- 1. Use the Trapezoid rule and midpoint rule with n = 4 to approximate the integral $\int_{1}^{5} \frac{1}{x} dx$.
- 2. Consider the integral $\int_0^{0.5} \cos(x^3) dx$. By the Midpoint rule with n equal subintervals, give an estimate for n which guarantee that the error is bounded by $1/10^4$.
- 3. Consider $\int_1^3 \frac{1}{x^2} dx$ using the Trapezoid Rule with n =4. Then use the error bound

 $|E_T| \le \frac{k(b-a)^3}{12n^2}$ to estimate the accuracy.

4. Evaluate the following improper integral.

(a)
$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx$$
 (b) $\int_{0}^{1} \frac{\ln x}{x^{2}} dx$ (c) $\int_{-\infty}^{\infty} \frac{1}{4+x^{2}} dx$ (d) $\int_{0}^{1} x^{-1/2} dx$ (e) $\int_{3}^{\infty} \frac{1}{x^{2}-x-2} dx$

5. Use comparison Theorem to determine whether the following is convergent or divergent. Justify your answer.

(a)
$$\int_{1}^{\infty} \frac{\cos^{2} x}{x^{3}} dx$$
 (b) $\int_{0}^{\infty} \frac{1}{\sqrt{x+1}} dx$

6. Find the area of the region bounded by the curves given below. Sketch the region, too.

- (a) $y = x^3 2x$ and y = -x
- (b) $x = y^2 7$ and x = y 1
- 7. Find the volume of the solid generated by revolving the region between the parabola $x = y^2 + 1$ and the line x = 3 about the line x = 3. Sketch the region!
- 8. The region in the first quadrant enclosed by the parabola $y = x^2$, the y-axis, and the line y = 1 is revolved about the line x = 3/2 to generate a solid. Find the volume of the solid.
- 9. Find the arc length of the curve given below.

(a) the curve
$$y = \frac{2}{3}(x-1)^{3/2}, 1 \le x \le 4$$

- (b) parametric curve $x = \cos^2 t$, $y = \sin^2 t$, $0 \le t \le \frac{\pi}{2}$
- 10. A particle is moving along a straight line so that its velocity at time t is $v(t) = 3t^2$. At what time t during the interval 0 < t < 3 is its velocity the same as its average velocity over the entire interval?

Answers:

- 1. Trapezoid: 101/60 Midpoint: 496/315 2. n=14(answer may vary) 3. $|E_T| \le \frac{1}{4}$
- 4. (a) 1 (b) Divergent (c) $\pi/2$ (d) 2 (e) $\frac{1}{3}\ln 4$ 5. (a) Convergent (b) Divergent

6. (a)
$$\frac{1}{2}$$
 (b) 125/6 7. $\frac{64\pi\sqrt{2}}{15}$ 8. $\frac{3\pi}{2}$

9. (a)
$$14/3$$
 (b) $\sqrt{2}$

10.
$$t = \sqrt{3}$$