Final exam is 20% of the grade so that it will affect your grade significantly. Please prepare well for the final and don't forget to go over the past exams.

- 1. A force of 8 dynes is required to stretch a spring from its natural length of 10 cm to a length of 15 cm. How much work is done
- (a) in stretching the spring to a length of 25 cm?
- (b) in stretching the spring from a length of 20 cm to a length of 25cm?
- 2. Solve the following differential equation.

(a)
$$\frac{dy}{dx} - 4y = 0$$
 (b) $\frac{dy}{dx} - 4xy = 0$ (c) $\frac{dy}{dx} = y^2 - 4y + 3$

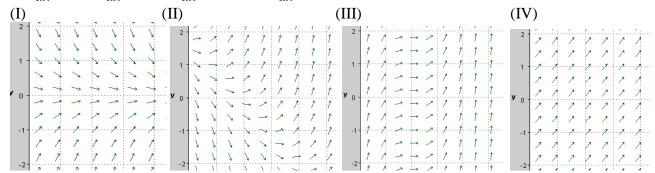
3. In paleontology, the phenomenon of a radioactive decay is commonly used to date fossil remains.

This method uses the fact the rate of decay $\frac{dA}{dt}$ of an element will be proportional to the amount A of

the radioactive element that exists at time t.

- (a) Determine a differential equation that A(t) must satisfy.
- (b) What can you say about A(t) as $t \to \infty$?
- (c) Find a solution to your differential equation.
- (d) How long will it take for half of the original amount of the radioactive element to decay?
- 4. Match the direction field with the differential equation given below.

(a)
$$\frac{dy}{dx} = 1$$
 (b) $\frac{dy}{dx} = x^2$ (c) $\frac{dy}{dx} = x + y$ (d) $\frac{dy}{dx} = -y$



- 5. Newton's Law of Cooling states that the rate at which a body changes temperature is proportional to the difference between its temperature and the temperature of the surrounding medium. Suppose that a body has an initial temperature of 250 $^{\circ}F$ and that after one hour the temperature is 200 $^{\circ}F$. Assuming that the surrounding air is kept at a constant temperature of 72 $^{\circ}F$, determine the temperature of the body at time t.
- 6. Radium has a half life of 1600 years. How many years does it take for 90% of a given amount of radium to decay?
- 7. Determine the limit of the sequence below.

(a)
$$a_n = \frac{(-1)^n}{\sqrt{n}}$$
 (b) $a_n = \frac{(-2)^n}{n}$ (c) $\frac{3\cos n + 1}{n}$ (d) 1.0001^n (e) $\frac{n\cos n}{n^2 + 1}$

8. Find the sum of the following series if exists.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
 (b) $\sum_{n=0}^{\infty} 3[(\frac{1}{2})^n + (-\frac{1}{2})^n]$ (c) $\sum_{n=4}^{\infty} \ln(\frac{n+1}{n})$ (d) $\sum_{n=1}^{\infty} \frac{n-1}{2n+1}$ (e) $\sum_{n=1}^{\infty} \frac{1}{e^{2n}}$

9. Which of the following series converge? If possible, find the sum. Explain your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{\pi^n}{4^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (d) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3}$ (e) $\sum_{n=1}^{\infty} \frac{1+\sin^2 n}{5^n}$ (f) $\sum_{n=1}^{\infty} \frac{1}{n+1}$ (g) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$

(h)
$$\sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n+1})$$
 (i) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 1}$ (j) $\sum_{n=1}^{\infty} \frac{1}{2+3^n}$ (k) $\sum_{n=1}^{\infty} \frac{\ln n}{(n+1)^3}$

- 10. Approximate the sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^4}$ with error < 0.001.
- 11. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{4^n}.$
- (a) Show that the series is absolutely convergent. Is it convergent, then?
- (b) Calculate the sum of the first three terms to approximate the sum of the series.
- (c) Estimate the error involved in the approximation from part (b).
- 12. Find the radius of convergence of the following.

(a)
$$\sum_{n=0}^{\infty} \frac{n!}{4^n} (x+3)^n$$
 (b) $\sum_{n=0}^{\infty} \frac{x^n}{3n+1}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ (what is this series?)

13. Find a power series representation for the following function.

(a)
$$f(x) = \frac{x}{x+5}$$
 (b) $\int \frac{x}{x^3+1} dx$

14. Find the sum of
$$\sum_{n=1}^{\infty} \frac{3^n}{5^n n!}$$
.

- 15. Find the Maclaurin series for the following.
- (a) $\ln(1+x)$ (b) xe^{x} (c) $(1+x)^{1/3}$
- 16. Replace the following polar equations by equivalent Cartesian equations, and identify their graphs.

(a)
$$r^2 = 4r \cos \theta$$
 (b) $r = \frac{4}{2 \cos \theta - \sin \theta}$ (c) $\theta = \frac{\pi}{6}$

- 17. Find the parametric equations and parameter intervals for the motion of a particle that starts at (a,0) and traces the ellipse $(x^2/a^2)+(y^2/b^2)=1$ (a) once clockwise (b) twice counterclockwise.
- 18. Find the equation of the line passing thru the points A(-1,1,0) and B(0,2,3).
- 19. Find the equation of the plane passing thru the points A(0,1,0), B(1,2,-1) and C(0,-1,2).
- 20. Find the first order partial derivatives of the function $f(x, y) = x \ln(\frac{x+y}{x-y})$.

Answer key

1. (a) 180 dynes-cm (b) 100 dynes-cm

2. (a)
$$y = e^{4x} \cdot C$$
 (b) $y = C \cdot e^{2x^2}$ (c) $\ln \left| \frac{y-3}{y-1} \right| = 2x + C$

3. (a)
$$\frac{dA}{dt} = -kA, k > 0$$
 (b) it approaches to 0 since $\frac{dA}{dt} < 0$ (c) $A(t) = Ae^{-kt}$ (d) $t = \frac{\ln 2}{k}$

4. (I) d (II) c (III) b (IV) a

5.
$$\frac{dT}{dt} = k(T-72), T(0) = 250^{\circ} F$$
,

$$T(1) = 200^{\circ} F \Rightarrow T(t) = 72 + 178(\frac{128}{178})^{t} = 72 + 178e^{-0.32975t} = 72 + 178 \cdot 0.7191^{t}$$

6.
$$\frac{1600 \ln 10}{\ln 2}$$

7. (a) 0 (b) divergent (c) 0 (d) divergent (e) 0

8. (a)
$$\frac{3}{4}$$
 (b) 8 (c), (d) divergent (e) $\frac{1}{e^2-1}$

9. (a) converges and sum is $\frac{\pi}{4-\pi}$ (b) converges since it is a p-series, p=3/2>1 (c) diverges by integral

test (d) converges since it is a p-series, p = 3 > 1 (e) converges by direct comparison test

(f) diverges since it is a harmonic series (g) converges by alternating series theorem

(h) converges since it is a telescoping series (i) diverges by divergence test (j) converge by direct comparison test (k) converges by limit comparison and integral test

10. 0.948

11. (a) Yes (b) about 0.17 (c)
$$R_3 \le \frac{1}{64}$$

12. (a) 0 (b)
$$[-1,1)$$
 (c) ∞ , $\sin x$

13. (a)
$$\sum_{n=0}^{\infty} (-1)^n (\frac{x}{5})^{n+1}$$
, $|x| < 5$ (b) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+2}}{3n+2} + c$

14.
$$e^{3/5} - 1$$

15. (a)
$$x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n+1}\frac{1}{n}x^n + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$$
 (c) $1 + \frac{1}{3}x + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} \cdot 2 \cdot 5 \cdot 8 \cdots (3n-4)x^n}{3^n \cdot n!}, |x| < 1$

16. (a) a circle centered at (2,0) and radius 2 (b) a line y = 2x -4 (c) a line thru (0,0) and slope is $\frac{1}{\sqrt{3}}$

17. (a)
$$x = a\cos t$$
, $y = -b\sin t$, $0 \le t \le 2\pi$ (b) $x = a\cos 2t$, $y = b\sin 2t$, $0 \le t \le 2\pi$

18.
$$x = -1 + t$$
, $y = 1 + t$, $z = 3t$

19.
$$y + z = 1$$

20.
$$f_x = \ln \frac{x+y}{x-y} - \frac{2xy}{x^2-y^2}$$
, $f_y = \frac{2x^2}{x^2-y^2}$