Please go over all notes, worksheets, homework problems and quizzes related to sections 12.2 through 12.9 (skip 12.5).

- 1. Rewrite the integral $\int_0^{2\pi} \int_0^1 r^2 dr \ d\theta$ in rectangular coordinates.
- 2. Evaluate $\iint_{D} \cos(x^2 + y^2) dA$ where $D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$.
- 3. Consider the region R bounded by y = x, y = -x + 2, $y = -\sqrt{1 (x 1)^2}$.

Set up the following integrals as one or more iterated integrals, but do not actually compute them.

- (a) $\iint_R (x+y)dy dx$
- (b) $\iint_{R} (x+y)dx \ dy$
- 4. Set up and evaluate an integral giving the surface area of the surfaces given by
- (a) x = u + v, y = u v, z = 2u + 3v, $0 \le u \le 1$, $0 \le v \le 1$.
- (b) $z = x^2 + y$ above the triangle with vertices (0,0), (1,0) and (0,2).
- 5. Consider the triple integral $\int_0^1 \int_{y^3}^{\sqrt{y}} \int_0^{xy} dz \ dx \ dy$ representing a solid. Let R be the projection of S onto the plane z = 0.
- (a) Draw the region R.
- (b) Rewrite this integral as $\iiint_S dz \ dy \ dx$.
- 6. Consider the transformation T: x = 2u + v, y = u + 2v.
- (a) Describe the image S under T of the unit square $R=[0,1]\times[0,1]$ in the uv-plane using a change of coordinates.
- (b) Evaluate $\iint_{S} (3x+2y)dA$.
- 7. What is the volume of the following solid?
- (a) $1 \le \rho \le 9$, $0 \le \theta \le \pi/2$, $\pi/6 \le \phi \le \pi/4$
- (b) Bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3
- (c) The solid tetrahedron with vertices (0,0,0), (0,0,1), (0,2,0) and (2,2,0)
- 8. Evaluate the triple integrals below.

(a)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2 + y^2 + z^2} dz dx dy$$

(b)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} dz dy dx$$

9. Evaluate the integral by making an appropriate change of variables.

 $\iint_R e^{x+y} dA$, where R is given by $|x| + |y| \le 1$.

Answers

1.
$$\int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \sqrt{x^2 + y^2} dx dy$$
 2. $\pi(\sin 4 - \sin 1)$ 3(a)
$$\int_{0}^{1} \int_{-\sqrt{1-(x-1)^2}}^{x} (x+y) dy dx + \int_{1}^{2} \int_{-\sqrt{1-(x-1)^2}}^{-x+2} (x+y) dy dx$$

(b)
$$\int_{-1}^{0} \int_{-\sqrt{1-y^2+1}}^{\sqrt{1-y^2+1}} (x+y) dx dy + \int_{0}^{1} \int_{y}^{2-y} (x+y) dx dy$$
 4. (a) $\sqrt{30}$ (b) $\ln(\sqrt{2}+\sqrt{3}) + \frac{\sqrt{2}}{3}$

5. (b)
$$\int_0^1 \int_{x^2}^{x^{1/3}} \int_0^{xy} dz dy dx$$

5. (b)
$$\int_0^1 \int_{x^2}^{x^{1/3}} \int_0^{xy} dz dy dx$$
 6. (b) 45/2 7. (a) $\frac{182\pi}{3} (\sqrt{3} - \sqrt{2})$ (b) 12π (c) 2/3

8.(a)
$$\frac{64\pi}{9}$$
 (b) $\frac{162\pi}{5}$ 9. $e - e^{-1}$

This is a brief outline of the main topics we had in class. Please make sure you know how to get those correctly.

12.2 Double integral over a rectangle

Understand $R = [a,b] \times [c,d]$

Fubini's theorem for double integral over a rectangle

Find the value of double integral by the volume of proper solid

Properties of double integrals

12.3 Double Integrals over General Regions

Understand type I, type II regions

Setting up double Integrals according to the type of regions

Find the volume of a solid by double integral

Change of order of integration

Properties of double integrals

12.4 Double Integrals in Polar Coordinates

Understand polar rectangles

Find the volume of the solid by polar coordinates

Evaluate double integral over a general region in polar coordinates

12.5 Skip

12.6 Surface Areas

Two formulas to get the surface areas:
$$\iint_{(u,v)} ||r_u \times r_v|| dudv$$
 or $\iint_{(x,y)} \sqrt{f_x^2 + f_y^2 + 1} dA$

Surface Area of surface of revolution

12.7 Triple Integrals

Fubini's theorem for triple integrals over a rectangular box

Triple integral over a general bounded region E

Choose the best order of integration

Find the volume by triple integrals

12.8 Triple Integrals in cylindrical and Spherical Coordinates

Review: Cylindrical and Spherical Coordinates

Evaluate the triple integrals in cylindrical coordinates

Evaluate the triple integrals in spherical coordinates

12.9 Change of Variables in Multiple Integrals

Transformations T

Understand the Jacobian J of the transformation T

Change of variables in double integrals, triple integrals