Math 408(97-105)

Homework 11

1. (a) Show that the transformation $w = i \frac{1-z}{1+z}$ maps the disk $|z| \le 1$ onto the plane Im $w \ge 0$.

(b) Use the result of (a) to verify that the LFT $w = \frac{z-2}{z}$ maps the disk $|z-1| \le 1$ onto the left half plane

Re $w \le 0$. Hint: $w = \frac{z-2}{z}$ can be written Z = z-1, $W = i\frac{1-Z}{1+Z}$, w = iW.

2. Find the LFT that maps
(a) -i, 0, i to -1, i, 1.
(b) distinct z₁, z₂ and z₃ onto the points 0, 1,∞.

3. A fixed point of a transformation w = f(z) is a point z_0 such that $f(z_0) = z_0$. Show that every LFT, with the exception of the identity transformation f(z) = z has at most two fixed points in the extended plane.

4. Find the fixed points of the transformation

(a) $w = \frac{z-1}{z+1}$ (b) $w = \frac{6z-9}{z}$

5. Find the image of the region below under the transformation $w = \frac{1}{z}$.

(a) x > 1, y > 0
(b) 0 < y < 1/(2c), c > 0

6. Show that under the transformation $w = \sin z$, a line $x = c_1(\frac{\pi}{2} < c_1 < \pi)$ is mapped onto the righthand branch of the hyperbola. Note that the mapping is 1-1 and that the upper and lower halves of the line are mapped onto the lower and upper haves, respectively, of the branch.

7. Show that the function $w = z^2$ maps the hyperbolas $x^2 - y^2 = c$ and xy = k onto straight lines.