1. Evaluate the following integrals.
(a) $\int_{0}^{1}(1+i t)^{2} d t$
(b) $\int_{1}^{2}\left(\frac{1}{t}-i\right)^{2} d t$
(c) $\int_{0}^{\infty} e^{-z t} d t, \operatorname{Re} z>0$
2. Show that if C is the boundary of the triangle with vertices at the points $0,3 \mathrm{i}$, and -4 , oriented in the counterclockwise direction, then $\left|\oint_{C}\left(e^{z}-\bar{z}\right) d z\right| \leq 60$.
3. Let C_{R} be the circle $|z|=R(\mathrm{R}>1)$, described in the counterclockwise direction. Show that $\left|\oint_{C} \frac{\log z}{z^{2}} d z\right|<2 \pi\left(\frac{\pi+\ln R}{R}\right)$, and then use L'hopital rule to show that the value of this integral tends to zero as R approach to infinity.
4. Evaluate the following contour integral. If you used the theorem mentioned in class, please state it clearly.
(a) $\int_{i}^{i / 2} e^{\pi z} d z$
(b) $\oint_{C} z^{n} d z, \mathrm{C}$ is a contour from a point z_{1} to a point z_{2}.
(c) $\oint_{C} f(z) d z$, where $f(z)$ is the principal branch of the power function z^{i}, and C is the semicircle $z=e^{i \theta}(0 \leq \theta \leq \pi)$.
5. Complete the proof of the theorem discussed in class from the page 146.
