Math 240 Key to review 2

1. (a) $x = 4\cos t$, $y = 5\sin t$ or $x = 4\sin t$, $y = 5\cos t$, $0 \le t \le 2\pi$.

(b)

(Algebraically) Use parametrization $x = 4\cos t$, $y = 5\sin t$ to compute the curvature function. Then the

curvature function is $k(t) = \frac{20}{(\sqrt{16+9\cos^2 t})^3}$ (need some calculation). The curvature is minimum when the

denominator is maximum when $\cos^2 t = 1$ which means at t = 0 or $2\pi \iff (4,0), (-4,0)$. Its minimum curvature is 20/125 = 0.16

Similarly, the curvature becomes maximum when $\cos^2 t = 0 \Leftrightarrow t = \pi/2, 3\pi/2 \Leftrightarrow (5,0), (-5,0)$ and the maximum curvature is 0.3125.

(Graphically) You can see the curvature is minimum at (4,0) and (-4,0) and becomes maximum at (0,5) and (0,-5).

2. (a) Sphere of radius 1 centered at the origin (b) paraboloid $z = x^2 + y^2$

3.
$$x = t$$
, $y = 2 + t$, $z = 1 + 2t$

4.
$$t = 4$$

5.
$$\frac{12}{17\sqrt{17}}$$

6. (a) D.N.E. (b) D. N. E. (c) 0 (d) 0

8. $x = 2\sin\phi\cos\theta$, $y = 2\sin\phi\sin\theta$, $z = 2\cos\phi$ $\pi/3 \le \phi \le 2\pi/3$, $0 \le \theta \le 2\pi$

(b)

(c)

- 11.0
- 12. 1
- 13. 4/3