Due: Tues, Jan 24

1. Show that $w=f(z)=|z|^{2}=x^{2}+y^{2}$ is not differentiable at any point $z_{0} \neq 0$.
2. Show that $w=f(z)=\left\{\begin{array}{ll}\frac{(\bar{z})^{2}}{z} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{array}\right.$ satisfies the CR equation at 0 but it is not differentiable at zero.
3. Determine whether $f^{\prime}(z)$ exits and find its value when
(a) $f(z)=x^{2}+i y^{2}$
(b) $f(z)=z \operatorname{Im} z$
4. Consider the mapping $w=f(z)=z^{2}$. Find the region in the first quadrant of the z-plane that mapped onto the unit square $\mathrm{S}: 0 \leq u \leq 1,0 \leq v \leq 1$ of the w-plane.
5. Consider the mapping $w=f(z)=z+\frac{1}{z}$. Find the image of the top half of the unit disk.
6. Use the properties of derivatives to find $f^{\prime}(z)$ when
(a) $f(z)=\left(1-4 z^{2}\right)^{3}$
(b) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}}$
7. Compute the following limits.
(a) $\lim _{z \rightarrow i} \frac{z^{2}+1}{i z-1}$
(b) $\lim _{z \rightarrow z_{0}} \frac{P(z)}{Q(z)}$, where $\mathrm{P}(\mathrm{z})$ and $\mathrm{Q}(\mathrm{z})$ are polynomial functions of z and $Q\left(z_{0}\right) \neq 0$.
