1. Find the general solution of the given differential equation or solution to IVP.

(a)
$$y'' + 2y' = 3 + 4\sin 2t$$

(b)
$$y'' + 9y = t^2 e^{3t} + 6$$

(c)
$$y'' + 4y = t^2 + 3e^t$$
, $y(0) = 0$, $y'(0) = 2$

(d)
$$y''-2y'-3y=3te^{2t}$$
, $y(0)=1$, $y'(0)=0$

(e)
$$y'' + 4y = 3\csc 2t$$
, $0 < t < \pi/2$

- (f) y''-5y'+6y=g(t), g(t) is an arbitrary continuous function
- 2. Verify that the given functions y_1 and y_2 satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation.

(a)
$$t^2y'' - 2y = 3t^2 - 1$$
, $t > 0$; $y_1 = t^2$, $y_2 = t^{-1}$

(b)
$$x^2y'' - 3xy' + 4y = x^2 \ln x$$
, $x > 0$; $y_1 = x^2$, $y_2 = x^2 \ln x$

- (c) (1-x)y'' + xy' y = g(x), 0 < x < 1; $y_1 = e^x$, $y_2 = x$, g(x) is an arbitrary continuous function.
- 3. Determine a suitable form for Y(t) if the method of undetermined coefficients is to be used and use a computer algebra system to find a particular solution of the given equation.

$$y'' + 4y = t^2 \sin 2t + (6t + 7)\cos 2t$$

4. Consider the vibrating system described by the initial value problem

$$u'' + u = 3\cos\omega t$$
, $u(0) = 1$, $u'(0) = 1$

- (a) Find the solution for $\omega \neq 1$.
- (b) Plot the solution u(t) for $\omega = 0.7, 0.8, 0.9$.
- (c) What happens to the solutions if we consider different initial conditions u(0) = 0, u'(0) = 0 for the same differential equation?

Use a computer software and attach the prints for (b) and (c).