1. Find the Taylor series expansion of the following and also give the region of the representation.

It is Ok to use the known series for the functions e^z , $\frac{1}{1-z}$ (|z| < 1), $\sin z$, $\cos z$.

- (a) $f(z) = e^{-z}$ at 0 (b) $g(z) = \frac{z}{z^4 + 9}$ at 0. (c) $h(z) = \frac{z + 1}{z - 1}$ at -1. (d) $k(z) = \frac{1}{z}$ at i. (e) $\sin(z^2)$ at 0.
- (e) $\sin(z^2)$ at 0.
- 2. Prove: Taylor theorem in pages 187-189

3. Suppose that f(z) is an entire function and that $|f(z)| \le Mr^{\lambda}(|z|=r)$ for some nonnegative real number λ . Then f(z) is a polynomial of degree at most λ .

4. Find an example of real variable function that fails the Liouville's theorem.

5. Suppose a, b, and c are distinct complex numbers. Fid a Taylor series expansion for $f(z) = \frac{1}{(z-a)(z-b)}$ about the point z = c, and determine its radius of convergence.

6. Prove: If $\sum_{n=1}^{\infty} |z_n|$ converges, then $\sum_{n=1}^{\infty} z_n$ converges.