1. Use any valid convergence/divergence test to determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$(a)\sum_{n=2}^{\infty}\frac{1}{\ln n}$$

$$(b) \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$$

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$
 (b) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ (d) $\sum_{n=1}^{\infty} \frac{3n}{\sqrt{2n^2+2}}$ (e) $\sum_{n=2}^{\infty} \frac{1}{4n+4^n}$

(e)
$$\sum_{n=2}^{\infty} \frac{1}{4n+4^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{3 - \cos n}{n^{3/2} + 2}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{2^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{3 - \cos n}{n^{3/2} + 2}$$
 (g)
$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{2^n}$$
 (h)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 2n + 1}}{n^3 + 3n + 10}$$
 (i)
$$\sum_{n=2}^{\infty} \frac{3}{n^5 + 1}$$
 (j)
$$\sum_{n=2}^{\infty} \frac{2^n n^2}{n!}$$

(i)
$$\sum_{n=2}^{\infty} \frac{3}{n^5 + 1}$$

$$(j) \sum_{n=2}^{\infty} \frac{2^n n^2}{n!}$$

- 2. True or false. Explain why or why not.
- (a) To prove that the series $\sum_{n=0}^{\infty} a_n$ converges, you should compute the limit $\lim_{n\to\infty} a_n$. If this limit is 0, then series converges.
- (b) For a series $\sum_{n=1}^{\infty} a_n$, it was found that $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = 0$. The series is absolutely convergent.
- (c) If the series $\sum_{n=0}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
- (d) An infinite series $\sum_{n=1}^{\infty} a_n$ converges if the limit of the sequence of partial sums converges.
- (e) There exists a convergent series $\sum_{n=0}^{\infty} a_n$ which satisfies $\lim_{n\to\infty} a_n \neq 0$.
- (f) Let $a_n = \frac{n}{2n+1}$. This sequence a_n converges but the series $\sum_{n=1}^{\infty} a_n$ diverges.
- (g) There is no divergent series $\sum_{n=1}^{\infty} a_n$ which satisfies $\lim_{n\to\infty} a_n = 0$.
- (h) There is an infinite series which converges but does not converges absolutely.
- (i) There is no divergent series which converges absolutely.