1. (a) Suppose that $w=f(z)=u(x, y)+i v(x, y)$ satisfies the polar CR-equation at z_{0}. Show that it satisfies the CR-equation at z_{0}. Therefore, if u_{r}, u_{θ}, v_{r} and v_{θ} are all continuous at z_{0}, then so are u_{x}, u_{y}, v_{x} and v_{y} which means $w=f(z)$ is differentiable at z_{0}.
(b) Show that $f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$ in polar coordinates.
2. Suppose that a function $f(z)=u(x, y)+i v(x, y)$ and its conjugates $\overline{f(z)}=u(x, y)-i v(x, y)$ are both analytic in a given domain D . Show that $f(z)$ must be a constant throughout D .
3. Apply the theorem in the class to verify that each of the following is entire.
(a) $f(z)=e^{-y} \sin x-i e^{-y} \cos x$
(b) $f(z)=3 x+y+i(3 y-x)$
4. Determine the singular points (singularites) of the function below and state why the function is analytic everywhere except at those points.
(a) $f(z)=\frac{z^{3}+i}{z^{2}-3 z+2}$
(b) $f(z)=\frac{z^{2}+1}{(z+2)\left(z^{2}+2 z+2\right)}$
5. Show that $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is harmonic in some domain and find a harmonic conjugate $\mathrm{v}(\mathrm{x}, \mathrm{y})$ when
(a) $u(x, y)=2 x-x^{3}+3 x y^{2}$
(b) $u(x, y)=\sinh x \sin y$
6. Suppose that v is a harmonic conjugate of u in a domain and also that u is a harmonic conjugate of v in D. Show that both u and v must be constant in D.
7. Can the function $u(x, y)=x^{2}+y$ be the real part of an analytic function? Justify your answer.
