- 1. Evaluate the following integrals.
- (a) $\int_{0}^{1} (1+it)^{2} dt$ (b) $\int_{1}^{2} (\frac{1}{t}-i)^{2} dt$ (c) $\int_{0}^{\infty} e^{-zt} dt$, Re z > 0

2. Show that if C is the boundary of the triangle with vertices at the points 0,3i, and -4, oriented in the counterclockwise direction, then $|\oint_C (e^z - \overline{z})dz| \le 60$.

3. Let C_R be the circle |z| = R (R>1), described in the counterclockwise direction. Show that

 $|\oint_C \frac{\log z}{z^2} dz| < 2\pi (\frac{\pi + \ln R}{R})$, and then use L'hopital rule to show that the value of this integral tends to zero as R approach to infinity.

4. Evaluate the following contour integral. If you used the theorem mentioned in class, please state it clearly.

- (a) ∫_i^{i/2} e^{πz} dz
 (b) ∮_C zⁿ dz, C is a contour from a point z₁ to a point z₂.
 (c) ∮_C f(z)dz, where f(z) is the principal branch of the power function zⁱ, and C is the semicircle
- $z = e^{i\theta} (0 \le \theta \le \pi) \,.$
- 5. Complete the proof of the theorem discussed in class from the page 146.