1. (a) Show that the transformation $w=i \frac{1-z}{1+z}$ maps the disk $|z| \leq 1$ onto the plane $\operatorname{Im} w \geq 0$.
(b) Use the result of (a) to verify that the LFT $w=\frac{z-2}{z}$ maps the disk $|z-1| \leq 1$ onto the left half plane

Re $w \leq 0$. Hint: $w=\frac{z-2}{z}$ can be written $Z=z-1, W=i \frac{1-Z}{1+Z}, w=i W$.
2. Find the LFT that maps
(a) $-i, 0, i$ to $-1, i, 1$.
(b) distinct z_{1}, z_{2} and z_{3} onto the points $0,1, \infty$.
3. A fixed point of a transformation $w=f(z)$ is a point z_{0} such that $f\left(z_{0}\right)=z_{0}$. Show that every LFT, with the exception of the identity transformation $f(z)=z$ has at most two fixed points in the extended plane.
4. Find the fixed points of the transformation
(a) $w=\frac{z-1}{z+1}$
(b) $w=\frac{6 z-9}{z}$
5. Find the image of the region below under the transformation $w=\frac{1}{z}$.
(a) $x>1, y>0$
(b) $0<y<1 /(2 c), c>0$
6. Show that under the transformation $w=\sin z$, a line $x=c_{1}\left(\frac{\pi}{2}<c_{1}<\pi\right)$ is mapped onto the righthand branch of the hyperbola. Note that the mapping is 1-1 and that the upper and lower halves of the line are mapped onto the lower and upper haves, respectively, of the branch.
7. Show that the function $w=z^{2}$ maps the hyperbolas $x^{2}-y^{2}=c$ and $x y=k$ onto straight lines.

