1. Find the Laurent series of the following in the given region.
(a) $f(z)=\frac{e^{z}}{z^{2}}$ in the power of z for $|z|>0$
(b) $g(z)=\frac{1}{z+1}$ in power of z in $|z|>1$
(c) $h(z)=\frac{z}{(z-1)(z-3)}$ in power of $z-1$ for two regions
(i) $0<|z-1|<2$
(ii) $|z-1|>2$
2. Use Cauchy's Residue theorem to evaluate the integral of each of the function below around $|z|=3.5$ in the positive direction.
(a) $\frac{e^{-z}}{(z-1)^{2}}$
(b) $z^{2} e^{\frac{1}{z}}$
(c) $\frac{z+1}{z^{2}-2 z}$
3. Show that any singular point of the function is a pole. Determine the order m of each pole, and find the corresponding residues.
(a) $\frac{z^{2}+2}{z-1}$
(b) $\left(\frac{z}{2 z+1}\right)^{3}$
4. Find the value of the integral $\oint_{C} \frac{d z}{z^{3}(z+4)}$, taken counterclockwise around the circle
(a) $|z|=2$
(b) $|z+2|=3$
5. Suppose that a function f is analytic at z_{0}, and write $g(z)=f(z) /\left(z-z_{0}\right)$. Show that
(a) if $f\left(z_{0}\right) \neq 0$, then z_{0} is a simple pole of g, with residue $f\left(z_{0}\right)$.
(b) if $f\left(z_{0}\right)=0$, then z_{0} is a removable singularity point of g.
