1. Show that a function f is analytic throughout the finite plane except for a finite number of points z_{1}, \ldots, z_{n}. Show that

$$
\operatorname{Re}_{z=z_{1}} s f(z)+\operatorname{Re}_{z=z_{2}} f(z)+\ldots+\operatorname{Re}_{z=z_{n}} s f(z)+\operatorname{Re}_{z=\infty} s f(z)=0
$$

2. Let the degrees of the polynomials

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}, \quad\left(a_{n} \neq 0\right)
$$

and $Q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\ldots+b_{m} z^{m}, \quad\left(b_{m} \neq 0\right)$ be such that $m \geq n+2$. Show that if all of the zeros of $Q(z)$ are interior to a simple closed contour C , then $\int_{C} \frac{P(z)}{Q(z)} d z=0$.
3. If $u(z)$ is harmonic for $|z|>R$ and continuous for $|z| \geq R$, show that for $\rho=R \mathrm{e}^{i \phi}, z=r e^{i \theta}(r>R)$,

$$
u(z)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left(\frac{\rho+z}{\rho-z}\right) u\left(R^{i \phi}\right) d \phi
$$

4. Let $F(\phi)$ be a continuous function of the real variable ϕ. Then the function $u(z)$ defined by

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 r R \cos (\theta-\phi)+r^{2}} F(\phi) d \phi, \quad(r<R)
$$

Show that $u(z)$ is harmonic in the disk $|z|<R$.
5. Suppose $f(z)$ is analytic for $|z|<1$ with $f(0)=1$. If $\operatorname{Re} f(z)>0$ for $|z|<1$, then $|f(z)| \leq \frac{1+|z|}{1-|z|}$ for $|z|<1$.

