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1. Use any valid convergence/divergence test to determine whether the series is absolutely 

convergent, conditionally convergent, or divergent. 
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2. True or false. Explain why or why not. 

(a) To prove that the series 
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0, then series converges. 
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(d) An infinite series
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(e) There exists a convergent series 
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(g) There is no divergent series 
1

n

n

a




 which satisfies  lim 0n
n

a


 . 

 

(h) There is an infinite series which converges but does not converges absolutely.  

 

 

(i) There is no divergent series which converges absolutely. 

 


