Math 240 Key to review 2

1. (a) $x=4 \cos t, y=5 \sin t$ or $x=4 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi$.
(b)
(Algebraically) Use parametrization $x=4 \cos t, y=5 \sin t$ to compute the curvature function. Then the curvature function is $k(t)=\frac{20}{\left(\sqrt{16+9 \cos ^{2} t}\right)^{3}}$ (need some calculation). The curvature is minimum when the denominator is maximum when $\cos ^{2} t=1$ which means at $\mathrm{t}=0$ or $2 \pi \Leftrightarrow(4,0),(-4,0)$. Its minimum curvature is $20 / 125=0.16$
Similarly, the curvature becomes maximum when $\cos ^{2} t=0 \Leftrightarrow t=\pi / 2,3 \pi / 2 \Leftrightarrow(5,0),(-5,0)$ and the maximum curvature is 0.3125 .
(Graphically) You can see the curvature is minimum at $(4,0)$ and $(-4,0)$ and becomes maximum at $(0,5)$ and $(0,-5)$.
2. (a) Sphere of radius 1 centered at the origin (b) paraboloid $z=x^{2}+y^{2}$
3. $x=t, y=2+t, z=1+2 t$
4. $t=4$
5. $\frac{12}{17 \sqrt{17}}$
6. (a) D.N.E. (b) D. N. E. (c) 0 (d) 0
7. $x=2 \sin \phi \cos \theta, y=2 \sin \phi \sin \theta, z=2 \cos \phi$ $\pi / 3 \leq \phi \leq 2 \pi / 3,0 \leq \theta \leq 2 \pi$
8.

(c)
(b) upper semi-sphere of radius 2 centered at $(0,0)$

11.0
12. 1
13. 4/3

