Math 240
Final Exam
Name:

YOU MUST SHOW ALL YOUR WORK TO GET PROPER CREDITS. NO PONTS WILL BE GIVEN ONLY FOR AN ANSWER.

1. Let S be a surface given by $x^{2}+y^{2}-z^{2}=1, z \geq 0$.
(a) Sketch the surface. Include several points on your sketch and identify the type of the surface.
(b) Find a parametrization of this surface.
(c) Sketch the several level curves for $z=k=0,1,2$. Indicate the levels on your sketch.
(d) Find the equation of the tangent plane to the surface at the point $(0, \sqrt{5}, 2)$.
2. Consider the function $f(x, y)= \begin{cases}\frac{x^{2}+3 y^{2}}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}$

Compute $f_{x}(0,0)$ directly from the limit definition of a partial derivative.
3. Find the volume of the wedge cut from the cylinder $x^{2}+y^{2}=1$ by the plane $z=-y$ and $z=0$.
4. (a) State the Green's theorem.
(b) Using Green's theorem to find the work done by the force field $F(x, y)=x(x+y) \mathrm{i}+x y^{2} \mathrm{j}$ in moving a particle from the origin along the x -axis to $(1,0)$, then along the line segment to $(0,1)$, and then back to the origin along the y-axis.
5. Using the Divergence theorem to calculate the following surface integral $\iint_{S} F \bullet d \vec{S}$ i.e. flux of F across S , where $F(x, y, z)=\left(e^{x} \sin y\right) \mathrm{i}+\left(e^{x} \cos y\right) \mathrm{j}+\left(y z^{2}\right) \mathrm{k}$ and S is the surface of the box bounded by the planes $x=0, x=1, y=0, y=1, z=0$ and $z=2$.
6. Answer the following based on the level curves.
(a) Suppose that this is a contour map of a function $z=f(x, y)=y^{2}+x^{2}$ and sketch the gradient $\nabla f(1,1)$ carefully on the sketch provided based upon the scale given.

(b) What is the directional derivative of f at $(1,1)$ in the direction of $\mathrm{v}=<2,1>$?
(c) In which direction does f increase most rapidly at $(1,1)$? Decrease most rapidly at $(1,1)$? Or change nothing at $(1,1)$?
7. Use Stokes' theorem to compute the integral $\iint_{S} \operatorname{curl} F \bullet d \vec{S}$, where
$F(x, y, z)=x z \mathrm{i}+y z \mathrm{j}+x y \mathrm{k}$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the xy-plane.
8. Evaluate the following integrals. You must sketch your domain (or region) of your integral.
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x$
(b) $\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A$ Consider an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse $9 x^{2}+4 y^{2}=1$.
(c) $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
(d) $\int_{C} \nabla\left(x^{3}+3 x y-2 y\right) d \mathrm{r}$, where C is the line segment between $(-1,0)$ and $(1,1)$.
(e) $\int_{C} x d s$, where C is the parabola $y=x^{2}$ between $(-1,1)$ to $(1,1)$.
(f) $\iint_{S} y d S$, where S is the surface $z=x+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 2$
9. The temperature at a point (x, y) is $\mathrm{T}(\mathrm{x}, \mathrm{y})$, measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x=\sqrt{1+t}, y=2+\frac{1}{3} t$, where x and y are measured in centimeters. The temperature function satisfies $T_{x}(2,3)=4$ and $T_{y}(2,3)=3$. How fast is the temperature rising on the bug's path after 3 seconds?
10. Use the Lagrange multipliers to find the extreme values of the function $f(x, y)=x y$ on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$.

Please go over all past exams, quizzes, worksheets and homework problems very thoroughly and carefully for the final exam. Final exam is at least 20% of the final grade so that it will affect your grade significantly.

Answers:

1. (a) Hyperboloid of one sheet (b) $r(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}-1}\right)$ (c) skip (d) $2 z-\sqrt{5} y+1=0$
2. 1
3. $2 / 3$
4. (b) $-1 / 12$
5. 2
6. (a) Be careful on the direction and the length of the vector! (b) $6 / \sqrt{5}$ (c) The function f Increases most rapidly at $(1,1)$ in the gradient vector direction $\langle 1,1\rangle$, decreases most rapidly in the opposite direction <-1,-1> and it does not change in any direction orthogonal to <1,1> which is either <1,-1> or $\langle-1,1\rangle$.
7. 0
8. (a) $\frac{\pi\left(1-e^{-1}\right)}{4}$ (b) $\frac{\pi}{24}(1-\cos 1)$ (c) $\frac{128 \pi}{15}$ (d) 3 (e) 0 (f) $\frac{13 \sqrt{2}}{3}$
9. $2^{\circ} \mathrm{C} / \mathrm{sec}$
10. $\max 2$ at $(2,1) \&(-2,-1)$ and $\min -2$ at $(-2,1) \&(2,-1)$.
