j to
compartment i.
In general, form compartments, the model is the system

of m equations of the form

dni

dt
¼

Xm
j¼ 1
jsi

rijfij �
Xm
j¼ 1
jsi

rjifji; i¼ 1;2;.;m ð1Þ

where ni is the number of animals in compartment i.
Equation (1) ignores birth and death processes. Thus,
the total population size P¼Pm

i¼1 ni remains constant,
and one of the state variables can be eliminated, for exam-
ple, by writing nm ¼ P�Pm�1

i¼1 ni. The application of equa-
tion (1) to a particular system requires modelling the fij
and rij, which are, in general, functions of time-varying
factors and/or compartment densities.

APPLICATION TO COLONY ATTENDANCE

AND SLEEP IN SEABIRDS

We applied equation (1) to sleep and colony attendance in
a nesting colony of glaucous-winged gulls, Larus glauces-
cens, during the chick-rearing season. Sleep constitutes
a commonbehavioural state inmost animals and is defined
by Siegel (2005, page 1264) as ‘a state of immobility with
greatly reduced responsiveness, which canbedistinguished
from coma or anaesthesia by its rapid reversibility’. The
functional significance of sleep, however, remains incom-
pletely understood and may differ for different animals
(Siegel 1995, 2005; Hobson 2005). Although sleeping ani-
mals are relatively noninteractive with their environments
and thus especially vulnerable, the quality and duration
of sleep greatly influence the efficiency of wakefulness
(Rattenborg et al. 2000).

‘Sleep’ in gulls is a complex phenomenon that in-
cludes both the relatively infrequent ‘front sleep’ and
the much more common ‘back sleep’ (Amlaner &
McFarland 1981; Amlaner & Ball 1983; Shaffery et al.
1985). During front sleep, the head and neck are re-
tracted and the bill faces forward and down. In back
sleep, the head is turned back and the bill is tucked un-
der the scapulars. Incidence of both sleep postures is ac-
companied by heightened thresholds of arousal. Bouts
of eye closure are longer for gulls in the back-sleep pos-
ture, however, which may suggest that the depth of
sleep is deeper for gulls in this posture (Amlaner &
McFarland 1981). Sleeping gulls in both postures inter-
mittently monitor the environment by opening one
eye or the other, a phenomenon that accompanies uni-
hemispheral sleep in these and other birds (Rattenborg
et al. 2000). Here, we restrict our use of the term ‘sleep’
in gulls to the more common ‘back sleep’, although we
recognize the oversimplification of this categorization.

During the chick-rearing season, gulls must divide their
time between sleep and alertness on the colony, and
activities such as feeding that occur away from colony.
Mathematical models that accurately predict the inci-
dence of sleep and colony attendance would help to
identify environmental factors that elicit these behaviours
and clarify their adaptive functions.

We assumed that each individual was in one of three
mutually exclusive compartments: Wake in the colony,
Sleep in the colony or Away from the colony, with numbers
of animals in each compartment denotedW, S or A, respec-
tively. We assumed that the number of individuals
C ¼ S þ W attending the colony remained above a mini-
mum threshold m � 0 (at least one mate attends each terri-
tory during chick-rearing season) and that no individual
moved directly from the S compartment into the A com-
partment or vice versa without first moving into the W
compartment (Fig. 1); that is, fAS ¼ fSA ¼ 0.We also assumed
that the number of individuals eligible to leave the colony
via theW compartment and enter the A compartment was
either W or C� m, whichever was smaller; hence
fAW ¼ min W;C� mgf . We assumed that all individuals in
the A and S compartments were eligible to move to the
W compartment; thus fWA ¼ A and fWS ¼ S. Finally,
we assumed that the number of individuals in the W
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compartmentwhowere eligible to enter the S compartment
was aC � S, where 0 < a � 1, as long as aC � Swas positive,
and zero otherwise; that is, fSW ¼ max{aC � S, 0}. We inter-
pret the coefficient a as the fraction of birds in the colony
that are either sleeping or engaged in behaviours that can
transition directly to sleep, such as the rest posture. The
quantity 1 � a is the fraction of birds in the colony engaged
in behaviours that seldom transition directly to sleep, such
as preen (Murdoch1993). Clearly this fraction changes over
time. The model does not track any behaviours except
sleep, however, so we assume that a is constant.
Under these assumptions equation (1) becomes

dW

dt
¼ rWSSþ rWAA� rSWmaxfaC� S;0g
�rAWminfW;C� mg;

dS

dt
¼ rSWmaxfaC� S;0g� rWSS;

dA

dt
¼ rAWminfW;C� mg� rWAA:

ð2Þ

The identities W ¼ C � S and A ¼ P � C reduce equation
(2) to a model for colony occupancy and the number
asleep in the colony

dC

dt
¼ rWAðP�CÞ � rAWminfC� S;C� mg;

dS

dt
¼ rSWmaxfaC� S;0g� rWSS:

ð3Þ

Solutions of equation (3) satisfy the inequalities
m � C(t) � P and 0 � S(t) � C(t) for all time t provided
that the initial conditions do. There were 70 nesting pairs
in our sample colony area (see Methods); thus, P ¼ 140
and m ¼ 70. The coefficient a was an unknown parameter,
to be estimated from data. We assumed that the four per

capita transition rates rij were functions of time-varying
abiotic environmental conditions.

METHODS

Data Collection

The study was conducted at Protection Island National
Wildlife Refuge (48�080N, 122�550W), Jefferson County,
Washington, U.S.A. The island is at the southeastern end
of the Strait of Juan de Fuca and consists mostly of a high
plateau bordered by steep bluffs. Violet Point, a gravel spit
extending to the southeast, contains a breeding colony of
more than 2400 pairs of nesting glaucous-winged gulls.
We selected a 33 � 100-m sample colony area contain-

ing approximately 70 nests. Observations consisted
of hourly census counts and behaviour scans taken during
daylight hours in chick-rearing season during 0500e2000
hours Pacific Standard Time (PST) for 14 days on 30 Junee
2 July and 6e16 July 2004. Observations were made using
a 20e60� spotting scope from an observation point atop
a 33-m bluff that bordered the west end of Violet Point.
The observation point was 100 m from the proximal
edge of the larger colony and 200 m from the study plot.
The presence of observers did not seem to influence the
behaviour of the gulls in any way. At the top of each
hour, a census and a behaviour scan were taken in that or-
der. Behaviours were recorded by voice and subsequently
transcribed. The number of animals in the behaviour
scan was typically slightly different from the census, since
these observations were not conducted simultaneously. To
correct this, we divided the number of birds showing a par-
ticular behaviour by the number of birds scanned, and
multiplied the result by the census.

Time of day PST rWS rSW rWA rAW

Morning
(0500 ≤ Hour ≤ 1000)

mWS
mSW Hour2 (if hour ≤ 0800)

m*   /Solar2 (otherwise)
mWATide2 mAW

Midday
(1000 < Hour < 1400)

nWS Heat3 nSW Solar × Cwind2 nWAWwind2 nAW Solar2

Evening
(1400 ≤ Hour ≤ 2000)

eWS eSW Hour2/Solar2 eWAHour6 eAW Solar2

rWS

rSW

rAW

rWA

Number in colony = C(t)

Away from
colony =
A(t)

Wake in
colony  =
W(t)

Sleep in
colony = 
S(t)

SW

Figure 1. Per capita flow rate submodels as functions of six environmental factors: tide height (Tide), hour of day (Hour) in Pacific Standard

Time (PST), solar elevation (Solar), heat index (Heat), wind speed on the colony (Cwind), and wind speed over the open water (Wwind).
Assuming J ¼ 1, the maximum likelihood parameters as estimated from the calibration data (all data) were mWS ¼ 1.008 (1.006),

mSW ¼ 0.08985 (0.07328), m*
SW ¼ 0:06299 (0.07603), mWA ¼ 0.2465 (0.1046), mAW ¼ 0.6115 (0.3448), nWS ¼ 4.493 (4.591),

nSW ¼ 0.3184 (0.2765), nWA ¼ 0.1334 (0.1546), nAW ¼ 0.05996 (0.07317), eWS ¼ 8.759 (11.77), eSW ¼ 1.054 (1.053), eWA ¼ 0.02029

(0.02822), eAW ¼ 0.1198 (0.1918), a ¼ 0.6343 (0.7640). The estimated entries of the varianceecovariance matrix
P

were s11 ¼ 0:006279
(0.006386), s22 ¼ 0:3087 (0.3955), s12 ¼ s21 ¼ 0:009251 (0.007457).
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A weather station 2 m above site elevation on the north-
west end of Violet Point tracked many of the environmen-
tal conditions experienced by the colony, including
temperature, humidity, wind speed and direction, heat in-
dex, barometric pressure, rainfall and solar radiation. Heat
index is computed from temperature and relative humid-
ity as a measure of how hot the air feels (Steadman 1979).
Hourly tide heights, solar elevations and wind speeds over
open water were obtained from the National Oceanic and
Atmospheric Administration (NOAA).

Submodels for rij

Complete specification of equation (3) requires model-
ling the per capita transition rates rij as functions of envi-
ronmental variables. Previous studies found correlations
of occupancy and sleep in gulls with time of day, temper-
ature and tide height (Drent 1967; Delius 1970; Galusha &
Amlaner 1978). We looked for similar correlations using
data from ‘Morning’ (0500e1000 hours), ‘Midday’
(1000e1400 hours) and ‘Evening’ (1400e2000 hours)
and a number of other environmental conditions tracked
by the on-site weather station. The data were correlated
with tide height (Tide), time of day (Hour), solar elevation
(Solar), heat index (Heat), wind speed on the colony
(Cwind) and wind speed over the open water (Wwind).
We assumed that each of the four per capita transition
rates rWS; rSW ; rWA and rAW in equation (3) could be mod-
elled as

Morning : rij ¼mijTide
b1ijHourc1ijSolard1ijHeatf 1ijCwindg1ij

Wwindh1ij ;

Midday : rij ¼ nijTide
b2ijHourc2ijSolard2ijHeatf 2ijCwindg2ijð4Þ

Wwindh2ij ;

Evening : rij ¼ eijTide
b3ijHourc3ijSolard3ijHeatf 3ijCwindg3ij

Wwindh3ij ;

where mij;nij; eij > 0 are constant coefficients and bij; cij;dij;
fij;gij;hij are constant exponents. For numerical conve-
nience, we scaled and nondimensionalized the six envi-
ronmental variables x so that 1 � x � 2 (Henson et al.
2004, 2005; Damania et al. 2005; Hayward et al. 2005).
In estimating the parameters for such a model, the scaling
is absorbed in the resulting values of the rate coefficients.
Equation (3) thus contained 13 coefficients a;mij; nij;

eij > 0 and 72 constant exponents. Numerical estimation
of a total of 85 parameters would have required a very large
data set. Thus, we restricted themodel parameters to the 13
coefficients and treated the 72 exponents as follows.
Each of the 72 exponents bij; cij; dij; fij; gij;hij was assumed

to have the value �1, 0, or 1. This assumption created
a very large number of possible models in the form of
equation (3). We chose a relatively small subset of these
based on (1) the biologists’ knowledge of what was likely
to be most biologically reasonable for the system, (2) sta-
tistical investigations comparing the data and the envi-
ronmental variables and (3) the experience gained by
weeks of trial-and-error searches for models that could fit
the data. Of the remaining alternative models, we took

the best to be the one with the lowest (fitted) sum of
squared residuals, and discarded the others. Each of the
alternative models had 13 parameters, so it was not neces-
sary to use information-theoretic model selection indexes
such as the Akaike information criterion (AIC), which pe-
nalize models having more parameters (Hayward et al.
2005).

Once the best model was determined from the list of
alternatives, the exponents with value �1 (or 1) were
decreased (or increased) by integer units until the best
integer exponents were obtained.

Parameter Estimation

We randomly divided the 14 days of data into two sets
of 7 days each, one for parameter estimation (the ‘calibra-
tion data’) and the other for an independent evaluation of
the parameterized model (the ‘validation data’). The
calibration data set contained five days of 16 consecutive
hourly records (30 June, 2 July, 6 July, 8 July and 11 July
2004), one day of two and 12 consecutive hourly records
(14 July 2004) and one day of 11 consecutive hourly
records (15 July 2004). The validation data set contained
six days of 16 consecutive hourly records (7 July, 9e10
July, 12e13 July, 16 July 2004) and one day of four and
seven consecutive hourly records (1 July 2004).

We used the method of maximum likelihood to estimate
the parameters for equation (3). Numerical integration of
equation (3)with the rijgiven inFig. 1 yields a ‘one-step’ pre-
diction ðCtþ1; Stþ1Þ at hour t þ 1, given the observation
ðct ; stÞ at hour t as the initial condition. We produced one-
step model predictions with the MatLab ODE integrator
(MathWorks, Natick, Massachusetts, U.S.A.).

Before calculating the maximum likelihood parameter
estimates, we transformed the data and the predictions to
stabilize the variances of the one-step departures of data
frommodel. The likelihood estimation procedure assumes,
for each state variable, that the variances of such residual
prediction errors do not depend on the sizes of the state
variables. If the (one-step, conditional) variance Var(xt) of
a state variable xt is a function v(xt � 1) of the size of the sys-
tem at time t � 1, then a transformed state variable
wt ¼ fðxtÞ that has an approximately constant variance
can be found as the solution of the equation
vðxÞ½f0ðxÞ�2 ¼ c, where c is an arbitrary constant (Cushing
et al. 2003). Ecologists have recognized two principal types
of variance scaling in ecological systems, ‘demographic’
and ‘environmental’ (Engen& Sæther 1998). Demographic
scaling is oftenmodelledby vðxÞ ¼ gx,while environmental
scaling is givenby vðxÞ ¼ dx2,whereg and d arepositive con-
stants. A model of both demographic and environmental
stochasticity is vðxÞ ¼ gxþ dx2. The variance stabilizing
transformation for both is

fðxÞ ¼
2ln

�
1

2

ffiffiffiffiffiffi
wx

p
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wxþ 4ð1�wÞ

p �
ffiffiffiffi
w

p ;

where w¼ d=ðdþ ðg=4ÞÞ is a measure of the relative
amount of environmental noise in the data. The value
w¼ 1 corresponds to environmental stochasticity with
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transformation fðxÞ ¼ lnx, and w/0þcorresponds to de-
mographic stochasticity with transformation fðxÞ ¼ ffiffiffi

x
p

(Cushing et al. 2003).
For a given value of w, the parameter estimation proce-

dure assumes that the vectors CfðctÞ � fðCtÞ;fðstÞ � fðStÞD
of transformed one-step residual errors come from a joint
normal distribution with varianceecovariance matrix

P
,

and that they are uncorrelated in time. Under these as-
sumptions, the parameters are estimated by maximizing
the log likelihood as a function of the model parameters
(Cushing et al. 2003). We maximized the log-likelihood
function numerically with the NeldereMead algorithm
(Press et al. 1986) under three types of stochasticity:
mostly demographic ðw ¼ 0:01Þ, a mixture of demo-
graphic and environmental ðw ¼ 0:5Þ and purely environ-
mental ðw ¼ 1Þ.

Model Validation

We compared the (fitted) goodness of fit on the
calibration data set to the goodness of fit on the validation
data set without re-estimating parameters. The goodness
of fit for the colony was computed as

R2
C ¼ 1�

PT
t¼1ðfðctÞ �fðCtÞÞ2PT
t¼1ðfðctÞ �fðcÞÞ2

where fðcÞ denotes the sample mean of the transformed
observations. The R2

S for sleep was computed similarly.
There are presently no good statistical hypothesis tests

of goodness of fit for dynamic models. Indeed, it is not
clear that such tests would be useful if they existed. More
informative, in our opinion, is to evaluate the predictive
performance of a model under as wide a variety of
conditions as possible. Therefore, we use this generalized
R2 to quantify goodness of fit, and we use model valida-
tion analysis to probe the predictions of the model under
environmental conditions encountered postestimation.

RESULTS

Best Model

The per capita transition rates rij for the best model are
shown in Fig. 1. These rates are for the chick-rearing sea-
son; dynamics can be markedly different during other
times of year.

Parameter Estimates

Fixed values of J ¼ 0.01, 0.5 and 1 for the best model
yielded log-likelihood values of �138, �3 and 30, respec-
tively, for the calibration data set, and �287, �22 and
32, respectively, for the entire data set. Thus, we took w ¼
1 as the appropriate transformation. The maximum likeli-
hood parameter estimates for equation (3) with w ¼ 1 are
given in the legend for Fig. 1.

Model Validation

For the calibration data set, the goodness of fits were
R2
C ¼ 0:60 and R2

S ¼ 0:57; for the validation data set, they
were R2

C ¼ 0:63 and R2
S ¼ 0:46. The goodness of fits

obtained by fitting the model to the entire data set were
R2
C ¼ 0:65 and R2

S ¼ 0:52.
Figure 2 compares the data with one-step model predic-

tions based on parameters estimated from the entire data
set.

DISCUSSION

The Model

An alternative modelling formulation for behavioural
data is the integer-valued Markov chain (e.g. Chen et al.
2002; Lusseau 2003), which accommodates the discrete
nature of behaviour compartment membership. The Mar-
kov behaviour model casts animal behaviour as transi-
tions among discrete behaviour types; the associated
transition probabilities are collected into a projection ma-
trix. Quite generally, the mean compartment sizes in such
models are solutions to linear differential equations of the
same form as our model. To focus on the effect of the six
environmental covariates, we chose to build a ‘determinis-
tic skeleton’ for the means and add ‘noise’ in a way that
would potentially accommodate the ordinary variability
of such Markov models as well as the variability arising
from environmentally caused fluctuations in the transi-
tion probabilities. We used (continuous-time) differential
equations as the deterministic skeleton rather than (dis-
crete-time) difference equations because there was noth-
ing inherently discrete in the timescale of the process
other than our observations.

Demographic and Environmental Variability

The terms ‘demographic’ and ‘environmental’ variabil-
ity can potentially cause confusion. In ecology, the terms
refer to types of variability in population growth models.
Mathematically, what ecologists refer to as demographic
variability arises as the variability in the sum of a fixed
number of independent random variables: the net birth
and death contributions of n individuals in a time inter-
val. Mathematically, environmental variability as used
by ecologists refers to random changes through time in
the rate constants (average per individual births and
deaths) themselves, which characteristically induces a co-
variation of births and deaths among individuals.
These concepts directly describe the types of variability

we are concerned with in the behaviour model. A
‘population’ is the number of animals in a behavioural
state at time t; this population increases or decreases based
on arrivals (animals choosing the behaviour) and depar-
tures (animals changing to some other behaviour). If the
number of animals engaged in a behaviour is the sum of
independent random binary choices (1 or 0) of n individ-
uals, then variability will be scaled in proportion to n, just
as it is in a population growth model with demographic
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variability. If the choice probability itself varies randomly
through time, then the number of animals engaged in
a behaviour has an additional component of variability
whose scale is proportional to n2, as in the scaling of envi-
ronmental noise in an ecological model.
The type of stochasticity implicit in a Markov chain is

demographic; that is, individual animals in a particular
behaviour state independently face fixed and identical
probabilities of making a behaviour transition. Demo-
graphic stochasticity becomes essentially deterministic if
large numbers of animals are governed by such a model, in
that the relative variability (coefficient of variation) of the
animal numbers displaying a behaviour becomes small.

Deterministic and Stochastic Fluctuations
in the Colony Sleep System

In our application of the methodology outlined in this
paper, we were able to show that the majority of the
temporal fluctuations in colony occupancy and sleep
incidence were deterministic. Furthermore, we were able

to identify six abiotic environmental factors that deter-
mined the dynamics of these variables. Note that the
logical connection here between ‘environmental determi-
nants’ and behavioural dynamics is that of mathematical
implication rather than scientific causation. That is,
environmental determinants are correlative, and may or
may not be causative (Henson et al. 2005). Nevertheless,
the identification of environmental determinants narrows
the search for cues that elicit behaviour.

Results of ourmaximum likelihood analysis revealed that
the fluctuations left unexplained by themodel were largely
due to environmental stochasticity rather than to demo-
graphic stochasticity or a mixture of the two. (This conclu-
sion was based on our finding that w ¼ 1 yielded higher
log-likelihood values than did w ¼ 0:5 or w ¼ 0:01.) In
a Markov chain formulation, this would mean that the
transition probabilities themselves were undergoing sto-
chastic fluctuations. Our approach of using a deterministic
systemof differential equations upholsteredwith a stochas-
tic noise component allowed model fitting and evaluation
under different hypothesized types of stochastic variability.
The conclusionof environmental variabilitywas consistent
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Figure 2. Hourly observations (solid circles), one-step model predictions (open circles), and tide height (dotted curve) as a function of time

(PST). (a) Number of birds in the colony. (b) Number of birds asleep in the colony. In (a) and (b), 14 days of data are shown in chronological
order from left to right, top to bottom.
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with our observations of the system. In our application, we
observed many environmental stochastic events such as
disturbances bybald eagle,Haliaeetus leucocephalus, flyovers
(Galusha&Hayward2002).Demographic stochastic events
such as between-individual differences in gull behaviour,
the timings of arrivals and departures in the habitat and lo-
calized conspecific intrusions also occurred, but our analy-
sis showed that these events contributed relatively little to
the variability in thedata. In theory, the largenumber of an-
imals observed suggests that demographic variability
should indeed be negligible.

Function

Predictive mathematical models can clarify the func-
tions of behaviour and generate new hypotheses. We
mention two examples from our current application. (1)
The Midday per capita tendency to enter sleep increased
with solar elevation and wind speed on the colony, and
the tendency to leave sleep increased with heat index
(Midday rSW and rWS in Fig. 1). This is consistent with
a previous report of increased colony sleep at midday
among herring gulls, Larus argentatus, in England
(Galusha & Amlaner 1978) and also suggests a thermoreg-
ulatory function of the sleep posture. (2) The Morning per
capita rate at which birds left the colony was constant,
while the per capita rate of return increased with tide
height (Morning rAW and rWA in Fig. 1). This is consistent
with previous reports of decreased/increased habitat occu-
pancy in gulls at low/high tide, presumably because of
increased/decreased food availability at low/high water
levels (Drent 1967; Galusha & Amlaner 1978; Henson
et al. 2004). In another report, however, a mathematical
model suggested more specifically that gulls left loafing
habitats (near a colony) in response to low tide height
and returned in response to low solar elevation (Henson
et al. 2005). It is unclear, however, whether the contradic-
tion with the current study is due to differences in behav-
iour of gulls in the colony versus away from the colony, or
whether it is an artefact of insufficient data. These two ex-
amples illustrate that each of the per capita flow rates
shown in Fig. 1 generates new hypotheses and suggests
further study.

Mathematical Models as Hypotheses

A mathematical model is the precise formulation of
‘modelling assumptions’. In our application, these in-
cluded the assumptions regarding the three compart-
ments W, S and A, the specific form of the fij as given in
equation (2) and the general form of rij as given in equa-
tion (4). Modelling assumptions, and therefore mathemat-
ical models, are actually scientific hypotheses. These
hypotheses can be tested rigorously with data, not in the
sense of statistical hypothesis testing, but in the sense of
applied dynamical systems theory, through parameter
estimation, comparison of alternative models, model
selection and model validation (Cushing et al. 2003;
Hayward et al. 2005). To be taken seriously as scientific hy-
potheses, mathematical models must transcend mere

curve fitting. That is, the models should be motivated by
a mechanistic understanding of the system in question
and have predictive capability. Model validation, per-
formed on data not used to estimate parameters, is there-
fore of particular importance, since it tests the predictive
capability of the model.

Summary

Mathematical models can identify, explain and predict
deterministic trends in behaviour, and parse out the
contributions of environmental and demographic sto-
chasticity. Such models are powerful tools for detecting
factors that elicit behaviour, for clarifying functions of
behaviour and for generating new hypotheses. Although
compartmental models are standard tools in the physical
sciences, pharmacology, epidemiology and population
biology (Anderson 1983), they have been considered too
coarse to predict animal behaviour, because they lump in-
dividuals into aggregates under simplifying assumptions
(Railsback 2001). Using compartmental modelling tech-
niques, however, we have shown that some behaviours
of gulls are determined largely by environmental factors
and are mathematically predictable at the aggregate level
despite variability among individuals. We suggest that
compartmental models may provide a new approach to
the study of deterministic trends in the behaviour of ani-
mals and humans.
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