Math 408(23-27) Due: Jan 31, 2017

1. (a) Suppose that w = f(z) = u(x, y) + iv(x, y) satisfies the polar CR-equation at z_0 . Show that it satisfies the CR-equation at z_0 . Therefore, if u_r, u_θ, v_r and v_θ are all continuous at z_0 , then so are u_x, u_y, v_x and v_y which means w = f(z) is differentiable at z_0 .

(b) Show that $f'(z_0) = e^{-i\theta}(u_r + iv_r)$ in polar coordinates.

2. Suppose that a function f(z) = u(x, y) + iv(x, y) and its conjugates $\overline{f(z)} = u(x, y) - iv(x, y)$ are both analytic in a given domain D. Show that f(z) must be a constant throughout D.

3. Apply the theorem in the class to verify that each of the following is entire.
(a) f(z) = e^{-y} sin x - ie^{-y} cos x
(b) f(z) = 3x + y + i(3y - x)

4. Determine the singular points (singularites) of the function below and state why the function is analytic everywhere except at those points.

(a)
$$f(z) = \frac{z^3 + i}{z^2 - 3z + 2}$$

(b) $f(z) = \frac{z^2 + 1}{(z+2)(z^2 + 2z + 2)}$

5. Show that u(x,y) is harmonic in some domain and find a harmonic conjugate v(x,y) when (a) $u(x, y) = 2x - x^3 + 3xy^2$ (b) $u(x, y) = \sinh x \sin y$

6. Suppose that v is a harmonic conjugate of u in a domain and also that u is a harmonic conjugate of v in D. Show that both u and v must be constant in D.

7. Can the function $u(x, y) = x^2 + y$ be the real part of an analytic function? Justify your answer.