Math 192 Series Name & Box number:

1. Use any valid convergence/divergence test to determine whether the series is absolutely
convergent, conditionally convergent, or divergent.
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2. True or false. Explain why or why not.
() To prove that the series Za converges, you should compute the limit lima, . If this limit is
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0, then series converges.
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(b) For a series Zan , it was found that lim | =X |=0. The series is absolutely converegent.
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(c) If the serlesZa converges, then lima_ =0.
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(d) An infinite series Zan converges if the limit of the sequence of partial sums comverges.
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(e) There exists a convergent series Za which satisfies lima, # 0.
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Let a. = ———. This sequence a,.converges but the series a_ diverges.
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(9) There is no divergent series Za which satisfies lima, =0.
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(h) There is an infinite series which converges but does not converges absolutely.

(i) There is no divergent series which converges absolutely.



