1. Find the Laurent series of the following in the given region.

(a)
$$f(z) = \frac{e^{z}}{z^{2}}$$
 in the power of z for $|z| > 0$
(b) $g(z) = \frac{1}{z+1}$ in power of z in $|z| > 1$
(c) $h(z) = \frac{z}{(z-1)(z-3)}$ in power of z-1 for two regions
(i) $0 < |z-1| < 2$
(ii) $|z-1| > 2$

2. Use Cauchy's Residue theorem to evaluate the integral of each of the function below around |z|=3.5 in the positive direction.

(a)
$$\frac{e^{-z}}{(z-1)^2}$$
 (b) $z^2 e^{\frac{1}{z}}$ (c) $\frac{z+1}{z^2-2z}$

3. Show that any singular point of the function is a pole. Determine the order m of each pole, and find the corresponding residues.

(a)
$$\frac{z^2 + 2}{z - 1}$$

(b)
$$\left(\frac{z}{2z + 1}\right)^3$$

4. Find the value of the integral $\oint_C \frac{dz}{z^3(z+4)}$, taken counterclockwise around the circle

(a) |z|=2(b) |z+2|=3

5. Suppose that a function f is analytic at z₀, and write g(z) = f(z)/(z-z₀). Show that
(a) if f(z₀) ≠ 0, then z₀ is a simple pole of g, with residue f(z₀).
(b) if f(z₀) = 0, then z₀ is a removable singularity point of g.