1. Solve $\cos z=2$. Write your answer in Cartesian form in $x+i y$.
2. Use polar coordinates to compute $(1+i)^{100}$.
3. Sketch the set of points z in the complex plane determined by the condition below.
(a) $|z+i|=2$
(b) $|z-1| \leq|z+i|$
4. Show that the function $u(x, y)=\frac{y}{x^{2}+y^{2}}$ is harmonic in some domain and find the harmonic conjugate of $u(x, y)$.
5. Determine where the function $f(z)=z^{2} \operatorname{Im} z$ is analytic.
6. Compute the contour integrals along the curve given below.
(a) $\oint_{C} z-1 d z$ along the semicircle $z=1+e^{i \theta}, \pi \leq \theta \leq 2 \pi$.
(b) $\oint_{C} z-1 d z$ along the line from 1 and i .
(c) $\oint_{C} e^{z} d z$ along the curve C given by $r(t)=1+i(t-1), 0 \leq \mathrm{t} \leq 2$.
(d) $\frac{1}{2 \pi i} \oint_{|z|=1} \frac{\sin z}{\left(z-z_{0}\right)^{4}} d z$ if $\left|z_{0}\right|<1$.
7. Show that $(1+i)^{i}=\exp \left(-\frac{\pi}{4}+2 n \pi\right) \exp \left(i \frac{\ln 2}{2}\right), n \in \mathbb{Z}$.
8. Show that the function $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$ is nowhere analytic except at zero.
9. Let T be interior of the triangle with vertices $0,1,1+\mathrm{i}$. Find the image under the mapping $w=z^{2}$ and draw a picture.
10. Prove that there are two values of the constants $c \in \mathbb{R}$ such that $u(x, y)=e^{c y} \cos x$ is the real part of an analytic function. Find the analytic function $f(z)$ in each case.
11. (Prove or Disprove)
(a) If $w=f(z)$ is analytic in D , then $w=f(z)$ is continuous in D .
(b) The Mean Value theorem of derivatives is true for complex valued function.
(c) If a continuous function $w=f(z)$ has anti-derivative in a domain D , then $\int_{z_{1}}^{z_{2}} f(z) d z$ is path independent.
(d) There is no function that has two properties: $f(z)$ is analytic everywhere except the origin and $f(z)$ has derivative $f^{\prime}(z)=\frac{1}{z}$ for $z \neq 0$.
12. Let C_{R} denote the upper half of the circle $|z|=R(R>2)$, taken in the counterclockwise direction. Show that $\left|\oint_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}$. Then, show that the value of the integral tends to zero as R tends to infinity.
