1. Use Residue to evaluate the improper integrals below.
(a) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
(b) $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$
(c) $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$
(d) $\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}$
2. Let C denote the unit circle $|z|=1$, described in the positive sense. Use the argument principle to determine the value of variation $\Delta_{C} \arg f(z)$ and integral value of the functions when
(a) $f(z)=z^{2}$
(b) $f(z)=\frac{(2 z-1)^{7}}{z^{3}}$
(c) $f(z)=\frac{1}{z^{2}}$
3. Let f be a function which is analytic inside and on a positively oriented simple closed contour \mathbf{C}, and suppose that $f(z)$ is never zero on C. Let the image of under the transformation $w=f(z)$ be the closed contour shown below. Determine the value of $\Delta_{C} \arg f(z)$ and the number of zeros.

4. Let f be analytic inside and on a simple closed contour C except for a finite number of poles inside
C. Denote the zeros by z_{1}, \ldots, z_{n} (none of which lies on C) and the poles by w_{1}, \ldots, w_{m}. If $g(z)$ is analytic inside and on C , prove that

$$
\frac{1}{2 \pi i} \oint_{C} g(z) \frac{f^{\prime}(z)}{f(z)} d z=\sum_{i=1}^{n} g\left(z_{i}\right)-\sum_{j=1}^{m} g\left(w_{j}\right)
$$

