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We show that a discrete-time, two-species competition model with Ricker (exponential) nonlinearities
can exhibit multiple mixed-type attractors. By this is meant dynamic scenarios in which there are
simultaneously present both coexistence attractors (in which both species are present) and exclusion
attractors (in which one species is absent). Recent studies have investigated the inclusion of life-
cycle stages in competition models as a casual mechanism for the existence of these kinds of multiple
attractors. In this paper we investigate the role of nonlinearities in competition models without life-cycle
stages.
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1. Introduction

In [1] the authors utilize a competition model to explain an unusual coexistence result observed
and studied by T. Park and his collaborators in a series of classic experiments involving two
species of insects (from the genus Tribolium) [2–4]. The explanation offered in [1] is based on
a single species model (called the LPA model) designed explicitly to account for the dynamics
of the species involved. The LPA model has an impressive track record, spanning several
decades, of describing and predicting the dynamics of Tribolium populations, under a variety
of circumstances in controlled laboratory experiments—dynamics that range from equilibrium
and periodic cycles to quasi-periodic and chaotic attractors [5, 6]. This history of success adds
credence to the two-species competition model used in [1] (called the competition LPA model)
and significant weight to the explanation given for the observed case of coexistence. The
explanation entails, however, some unusual aspects with regard to classic competition theory,
including non-equilibrium dynamics, coexistence under increased intensity of inter-specific
competition, and the occurrence of multiple mixed-type attractors. By multiple mixed-type
attractors we mean a scenario that includes at least one coexistence attractor and at least
one exclusion attractor. A coexistence attractor is one in which both species are present. An
exclusion attractor is one in which at least one species is absent and at least one species is
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348 J. M. Cushing et al.

present. Park observed the coexistence case in an experimental treatment that also included
cases of competitive exclusion, that is to say, he observed a case of what we have termed to
be multiple mixed-type attractors.

Competition theory is primarily an equilibrium theory that is exemplified, for example,
by the classic Lotka–Volterra model and its limited number of asymptotic outcomes: a glob-
ally attracting coexistence equilibrium; a globally attracting exclusion equilibrium; or two
attracting exclusion equilibria. (In this context, globally attracting means within the positive
cone of state space.) These three equilibration alternatives are illustrated by the Leslie–Gower
model [7] (the discrete analog of the famous Lotka–Volterra differential equation model)

xt+1 = b1xt

1

1 + c11xt + c12yt

+ s1xt

yt+1 = b2yt

1

1 + c21xt + c22yt

+ s2yt

(1)

where t = 0, 1, 2, . . . and the bi > 0 are the inherent birth rates, si (0 ≤ si < 1) the survival
rates, and cij > 0 the density-dependent effects on newborn recruitment [8–10]. Leslie et al.
used this model to study the Tribolium experiments, but it is incapable of explaining the
observed case of multiple mixed-type attractors. On the other hand, the competition LPA
model used in [1] exhibits a greater variety of competition scenarios, including ones with
multiple mixed-type attractors (also see [11, 12]).

The competition LPA model, although applied specifically to species of Tribolium in [7], is
none the less a rather general model that, unlike the Leslie–Gower model (or a Lotka–Volterra
type model in general), accounts for life-cycle stages in the competing species. Therefore, the
LPA model serves to illustrate that in general (when more biological details are included) com-
petition theory is likely to be considerably more complicated and varied than that represented
by classic Lotka–Volterra types of models. The competition LPA model is, like the Leslie–
Gower model (1), a discrete-time (difference equation) model. It differs from the Leslie–Gower
model, however, in two basic ways: the state variables of the LPA model account for three
life-cycle stages for each species (which mathematically introduces time delays and makes the
model higher dimensional) and it utilizes ‘stronger’ (overcompensatory) nonlinearities. A nat-
ural question to ask is which of these two mechanisms most accounts for non-Lotka–Volterra
dynamic scenarios and, in particular, for the occurrence of multiple mixed-type attractors?
With regard to the first mechanism, it is shown in [13] that a result of introducing only a single
life-cycle stage (specifically, a juvenile stage) in just one species in a Leslie–Gower model (1)
can indeed result in multiple mixed-type attractors—specifically, the occurrence of exclusion
equilibria in the presence of coexistence 2-cycles (provided inter-specific competition is suf-
ficiently strong). A more robust occurrence of multiple attractors (equilibrium and cycles) of
mixed type occurs if both species are given a juvenile stage [14].

Our goal here is investigate the second mechanism, namely the role of the nonlinearity in
the occurrence of multiple mixed-type attractors. We do this by introducing a Ricker-type
nonlinearity into the Leslie–Gower model (1):

xt+1 = b1xt exp(−c11xt − c12yt ) + s1xt

yt+1 = b2yt exp(−c21xt − c22yt ) + s2yt .
(2)

In section 2 we show that this Ricker competition model cannot display multiple equilibrium
attractors of mixed type, a feature it therefore has in common with the Leslie–Gower model (1)
and classic Lotka–Volterra theory.We will show in section 3, however, that the Ricker model (2)
can exhibit scenarios with multiple mixed-type attractors in which periodic cycles are present.
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Multiple mixed-type attractors 349

We provide formal proofs of this possibility (mathematical details appear in the Appendix) for
the case of 2-cycle and equilibrium scenarios. An investigation for scenarios involving higher
period cycles (or quasi-periodic or chaotic attractors) remains to be carried out, although
we give in section 4 a numerical example involving higher period cycles and quasi-periodic
attractors.

2. Equilibria

We can assume without loss in generality (by scaling the units of x and y) that cii = 1 in the
Ricker competition model (2). Therefore, we will consider, after relabeling c12 as c1 and c21

as c2, the competition model

xt+1 = b1xt exp(−xt − c1yt ) + s1xt

yt+1 = b2yt exp(−c2xt − yt ) + s2yt .
(3)

The exclusion equilibria E1 � (ln n1, 0), E2 � (0, ln n2) ∈ R2 of the Ricker competition
model (3) are biologically feasible (i.e. lie on the positive axes) if and only if the inher-
ent net reproductive numbers ni � bi/(1 − si) satisfy ni > 1. Besides the trivial equilibrium
E0 � (0, 0) and these two exclusion equilibria, there exists only one other equilibrium:

E3 �
(

ln n1 − c1 ln n2

1 − c1c2
,

ln n2 − c2 ln n1

1 − c1c2

)
. (4)

The equilibrium E3 is a coexistence equilibrium if it lies in the positive cone R2+ � {(x, y) :
x > 0, y > 0}. Let S � {(s1, s2) ∈ R2 : 0 ≤ s1, s2 < 1} denote the unit square in R2.

LEMMA 2.1 Assume (s1, s2) ∈ S. Let (xt , yt ) denote the solution of the Ricker competition
model (3) with an initial condition (x0, y0) lying in the closure R̄2+ of R2+. If n1 < 1 then
limt→+∞ xt = 0. If n2 < 1 then limt→+∞ yt = 0.

Proof If n1 < 1 then all solutions of the linear equation ut+1 = b1ut + s1ut satisfy
limt→+∞ ut = 0. From the inequality 0 ≤ xt+1 ≤ b1xt + s1xt and u0 = x0, an induction
shows 0 ≤ xt ≤ ut for all t = 0, 1, 2, . . .. A similar argument proves the assertion when
n2 < 1. �

We assume throughout the rest of the paper that both inherent net reproductive numbers
satisfy ni > 1. In this case, all solutions of (3) are bounded and at least one species does not
go extinct, as the following dissipativity and persistence theorem shows. The proof appears in
the Appendix.

THEOREM 2.1 Assume (s1, s2) ∈ S and both ni > 1 in (3). There exist positive constants
α, β > 0 such that all solutions with (x0, y0) ∈ R̄2+/{(0, 0)} satisfy

α ≤ lim inf
t→+∞(xt + yt ) ≤ lim sup

t→+∞
(xt + yt ) ≤ β.

The equilibrium w = ln n, n = b/(1 − s), of

wt+1 = bwt exp(−wt) + swt

is (locally asymptotically) stable if 1 < n < ncr � exp(2/(1 − s)). A period doubling bifur-
cation occurs as n increases through ncr . It follows that a necessary condition for the stability
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350 J. M. Cushing et al.

of an exclusion equilibrium Ei (i = 1 or 2) of the competition equations (3) is that the inherent
net reproductive numbers ni satisfy

1 < ni < ncr
i � exp(2/(1 − si)). (5)

The linearization principle provides sufficient conditions for stability according to the magni-
tude of the eigenvalues of the Jacobian J (x, y) associated with (3) evaluated at an equilibrium
point Ei = (xe, ye):

J (xe, ye) =
(

1 − (1 − s1)xe − c1(1 − s1)xe

− c2(1 − s2)ye 1 − (1 − s2)ye

)
. (6)

The Jacobians of the equilibria Ei , i = 1 or 2, are triangular matrices whose eigenvalues
appear along the diagonal. The equilibrium Ei , i = 1 or 2, is hyperbolic if both eigenvalues

(1 − si)(1 − ln ni) + si, bjn
−cj

i + sj , j �= i

have absolute value unequal to 1 and, by the linearization principle [15], is (locally asymptoti-
cally) stable if both have absolute value less than 1. Thus, a necessary condition that Ei be
hyperbolic and stable is that

cj > ln nj/ ln ni, j �= i. (7)

Sufficient for Ei to be hyperbolic and stable is that, in addition, the inequalities (5) hold.

THEOREM 2.2 Assume (s1, s2) ∈ S, that one of the inequalities (7) holds, and that E3 is a
coexistence equilibrium. Then E3 is unstable.

Proof If one of the inequalities (7) holds and if E3 is a coexistence equilibrium, then the
formula (4) for E3 implies 1 − c1c2 < 0. A calculation shows

1 + det J (xe, ye) − trJ (xe, ye) = (1 − c1c2)xeye(1 − s1)(1 − s2) < 0.

The Jury criteria† for instability imply that at least one eigenvalue of J (xe, ye) has magnitude
greater than 1. �

It follows from Theorem 2.2 that if at least one exclusion equilibrium is (hyperbolic and) sta-
ble, then either E3 is not a coexistence equilibrium or, if it is, it is unstable. Consequently, with
regard to equilibria, a mixed-type multiple attractor scenario is impossible for the competition
model (3). Thus, the Ricker competition model (3) and the classic Lotka–Volterra competition
model have in common the impossibility of multiple mixed-type equilibrium attractors. In the
next section we show, on the other hand, that it is possible for the Ricker model (3) to have
multiple mixed-type non-equilibrium attractors.

3. Multiple mixed-type attractors

We want to investigate the possible occurrence of mixed-type non-equilibrium attractors in the
Ricker model (3) under symmetrically high inter-specific competition (as has been observed

†Both eigenvalues of a 2 × 2 matrix A have absolute value less than 1 if and only if,
−1 < det A < 1 and −(1 + det A) < trA < 1 + det A. At least one eigenvalue has absolute value greater 1
if and only if one of the inequalities is reversed.
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Multiple mixed-type attractors 351

in more complicated models that include juvenile life-cycle stages [1, 8, 11, 13, 14]). To carry
out this investigation by means of a single parameter problem, we introduce the notation
r � c2/c1, c � c1 and re-write the competition model (3) as

xt+1 = n1(1 − s1)xt exp(−xt − cyt ) + s1xt

yt+1 = n2(1 − s2)yt exp(−rcxt − yt ) + s2yt

ni > 1, 0 ≤ si < 1, and r, c > 0.

(8)

Our goal is, for fixed birth rates bi , survivorships si and competition ratio r , to investigate
the existence and stability of non-equilibrium coexistence attractors as functions of the inter-
specific competition intensity coefficient c. In this paper we restrict attention to coexistence
2-cycles. The source of these coexistence 2-cycles will be a competitive exclusion 2-cycle,
that is to say, a 2-cycle on a coordinate axis that undergoes a loss of stability.

In the absence of species xt the dynamics of species yt are governed by the Ricker model
equation

yt+1 = b2yt exp(−yt ) + s2yt . (9)

A period doubling bifurcation occurs at the critical value bcr
2 � (1 − s2) exp(2/(1 − s2)) of

b2 at which point the equilibrium y = ln n2 equals ycr � 2/(1 − s2). This bifurcation results
in a (locally asymptotically) stable 2-cycle

y∗
0 → y∗

1 → y∗
0 → y∗

1 → · · · (10)

0 < y∗
1 < y∗

0

for b2 greater than but near

bcr
2 � (1 − s2) exp(2/(1 − s2)), (11)

which we write as b2 � bcr
2 . The two points y∗

0 , y∗
1 of the 2-cycle (10) satisfy the equations

y∗
0 = n2(1 − s2)y

∗
1 exp(−y∗

1 ) + s2y
∗
1

y∗
1 = n2(1 − s2)y

∗
0 exp(−y∗

0 ) + s2y
∗
0 .

This 2-cycle is stable (by the linearization principle) because the product of the derivative of
the map (9) evaluated at y∗

0 and at y∗
1 is less than one in absolute value, i.e.

λ∗ �
1∏

j=0

(n2(1 − s2)(1 − y∗
j ) exp(−y∗

j ) + s2) < 1 (12)

holds under (11).
The 2-cycle (10) yields an exclusion 2-cycle

(0, y∗
0 ) → (0, y∗

1 ) → (0, y∗
0 ) → (0, y∗

1 ) → · · · (13)

of the Ricker competition model (8). This 2-cycle is stable on the (invariant) y-axis under
the assumption (11). Our first goal is to study the stability of this exclusion 2-cycle in the
x, y-plane and determine how it depends on the competition intensity c. Specifically, we
will show a planar loss of stability occurs at a critical value c∗ of c, the result of which is a
(transcritical) bifurcation of non-exclusion 2-cycles.
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352 J. M. Cushing et al.

By the linearization principle, the exclusion 2-cycle (13) is (locally asymptotically) stable
if the spectral radius of the matrix J (0, y∗

0 )J (0, y∗
1 ) is less than one. A calculation shows this

matrix is triangular and its eigenvalues are

λ1 =
1∏

j=0

(n1(1 − s1) exp(−cy∗
j ) + s1) > 0, λ2 = λ∗.

Under the assumption (11), 0 < λ2 < 1 (see (12)). As a function of c, the first eigenvalue
λ1 = λ1(c) is decreasing and satisfies

λ1(0) = (n1(1 − s1) + s1)
2 > 1, lim

c→+∞ λ1(c) = s1s2 < 1.

It follows that there exists a unique c∗ > 0 such that λ1(c
∗) = 1.

THEOREM 3.1 Assume (s1, s2) ∈ S and that b2 > bcr
2 is such that (9) has a stable 2-cycle. Let

c∗ denote the unique positive root of the equation

1∏
j=0

(n1(1 − s1) exp(−cy∗
j ) + s1) = 1. (14)

The exclusion 2-cycle (13) of the competition model (8) is (locally asymptotically) stable for
c > c∗ and unstable for c < c∗.

The loss of stability of the exclusion 2-cycle (13) described in Theorem 3.1 suggests the
occurrence of a bifurcation of planar 2-cycles from the exclusion 2-cycle (13). 2-Cycles of the
map defined by (8) correspond to fixed points of the composite map. The point (x, y) = (0, y∗

0 ),
corresponding to the exclusion 2-cycle (13), is a fixed point of the composite for all values
of c. On the other hand, a positive fixed point (x, y) ∈ R2+ of the composite corresponds to
a coexistence 2-cycle. Positive fixed points of the composite satisfy the equations (obtained
from the composite equations after x and y are cancelled)

f (x, y, c) = 0, g(x, y, c) = 0 (15)

where

f (x, y, c) � −1 + (b1e
−x−cy + s1)(b1 exp(−(b1xe−x−cy + s1x)

− cy(b2e
−rcx−y + s2)) + s1)

g(x, y, c) � −1 + (b2e
−rcx−y + s2)(b2 exp(−rc(b1xe−x−cy + s1x)

− y(b2e
−rcx−y + s2)) + s2).

Note that by the way that c∗ is defined, the point (x, y) = (0, y∗
0 ) still satisfies these equa-

tions when c = c∗, i.e. f (0, y∗
0 , c∗) = 0 and g(0, y∗

0 , c∗) = 0. The Implicit Function Theorem
implies the existence of a solution branch (x, y, c) = (x, y(x), c(x)) of equations (15) that
passes through this point, i.e. a branch such that (0, y(0), c(0)) = (0, y∗

0 , c∗), provided the
Jacobian of f and g with respect to x and y is non-singular when evaluated at (x, y) = (0, y∗

0 ).
It is difficult in general to relate this non-singularity condition in a simple way to the para-
meters bi and si in the competition model (8). In the Appendix it is shown, however, that the
non-singularity condition does hold for b2 � bcr

2 . The analysis utilizes the lowest order terms
in Lyapunov–Schmidt expansions of the bifurcating exclusion 2-cycle (13), which in turn are
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Multiple mixed-type attractors 353

then used to estimate the bifurcation value c∗ of the bifurcating 2-cycles generated by the
solution branch (x, y, c) = (x, y(x), c(x)). In that analysis, attention is restricted to b1 lying
on the interval

I � {b1 : 1 − s1 < b1 < bcr
1 }, bcr

1 � (1 − s1) exp(2/(1 − s1)).

For b1 ∈ I the Ricker equation xt+1 = n1(1 − s1)xt exp(−xt − cyt ) + s1xt has a stable
equilibrium.

THEOREM 3.2 Assume (s1, s2) ∈ S and b1 ∈ I . If b2 � bcr
2 , then a branch of coexistence

2-cycles bifurcates from the exclusion 2-cycle (13) at c = c∗.

By Theorem 3.1, the exclusion 2-cycle (13) loses stability as c decreases through c∗. By the
exchange of stability principle ([16], p. 26) the bifurcating coexistence 2-cycles guaranteed
by Theorem 3.2 are (locally asymptotically) stable if they exist for c � c∗ (and unstable if
they exist for c � c∗). Accordingly, our next goal is to determine the conditions under which
the bifurcating coexistence 2-cycles occur for c � c∗. That is to say, we want to determine
when c′(0) < 0 for the solution branch (x, y, c) = (x, y(x), c(x)) of equations (15). We can
utilize the Lyapunov–Schmidt expansions used in the Appendix to establish Theorem 3.2 to
calculate an expansion of c′(0) for b2 near bcr

2 , the lowest order terms of which determine the
sign of c′(0). Details appear in the Appendix. To describe the results of this analysis, we need
some further notation.

We partition the unit square into the union S = S1 ∪ S2, S1 ∩ S2 = ∅ where S1 is the set of
points (s1, s2) ∈ S that satisfy either

0 ≤ s2 < s1 < 1 and 6(s2 − s1)
2 − 8

(
6s2

2 − 3s2 + 1
)
(1 − s1)s1 > 0

and where S2 is the set of points (s1, s2) ∈ S that satisfy 0 ≤ s1 ≤ s2 < 1 or satisfy

0 ≤ s2 < s1 < 1 or 6(s2 − s1)
2 − 8

(
6s2

2 − 3s2 + 1
)
(1 − s1)s1 ≤ 0.

See figure 1. Two critical numbers b±
1 , lying in the interval I and satisfying b−

1 < b+
1 , are

defined by (A10) and (A12) in the Appendix. Also defined in the Appendix, by formula (A11),
is a critical value r∗ of the ratio r .

THEOREM 3.3 Assume b1 ∈ I . For b2 � bcr
2 , and c � c∗ the bifurcating coexistence 2-cycles

of the competition model (8) (guaranteed by Theorem 3.2) are stable in either of the following
cases.

Figure 1. The unit square S for the survivorship parameters s1 and s2 in the competition model (8) is partitioned
into to sub-regions S1 and S2 corresponding to the two case in Theorems 3.3.
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(1) (s1, s2) ∈ S1 and either
(a) b−

1 < b1 < b+
1

(b) b1 < b−
1 and r < r∗

(c) b1 > b+
1 and r < r∗;

(2) (s1, s2) ∈ S2 and r < r∗.

The subinterval b−
1 < b1 < b+

1 in Theorem 3.4 is centered on the value

(1 − s1) exp

(
s1(1 − s2) + s2(1 − s1)

s1(1 − s1)(1 − s2)

)
,

which supplies a rough estimate of those b1 for which the theorem applies.
According to (7), the exclusion equilibrium E1 is stable if

rc > ln n2/ ln n1. (16)

For b2 ≈ bcr
2 it follows that ncr

2 ≈ exp(2/(1 − s2)) and from Lemma A.3 in the Appendix that

c∗
≈

1

2
(1 − s2) ln n1.

Thus, if r > r∗∗ � 4(1 − s2)
−2 ln−2 n1, then for c � c∗ and b2 � bcr

2 the inequality (16) holds
and E1 is stable.

In order for both the coexistence 2-cycles and the exclusion equilibrium to be stable in
the cases (1b,c) and (2) of Theorem 3.3, it is required that r∗∗ < r < r∗. Necessary for this
requirement is r∗∗ < r∗. This inequality is characterized in LemmaA.6 of theAppendix. These
results, together with Theorem 3.3, lead to the following theorem.

THEOREM 3.4 Assume b1 ∈ I . For b2 � bcr
2 , and c � c∗ the exclusion equilibrium E1 and the

bifurcating coexistence 2-cycles of the competition model (8) are both stable if (s1, s2) ∈ S1

and one of the following cases holds:

(1) b−
1 < b1 < b+

1
(2) b1 � b−

1 and r∗∗ < r < r∗
(3) b1 � b+

1 and r∗∗ < r < r∗.

This theorem provides conditions on the parameters in the competition model (8) under
which there are multiple mixed-type attractors (specifically, a 2-cycle and an equilibrium).
It follows from Lemma A.6 of the Appendix that in the cases not covered in Theorem 3.4
(namely when (s1, s2) ∈ S2 or when (s1, s2) ∈ S1 and b1 is near the endpoints 1 − s1 and bcr

1
of the interval I ) either the 2-cycle is unstable or the equilibrium E1 is unstable.

4. Discussion

The Ricker competition model (8) can possess multiple mixed-type attractors. Theorem 3.4
provides some conditions under which there exist both a stable exclusion equilibrium and a
stable coexistence 2-cycle. That theorem deals with values of b2 greater than (but near) the
critical period doubling bifurcation value bcr

2 , values of b1 less than the critical value bcr
1 ,

and with the inter-specific competition coefficient c near a specified critical value c∗. The
theorem also requires that the survivorships (s1, s2) lie in the region S1 of figure 1. This latter
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assumption means that the survivorship s1 of species x is larger than the survivorship s2 of
species y. Therefore, Theorem 3.4 requires that there be an asymmetry between the two species
in the sense that one species has a high reproductive rate and low survivorship in contrast to the
other species, which has a low reproductive rate and a high survivorship. Figure 2 illustrates
the existence of multiple mixed-type attractors under these conditions.

Theorem 3.4 implies the local bifurcation of stable coexistence 2-cycle only for c sufficiently
large, namely, near the critical point c∗. An interesting question concerns the global extent
of this bifurcating branch of 2-cycles. What is the ‘spectrum’ of c values for which these
coexistence 2-cycles occur? Numerous numerical explorations have shown that the bifurcation

Figure 2. Each plot shows a solution of the Ricker competition model (8) with b1 = 8, b2 = 10, s1 = 0.65, s2 = 0,
r = 1.1 and c = 1.9. In plot (a) the initial conditions (x0, y0) = (0.2, 3.5) lead to competitive exclusion. In (b) the
initial conditions (x0, y0) = (0.19, 3.5) lead to a competitive coexistence 2-cycle. See figure 3(a).

Figure 3. A sequence of phase plane plots shows the bifurcation of stable coexistence 2-cycles from the exclusion
2-cycles on the y-axis in the Ricker competition model (8) as the competition coefficient c decreases through the
critical value c∗ ≈ 2.35. Model parameters are b1 = 8, b2 = 10, s1 = 0.65, s2 = 0, and r = 1.1. Plot (a) shows a
sequence of stable 2-cycles (open circles with connecting lines) that eventually destabilize and give rise to stable,
double invariant loops as shown in plot (b). In plot (c) the double invariant loops eventually collide, under further
decreases in c, and undergo a global, heteroclinic bifurcation involving the (saddle) coexistence equilibrium, the
exclusion (saddle) equilibrium, the exclusion (saddle) 2-cycle located and their stable and unstable manifolds. For
the parameter values in these plots, the exclusion equilibrium E1 : (x, y) ≈ (22.86, 0) is also stable and hence these
plots contain multiple mixed-type attractors.
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Figure 4. Each graph shows a solution of the Ricker competition model (8) with b1 = 8, b2 = 10, s1 = 0.65,
s2 = 0, r = 1.1 and c = 1.8. In plot (a) the initial conditions (x0, y0) = (0.12, 3.5) lead to competitive exclusion. In
plot (b) the initial conditions (x0, y0) = (0.01, 3.5) lead to a competitive coexistence quasi-periodic oscillation (see
figure 3(b, c)).

sequence displayed in figure 3 is typical.As c decreases, and the coexistence 2-cycles bifurcate
from the exclusion 2-cycle on the y-axis at c = c∗, there exists a second critical value of c at
which the coexistence 2-cycles lose stability because of an invariant loop (Sacker/Neimark or
discrete Hopf ) bifurcation. The resulting coexistence (double) invariant loops persist until c

reaches a third critical value at which the loops disappear in a global heteroclinic bifurcation.
See figures 3 and 4.

In this paper we have shown that the Ricker competition model (8) cannot display a multiple
mixed-type attractor scenario with only equilibria. On the other hand, Theorem 3.4 shows that
multiple mixed-type attractor scenarios are possible with non-equilibrium attractors, specif-
ically, with stable competitive exclusion equilibria and stable coexistence 2-cycles. Multiple
mixed-type attractors scenarios are also possible for model (8) that involve other combi-
nations of higher period cycles, quasi-periodic (as in figure 4) and even chaotic attractors.
Figure 5 shows one example. The analysis of such multiple attractor cases remains an open
problem.

Figure 5. A sequence of phase plane plots shows the bifurcation of stable coexistence 4-cycles from the exclusion
4-cycles on the y-axis in the Ricker competition model (8) as c decreases from the critical value c∗ ≈ 4.77. Model
parameters are b1 = 8, b2 = 14, s1 = 0.8, s2 = 0, r = 0.8 and c = 1.9. Plot (a) shows a sequence of 4-cycles the
undergoes a period-halving bifurcation to 2-cycles which ultimately destabilize and give rise to stable, double invariant
loops. As c decreases further, plot (b) shows the double invariant loops, which occasionally period lock, eventually
giving rise to chaotic attractors. The chaotic attractors suddenly disappears when an ‘interior crisis’occurs at a critical
value of c. For the parameter values in these plots, the exclusion equilibrium E1 : (x, y) ≈ (3.69, 0) is also stable
and hence these plots contain multiple mixed-type attractors.
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A. Appendix

The proof of Theorem 2.1 utilizes the following lemma.

LEMMA A.1 Consider the difference equation zt+1 = bzt exp (−kzt ) + szt with z0, b, k > 0,

s ≥ 0 and b + s > 1. There exist positive constants α, β > 0 (independent of z0) such that the
solution satisfies α ≤ lim inf t→+∞ zt ≤ lim supt→+∞ zt ≤ β.

Proof The maximum of bz exp(−kz) for z ≥ 0 is bk−1e−1. The inequalities 0 < zt+1 ≤
bk−1e−1 + sxt and an induction show

0 < zt ≤ ut , t = 0, 1, 2, . . . (A1)

where ut is the solution of the linear difference equation ut+1 = bk−1e−1 + sut with
u0 = z0. Since s < 1 it follows that limt→+∞ ut = bk−1e−1/(1 − s) > 0. For any number
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β > bk−1e−1/(1 − s), any solution ut satisfies ut < β for all large t . By (A1) it follows that
there exists a t∗ = t∗(z0) ≥ 1 such that

zt ≤ β for t ≥ t∗. (A2)

For any α satisfying 0 < α < β the smooth function f (z) = bz exp(−kz) + sz is positive
on the interval α ≤ z ≤ β. Since f (0) = 0, the minimum of f (z) on the interval α ≤ z ≤ β

occurs at z = α if α is sufficiently small: minα≤z≤β f (z) = f (α). For all sufficiently small
α > 0 it follows from f ′(0) = b + s > 1 and from the mean value theorem that f (α) > α.
Pick a number m between b + s and 1 (their mean, for example). By the continuity of f ′
there exists an α > 0 so small the f ′(z) > m > 1 for z on the interval 0 < z < α. For z on
this interval we have, by the mean value theorem, that f (z) = f ′(ξ)z for some ξ satisfying
0 ≤ ξ ≤ z. Thus, f (z) > mz for z on the interval 0 ≤ ξ ≤ z. Thus, zt+1 > mzt or zt > mtz0

for as long as zt < α. It follows that from any point in the interval 0 < z0 < α (for any α > 0
sufficiently small) the solution zt will exceed α in a finite number of steps. At this point,
we know that for t ≥ t∗ the solution satisfies zt ≤ β and that if for some t ≥ t∗ it happens
that zt < α then there exists a t∗∗ > t∗ such that zt∗∗ ≥ α. By induction it follows that for all
subsequent t ≥ t∗∗ we have zt ≥ α. This follows from the fact that α ≤ z ≤ β =⇒ f (z) ≥
minα≤z≤β f (z) = f (α) > α.

In summary, we have shown that for any z0 > 0 there exists a time t∗∗ > 0 such that
α < zt < β for all t ≥ t∗∗ and the lemma follows immediately. �

Proof of Theorem 2.1 If x0 = 0 or y0 = 0 the result follows from Lemma A.1. Suppose
(x0, y0) ∈ R2+/{(0, 0)}. Note that the maximum of the function bx exp(−x) for x ≥ 0 is
be−1. The inequalities 0 < xt+1 ≤ b1e

−1 + s1xt and 0 < yt+1 ≤ b2e
−1 + s2yt , together with a

straightforward induction, show that 0 < xt ≤ ut and 0 < yt ≤ vt where ut and vt satisfy the
linear difference equations ut+1 = b1e

−1 + s1ut and vt+1 = b2e
−1 + s2vt with initial condi-

tions u0 = x0 and v0 = y0. Because si < 1, we have that limt→+∞ ut = b1e
−1(1 − s1)

−1 and
limt→+∞ vt = b2e

−1(1 − s2)
−1. As a result

0 < lim sup
t→+∞

xt ≤ b1e
−1(1 − s1)

−1, 0 < lim sup
t→+∞

yt ≤ b2e
−1(1 − s2)

−1.

Define β � b1e
−1(1 − s1)

−1 + b2e
−1(1 − s2)

−1. From the inequalities

bxt exp(−k(xt + yt )) + sxt ≤ b1xt exp(−xt − c1yt ) + s1xt = xt+1

byt exp(−k(xt + yt )) + syt ≤ b2yt exp(−c2xt − yt ) + s2yt = yt+1,

where k � max{1, c1, c2}, s � min{s1, s2}, and b � min{b1, b2}, we obtain (by addition) the
inequality b(xt + yt ) exp(−k(xt + yt )) + s(xt + yt ) ≤ xt+1 + yt+1. An induction shows

0 < wt ≤ xt+1 + yt+1 (A3)

where wt satisfies the difference equation

wt+1 = bwt exp(−kwt) + swt (A4)

with w0 = x0 + y0 > 0. Note that because both ni > 1 we have that b + s > 1. Lemma A.1
implies the existence of a constant α > 0 such that α ≤ lim inf t→+∞ wt which, together
with (A3), implies α ≤ lim inf t→+∞(xt + yt ). �
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Proof of Theorem 3.2 Define z = y − y∗
0 and w = c − c∗ and re-write the composite, fixed

point equations (15) as

p(x, z, w) = 0, q(x, z, w) = 0 (A5)

where p(x, z, w) � f (x, y∗
0 + z, c∗ + w) and q(x, z, w) � g(x, y∗

0 + z, c∗ + w). By the
Implicit Function Theorem there exists a (unique, analytic) solution pair z = z(x) and
w = w(x) of (A5), for x on an open interval containing x = 0, that satisfies z(0) = w(0) = 0
provided δ � pzqw − pwqz|(0,0,0) �= 0. A straightforward calculation shows gw|(0,0,0) = 0
and hence

δ � −pwqz|(0,0,0) . (A6)

The solution (x, y) = (x, y(x)) is a fixed point of the composite equations (15) for c = c(x)

that corresponds to (i.e. is the first component of) a 2-cycle point of the competition
equation (8). When x = 0, and hence c = c∗ and y = y∗

0 , this branch of 2-cycles intersects the
exclusion cycle (13). For x � 0 the fixed point (x, y(x)) ∈ R2+ corresponds to a coexistence
2-cycle of (8).

The proof of Theorem 3.2 will be complete when we show that δ �= 0 for b2 > bcr
2 suffi-

ciently close to bcr
2 , i.e. for b2 � bcr

2 . This investigation makes use of approximations obtained
from a parameterization of the bifurcating 2-cycles. The first step is to obtain approximations
of the exclusion 2-cycle on the y-axis.

LEMMA A.2 Assume (s1, s2) ∈ S and b2 � bcr
2 . The bifurcating stable 2-cycles (10) of the

Ricker equation yt+1 = b2yt exp(−yt ) + s2yt , y0 > 0 have, for ε ≈ 0, the representations

b2 = bcr
2

[
1 + 6s2

2 − 3s2 + 1

6 (1 − s2)
ε2 + O

(
ε3

)]

y∗
0 = 2

1 − s2
+ ε + 1 − 3s2 + 6s2

2

6 (1 − s2)
ε2 + O

(
ε3

)

y∗
1 = 2

1 − s2
− ε + 1 + 3s2

6 (1 − s2)
ε2 + O

(
ε3

)
.

Proof The point y∗
0 �= ln n2 on a 2-cycle (10) of the Ricker equation is a fixed point of the

composite map. The fixed point equation reduces, after the cancellation of y, to

−1 + (b2e
−y + s2)(b2 exp(−(b2ye−y + s2y)) + s2) = 0.

To center this equation on the equilibrium ln n2, let z = y − ln n2 and re-write the equation
as h(z, b2) = 0 where

h(z, b2) � −1 + (s2 + (1 − s2)e
−z)(s2 + b2 exp(−s2(z + ln n2) − (z + ln n2)(1 − s2)e

−z)).

Since h(0, b2) = 0 for all b2 and since we are interested in fixed points z �= 0 (i.e.
y �= ln n2), we define k(z, b2) = h(z, b2)/z and re-write the equation for z and b2 as
k(z, b2) = 0. We let ε = z and calculate the lower order coefficients in the expansion
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b2 = bcr
2 + β1ε + β2ε

2 + O(ε3) of the solution of this equation. From the expansion

k(ε, bcr
2 + β1ε + β2ε

2) = β1
(1 − s2)

2

bcr
2

ε − (s2 − 1)

6
(3s2 − 6s2

2 + 6β2e
2

s2−1 − 1)ε2 + O(ε3)

we conclude that β1 = 0 and β2 = bcr
2 (6s2

2 − 3s2 + 1)/6(1 − s2), which yields the expansion
for b2 in the Lemma. Then from n2 � ln(b2/(1 − s2)) we obtain

ln n2 = 2

1 − s2
+ 1 − 3s2 + 6s2

2

6(1 − s2)
ε2 + O(ε4)

and see that the fixed point y = z + ln n2 has the expansion given in the Lemma. We can
calculate the expansion of the second point y∗

1 = b2y
∗
0e−y∗

0 + s2y
∗
0 on the 2-cycle from the

expansions for b2 and y∗
0 . The result is that given in the statement of the Lemma. �

LEMMA A.3 Assume (s1, s2) ∈ S and b2 � bcr
2 . The critical value c∗ (at which the exclusion

2-cycle (13) loses stability) has, for ε ≈ 0, the representation

c∗ = (1 − s2) ln n1

2

[
1 +

(
3

2
s1(1 − s2)

2 ln n1 − 1 − 3s2
2

)
ε2 + O(ε3)

]
.

Proof The critical value c∗ is the unique root of the equation (14). By means of the expansions
from Lemma A.2 and this equation, we seek the coefficients in the expansion c∗ = c0 + c1ε +
c2ε

2 + O(ε3) of the root. Substitution of these ε-expansions into the left-hand side of (14)
and expanding in ε results, to first order, in

(
s1 + b1 exp

(
−2

c0

1 − s2

))2

− 4b1c1

1 − s2
exp

(
−2

c0

1 − s2

)
ε + O(ε2) = 1

and consequently c0 = (1 − s2)(ln n1)/2 and c1 = 0. An expansion of the left-hand side to
second order then results in

1 − 1

3

1 − s1

1 − s2
(12c2 + (

3s2
2 + 1)c0 − 3s1(1 − s2)c

2
0

)
ε2 + O(ε3) = 1

and hence 12c2 + (3s2
2 + 1)c0 − 3s1(1 − s2)c

2
0 = 0 which, when solved for c2, leads to the

formula in the Lemma. �

Using the ε expansions provided by Lemmas A.2 and A.3, we can obtain ε expansions,
and hence lower order approximations, of δ for b2 � bcr

2 for ε ≈ 0. To do this, we need to
calculate (with the aid of a symbolic computer program) the partial derivatives pz|(0,0,0),
px |(0,0,0), qz|(0,0,0), qx |(0,0,0) and pw|(0,0,0). These have complicated formulas, only one of
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which we display here:

pw|(0,0,0) = −y∗
0b1s1e

−y∗
0 c∗ − y∗

0b1[s1(s2 + b2e
−y∗

0 ) + b1(1 + s2 + b2e
−y∗

0 )e−y∗
0 c∗ ]

× exp(−(s2 + b2e
−y∗

0 )y∗
0c∗).

Note that pw|(0,0,0) < 0. From the ε-expansions in Lemmas A.2 and A.3 we find

pz|(0,0,0) = − (1 − s1)(1 − s2) ln n1

2
(2s2 + s1s2 ln n1 − s1 ln n1)ε + O(ε2)

px |(0,0,0) = 1 − s1

2
(r(1 − s2)

2(ln n1)
2 − 4) + O(ε)

qz|(0,0,0) = −1 − s2

3
(6s2

2 − 3s2 + 1)ε2 + O(ε3)

qx |(0,0,0) = −r
(1 − s2)

3 ln n1

4
(2 − (1 − s1))ε + O(ε2).

Notice that

qz|(0,0,0) < 0 for b2 � bcr
2 (A7)

(b2 � bcr
2 is the same as ε ≈ 0). This is because 6s2

2 − 3s2 + 1 > 0 for 0 ≤ s2 ≤ 1. Therefore,
by (A6) δ �= 0 for b2 � bcr

2 and the proof of Theorem 3.2 is complete. �

Proof of Theorem 3.3 Our goal is to determine when c′(0) = w′(0) < 0. From the equations
p(x, z(x), w(x)) = 0, q(x, z(x), w(x)) = 0 we obtain by implicit differentiation that w′(0) =
ρδ−1 where

ρ � pxqz − pzqx |(0,0,0). (A8)

It follows that w′(0) < 0 if δ and ρ have opposite signs. In the proof of Theorem 3.2 above
we showed that pw|(0,0,0) < 0 and consequently by (A6) the sign of δ is the same as qz|(0,0,0).
It follows that for b2 � bcr

2 , δ is negative (see (A7)) and we conclude that w′(0) < 0 if ρ > 0.
For b2 � bcr

2 the formula (A8) for ρ and the expansions calculated in the proof of Theorem 3.2
yield ρ = 	ε2 + O(ε3) where

	 = 	0 + 	1r (A9)

with 	0 � 2(1 − s1)(1 − s2)(6s2
2 − 3s2 + 1)/3 and

	1 � (1 − s1)(1 − s2)
3 ln2 n1

24
m(ln n1)

m(ξ) � −4(3s2
2 + 1) + 6(1 − s2)((1 − s2)s1 + (1 − s1)s2)ξ

− 3s1(1 − s2)
2(1 − s1)ξ

2.

It follows that w′(0) < 0 for b2 � bcr
2 if 	 > 0 (and w′(0) < 0 if 	 < 0).

LEMMA A.4 Assume (s1, s2) ∈ S and b2 � bcr
2 . Let c∗ denote the unique positive root of the

equation (14). If 	 > 0 then the bifurcating branch of coexistence 2-cycles occurs for c � c∗
and the 2-cycles are (locally asymptotically) stable. If 	 < 0 then the bifurcating branch of
coexistence 2-cycles in 	 occurs for c � c∗ and the 2-cycles are unstable.

The proof of Theorem 3.3 will be complete when we determine the parameter values
s1, s2, b1, and r for which 	 > 0.
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Since 	0 > 0 for (s1, s2) ∈ S, the sign of 	 in (A9) depends on that of 	1, which in turn
is the sign of the factor m(ln n1). The term m(ζ) is a quadratic polynomial in ξ . Restricting
our attention to b1 ∈ I , we need only investigate the sign of m(ξ) for ξ on the interval 0 <

ξ < 2/(1 − s1) which we denote by I ∗. Note that m′′(ξ) = −6s1(1 − s1)(1 − s2)
2 < 0 and at

the endpoints of I ∗ we find that m(0) = −4(3s2
2 + 1) < 0 and m((2/(1 − s1)) = −4(6s2

2 −
3s2 + 1) < 0. The maximum of the quadratic m(ξ) occurs at

ξmax � s1(1 − s2) + s2(1 − s1)

s1(1 − s1)(1 − s2)
> 0.

It follows that m(ξ) > 0, and hence 	1 > 0 if and only if ξmax ∈ I ∗, m(ξmax) > 0 and ξ lies
between the two roots of m(ξ)

ξ± =
6((1 − s2)s1 + (1 − s1)s2) ±

√
6
(
6(s2 − s1)2 − 8

(
6s2

2 − 3s2 + 1
)
(1 − s1)s1

)
6s1(1 − s2)(1 − s1)

, (A10)

which in this case lie in I ∗. Calculations show ξmax ∈ I ∗, m(ξmax) > 0 if and only if (s1, s2) ∈
S1. We conclude that 	 > 0 if (s1, s2) ∈ S1 and ξ lies between ξ±. If, on the other hand,
(s1, s2) ∈ S1 and ξ does not lie between ξ± or if (s1, s2) /∈ S1 (i.e., if (s1, s2) ∈ S2), then
m(ln n1) < 0 and hence 	1 < 0. In these cases 	 = 	0 + r	1 > 0 if and only if r < r∗
where

r∗ � −	0/	1 = −16
6s2

2 − 3s2 + 1

(1 − s2)2 ln2 n1

1

m(ln n1)
. (A11)

The roots (A10) correspond to

b±
1 = (1 − s1) exp(ξ±). (A12)

We summarize these results in the following lemma.

LEMMA A.5 Assume (s1, s2) ∈ S and b1 ∈ I . Also assume b2 � bcr
2 , and c � c∗. Then 	 > 0

in either of the following cases.

(1) (s1, s2) ∈ S1 and either
(a) b−

1 < b1 < b+
1

(b) b1 < b−
1 and r < r∗ or

(c) b1 > b+
1 and r < r∗;

(2) (s1, s2) ∈ S2 and r < r∗.

Theorem 3.3 follows immediately from Lemmas A.4 and A.5. �

In order to satisfy r < r∗ (to obtain the stability of the bifurcating coexistence 2-cycles
in cases (1b,c) and (2) of Theorem 3.3) and also r > r∗∗ (to obtain the stability of E1), it is
necessary that r∗∗ < r∗. This inequality is equivalent to 0 < m(ξ) + 4

(
6s2

2 − 3s2 + 1
)

where
ξ = ln n1 ∈ I ∗. (Recall m(ln n1) < 0 in cases (1b) and (2) of Theorem 3.3). This inequality
does not hold at the endpoints of the interval I ∗. This is because m(0) + 4

(
6s2

2 − 3s2 + 1
) =

−12(1 − s2)s2 < 0 and m(2/(1 − s1)) + 4
(
6s2

2 − 3s2 + 1
) = 0. In case (2) the maximum of

m(ξ) occurs at the right endpoint ξ = 2/(1 − s1) and as a result the inequality r∗∗ < r∗ does
not hold. In cases (1b,c) then inequality holds at and near the roots ξ± of m(ξ).

LEMMA A.6 In case (2) of Lemma A.5, r∗∗ ≥ r∗. In cases (1b, c) of Lemma A.5, r∗∗ < r∗ if
and only if b1 � b−

1 or b1 � b+
1 .


