Math 165/166
Lab 7, March 9
3.1 Coordinate system \& 3.2 Functions

1. Use the midpoint and the distance formulas, respectively, to find (a) the midpoint and (b) the distance between the points $(6,5)$ and $(-1,4)$.
2. Given the points $A=(-4,3), B=(-5,7)$, and $C=(-1,6)$, use the distance formula to find the lengths AB, BC, and CA , and determine whether the triangle ABC is (a) a right triangle, (b) an isosceles, (c) an equilateral triangle, or (d) neither.
3. Find (a) all possible intercepts, (b) all possible symmetries and graph the equation $y=\sqrt{4-x^{2}}$.
4. Find (a) all possible intercepts, (b) all possible symmetries and graph the equation $x^{2}-y^{2}=1$.
5. Determine whether the given equation determines y as a function of x. In case it does, write the function and find its domain.
(a) $2 x-3 y=2$
(b) $x-y^{2}=1$
(c) $y+2 x^{2}=6$
(d) $y=\sqrt{x-2}$
(e) $y^{3}-x=0$
6. An object is thrown vertically up and its height (in feet) at time (measured in seconds) is given by the formula

$$
h(t)=-16 t^{2}+256 t
$$

(a) Find the height of the object at time 4 seconds.
(b) Find the time when the object hits the ground.

Answer key:

1. Midpoint $(2.5,4.5)$, Distance $\sqrt{50} \approx 7.07$
2. isosceles 3 . x-intercepts $(\pm 2,0)$; y-intercept $(0,2)$; symmetric with respect to y axis
3. x-intercept: $(\pm 1,0)$, No y-intercept, symmetric about x axis, symmetric about y-axis, symmetric about origin
4. (a) Yes (b) No (c) Yes (d) Yes (e) Yes
5. (a) 768 ft (b) 16 sec
