1. If $\mathrm{P}(\mathrm{z})$ is a polynomial of degree n , prove that $\oint_{|\mathrm{z}|=2} \frac{P(z)}{(z-1)^{n+2}} d z=0$.
2. Evaluate the following integral. If you used the theorem mentioned in class, please state it clearly.
(a) $\oint_{C} \frac{z^{3}}{z-3} d z$, where C is the unit disk $|z|=1$.
(b) $\oint_{|z|=3} \frac{e^{z} \sin z}{(z-2)^{2}} d z$
(c) $\oint_{|z|=3} \frac{z^{3}+3 z-1}{(z-1)(z+2)} d z$
3. Explain why the following is true.
$\oint_{C_{1}} \frac{z+2}{\sin (z / 2)} d z=\oint_{C_{2}} \frac{z+2}{\sin (z / 2)} d z$ where C_{1} is the positively oriented boundary of the square whose sides lie along the lines $x= \pm 1, y= \pm 1$ and C_{2} is the positively oriented circle $|z|=4$.
4. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2, y= \pm 2$. Evaluate each of these integrals.
(a) $\oint_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$
(b) $\oint_{C} \frac{z d z}{2 z+1}$
(c) $\oint_{C} \frac{\tan (z / 2) d z}{\left(z-x_{0}\right)^{2}}$ where $-2<x_{0}<2$.
5. Show that if f is analytic within and on a simple closed contour C and z_{0} is not on C , then

$$
\int_{C} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

6. Let C be the circle $|z|=3$, counterclockwise oriented. For $g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} d s,|z| \neq 3$,
(a) Find the value of $g(2)$.
(b) What is the value of $g(z)$ if z is outside the circle $|z|=3$?
