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Abstract—A central concern in Evidence Based Medicine
(EBM) is how to convey research results effectively to practi-
tioners. One important idea is to summarize results by key
summary statistics that describe the effectiveness (or lack
thereof) of a given intervention, specifically the absolute risk
reduction (ARR) and number needed to treat (NNT). Manual
summarization is slow and expensive, thus, with the exponen-
tial growth of the biomedical research literature, automated
solutions are needed.

In this paper, we present a novel method for automatically
creating EBM-oriented summaries from research abstracts
of randomly-controlled trials (RCTs). The system extracts
descriptions of the treatment groups and outcomes, as well
as various associated quantities, and then calculates summary
statistics. Results on a hand-annotated corpus of research
abstracts show promising, and potentially useful, results.
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I. INTRODUCTION

Evidence Based Medicine (EBM) is the philosophy that
physicians should make treatment decisions based on the
latest research findings. Unfortunately, it is difficult to keep
up with the rapidly growing medical research literature.
A classical solution is for teams of medical experts to
compile comprehensive reviews of the medical literature on
various topics, for example, in the Cochrane Collaboration1.
Although quite useful, these must be manually researched
and continually updated as new research is published.

Another approach is to develop tools to help physicians
search databases of the medical literature to better decide on
the best current intervention for a particular case. The PICO
framework[12] is the most common such approach for clin-
ical queries. A PICO query consists of the Patient/Problem,
Intervention, Comparison intervention (when relevant), and
clinical Outcome of interest. This framework can help
practitioners find plausibly relevant research articles, but
determining the true relevance of the research, and how to
apply it to a particular case, is still rather difficult.

To alleviate this problem, standardized measures of ef-
fectiveness have been developed to help physicians evaluate
the likely effects of possible interventions on specific clinical
outcomes [8]. These are the absolute risk reduction (ARR),

1http://www.cochrane.org

the percentage of control patients (those with the standard
treatment) who would benefit from taking the new treatment
(the experimental treatment), and the number needed to treat
(NNT) with the new treatment to prevent one bad outcome
that would happen with the control. While these statistics
are sometimes published, often they are not, and physicians
must calculate them directly. Online tools, such as the Risk
Reduction Calculator [14], can help, but even so, calculating
these statistics can be time-consuming, which limits the
usefulness of the approach in practice.

We describe a system that automatically extracts the nec-
essary information and calculates these summary statistics
for a given research abstract. This system could be inte-
grated into existing physician support systems and medical
information retrieval systems. As far as we know, this is the
first attempt to automatically build such summaries.

A. Summary statistics

ARR, first described by Laupacis et al. [8], is the dif-
ference between the Control Event Rate (CER) and the
Experiment Event Rate (EER), where CER and EER are
the rates of bad outcomes for participants in the control
and experiment groups, respectively. To calculate ARR for a
study, we need to know the number of bad outcomes for the
control (N bad

control) and experimental treatment groups (N bad
exp )

along with the sizes of the treatment groups (Ncontrol and
Nexp). With this, we can calculate ARR:

ARR = CER− EER =
N bad

control

Ncontrol
−

N bad
exp

Nexp
(1)

Given ARR, we can calculate NNT, the number of people
that need to be given the experimental treatment in order to
prevent one bad outcome. NNT is simply the reciprocal of
ARR, rounded up to the nearest integer.

To calculate these summary stats, we must first find and
intepret all the relevant quantities in an abstract or article.
In some cases (though not all) the necessary information is
found in a single sentence in an abstract such as:

Mortality was higher in the quinine group than in
the artemether group (10/52 v 6/51; relative risk
1.29 , 95% confidence interval 0.84 to 2.01)

From this sentence, we should get the following summary:



• Outcome: Mortality
• Control: quinine group

– Number of bad outcomes: 10
– Number of participants in group: 52

• Experiment: artemether group
– Number of bad outcomes: 6
– Number of participants in group: 51

• ARR: 7.5% [-6.4%, 21%]
• NNT: 14 [4.7, ∞]

II. RELATED WORK

While the specific task that we address here has not been
previously addressed, we summarize here related work in
biomedical text understanding.

A. Finding clinical entity mentions

Rosario and Hearst [13] developed a probabilistic graph-
ical model for identifying treatments and diseases in sen-
tences from medical texts and classifying their relationships,
using orthographic and syntactic features, as well as the
Medical Subject Headings (MeSH) hierarchy.

Paek et al. [11] used shallow semantic parsing to identify
agent, patient and effect (i.e. treatment, group, and outcome)
entities in sentences containing one of five key verbs in the
conclusion sections of abstracts of randomized controlled
trials. Sentences were parsed into their constituents and a
classifier was used to identify the constituents that were
arguments for the predicate in the sentence.

Leaman and Gonzalez [9] developed BANNER, a biomed-
ical CRF-based NER system. They applied their system to
various publicly available biomedical data sets and achieved
good results compared with existing NER systems.

Chowdhury and Lavelli [2] describe a CRF-based NER
system for recognizing disease mentions. Their system uses
lexical features (e.g. POS tags), orthographic features, token
bigrams and trigrams, syntactic dependency features, and
dictionary lookup features from the UMLS Metathesaurus.

B. Finding quantities

Until now, quantity finding appears to have been limited
to finding the total number of participants in a trial. Demner-
Fushman and Lin [3] use a pattern-based approach to find
and extract population sizes. Xu et al. [16] developed a
method to extract trial sizes as well as subject demo-
graphic information from medical abstracts. They use text
classification augmented with a Hidden Markov model to
identify sentences containing demographics, and then parse
the sentences to extract the information. Hansen et al. [4]
focus on finding the original number of participants in the
trial, before subjects drop out or are allocated to different
treatment groups. They use a variety of features to classify
integers found in an abstract, selecting the largest candidate
as the trial size.

C. Summarizing clinical results

The most similar work to ours is that of Kiritchenko
et al. [6]. Their system, ExaCT, is a tool to help human
reviewers compile a database of clinical trials and their
characteristics. It first automatically identifies text fragments
in a journal article that best describe the trial characteristics.
A human reviewer then assesses and modifies the selections.
The information found by ExaCT consists of 21 different
elements describing the trial participants, the interventions
assigned to them, the outcomes measured in the trial, and
information about the article (e.g. authors, data of publica-
tion). However, it does not attempt to extract the number of
bad outcomes or to calculate summary statistics. ExaCT uses
a sentence classifier to find sentences most likely to contain
desired information elements; elements are then extracted
from candidate sentences using hand-crafted rules.

III. METHODS

Our system automatically calculates summary statistics
for an abstract by first identifying treatment group and
outcome mentions. Given these, the system labels each
integer as a group size, outcome number, or some other
value. Group sizes and outcome numbers are then associated
with treatment groups and outcomes. Finally, the system
identifies the outcome numbers corresponding to the same
outcome and calculates its summary statistics.

A. Finding candidate sentences

The system starts by finding sentences likely to contain
relevant information. Identifying candidate sentences is a
common step when analyzing medical documents [11], [3],
[6], [4], [16], significantly reducing the amount of text that
must be processed in order to find needed information. This
lowers the likelihood of false positives and also enables
the use of more time-consuming methods when searching
for mentions and quantities. In the current study, we select
sentences that contain at least one integer, since group sizes
and outcome numbers are always integers. This approach
is used by Hansen et al. [4] to look for clinical trial sizes,
and guarantees we will not miss any sentences that contain
group sizes and/or outcome numbers. Such sentences are
also likely to contain treatment group and outcome mentions,
as they are needed to identify the numbers in the sentences.

B. Mention finding

Finding mentions referring to treatment groups, outcomes,
and times may be viewed as a sort of named entity recog-
nition (NER). The goal of named entity recognition is
to automatically identify the sections of a text that name
entities such as people, organizations, locations, or specific
types of information such as email addresses, dates/times,
or monetary values.

While much research has been devoted to finding named
entities in biomedical research papers, the focus has been



on identifying the names of genes, proteins, and drugs.
Relatively little work has been done on finding treatment
groups or outcomes. Recognizing these entities can be quite
challenging, since treatments, for instance, may be anything
from short drug names to complex phrases such as:

conventional coronary artery bypass grafting
surgery using cardiopulmonary bypass

As well, some may only be referred to indirectly, as in:
half had additional advice on anxiety management
and half did not

Here, the second treatment, no additional advice on anxiety
management, is not even explicitly mentioned, but is merely
implied.

Finally, another challenge in recognizing treatments and
outcomes, in particular, is that they lack common ortho-
graphic features such as numbers, special characters (e.g.
‘:’, ‘-’, ‘@’), or uppercase letters that aid in recognizing
entities such as dates, email addresses, or genes/proteins.

In this study, we use a Conditional Random Field (CRF)
classifier [7] to find entity mentions. CRFs have been
successfully applied to many different natural language
segmentation tasks including that of extracting the names
of diseases [2], treatments and diseases [9], and treatments,
treatment groups, and outcomes [15].

We build on our previous work [15], where we found
that the most useful features for determining if a word was
part of a treatment or outcome were the word itself, its
part of speech, context features (features from neighboring
words), and the label from the section of the abstract that the
word appears in (where the abstract has section labels). For
identifying group mentions, the word itself and its context
features were most useful. Word shape features (character n-
grams and various binary word shape features), while often
used for named entity recognition, did not help in finding
treatments, groups, and outcomes.

We use a first-order linear-chain CRF where the label of
the current token is partially dependent on the labels of
the tokens immediately before and after it. The classifier
is trained on a collection of prelabeled tokens. The features
used as input to the classifier are:

• Features based on the token itself: the actual token, its
POS tag, and if it’s inside parentheses;

• Features based on the phrase containing the token:
– the type of phrase (noun phrase, verb phrase, etc);
– UMLS semantic type (if any) for the phrase con-

taining the token.
– whether it is the first or last token in the phrase;

• Features based on the four nearest tokens on each side
of the token in question:

– the tokens themselves and their part of speech tags;
– semantic tags for each token;
– whether each token is in the same phrase as the

token in question;

• The section (if known) containing the token (e.g. “In-
tervention”, “Results”);

UMLS Metathesaurus semantic types for phrases are found
using MetaMap [1]. Other semantic tags for words include
people and measurements. The lists for measurement and
people words were created manually. Measurement words
include common units of measurement (length, volume,
weight, etc.) and their abbreviations. People words are words
used to refer to groups of people (e.g. people, participants,
subjects, men, women, children, etc).

After token classification we apply some simple rules
to clean up results and find additional mentions that were
missed. First we apply a group label to all tokens in noun
phrases that end with the token “group”, as this is usually
an indicator of a group mention. Then we look for the
longest token sequences that match other detected mentions
(ignoring order).

For a CRF classifier we used the MALLET SimpleTag-
ger [10]. The OpenNLP 2 tokenizer, part of speech tagger,
and chunker were used to segment sentences into words,
generate POS tags for each word, and parse sentences into
phrases. Since the corpus consists of medical abstracts, we
used models trained on the PennBioIE biomedical corpus3,
obtained from the JULIE Lab4.

C. Finding quantities
Treatment group sizes and outcome numbers are found in

similarly. A vector of features is computed for each integer
in the text, and a CRF classifier labels each as a group size,
outcome number, or other based on these features. Features
include:

• Is the integer small (< 5)?
• Features based on the four nearest tokens on each side:

– the tokens themselves and their part of speech tags;
– semantic tags for each token;
– mention labels (as in Section III-B) for each token;

• Whether specific patterns match the occurrence;
• syntactic/semantic context features;
• the abstract section label (if present);
The patterns used were “(n = INTEGER)”, which often

indicates a group size or population size, and “INTEGER
/ INTEGER” or “INTEGER of INTEGER”, where the first
integer is usually an outcome number and the second is
usually a group size.

Syntactic/semantic context features were constructed by
first chunking the sentence to a sequence of integers, special
tokens (“/”, “v”, “vs”, “;”, “(”, “)”), group/outcome men-
tions, and noun/verb phrases (that do contain a group or
outcome mentions). Features for an integer are labels (e.g.
special token, mention label, phrase label) of the four context
items on either side.

2http://opennlp.sourceforge.net/
3http://bioie.ldc.upenn.edu/
4http://www.julielab.de/



D. Computing Summary Statistics

After mentions and quantities have been identified, we
need to determine what can be calculated with them.

1) Templates: We approach determining what can be
calculated with the detected quantities as an information
extraction problem where groups, outcomes, outcome num-
bers, and summary statistics are viewed as “events”. Our task
is now to identify all of the relevant information related to
each event. To keep track of the information related to each
event, we use templates with slots for all of the necessary
information for the event, as follows:

• Group templates: name of the treatment group.
• Outcome templates: name of the outcome.
• Group size templates: number of people in the group;

the relevant group.
• Outcome number templates: number of bad outcomes;

the relevant outcome; the relevant group;
• Summary statistic templates: links to outcome number

templates for the experimental and control treatments;
group role conflict? (is there uncertainty as to which
group is the control and which is the experiment?).

2) Template filling: For each detected group, outcome,
group size, or outcome number, the system creates a tem-
plate, whose slots are filled by finding the group and
outcome mentions that should be associated with the group
size and outcome numbers. A classifier is used to find the
most likely group or outcome for each group size or outcome
number. With this approach features are computed for each
possible pair of (group size, group), (outcome number,
outcome), and (outcome number, group) in a sentence. Three
classifiers, one trained for each of the pair types, compute the
probability that each pair should be associated in each way.
We use the MegaM v0.92 [5] maximum entropy classifier
to compute these probabilities.

The features for a given (quantity, mention) pair are:

• Is the mention the closest one to the quantity
• Are other detected mentions/quantities between them?
• Does the mention occur after the quantity?
• The tokens on either side of each element in the pair
• Do both elements appear in similar positions in the

sentence? E.g., for a given (size, mention) pair, are they
both the first (size, mention) in the sentence?

• Do both elements appear in the same “constituent”
in the sentence? The boundaries for this type of con-
stituent are tokens in the set {‘v’, ‘and’, ‘or’, ‘,’} (‘v’
is a common abbreviation for “versus” in abstracts).

After probabilities are computed for each possible (quan-
tity, mention) pairing of the same type within a sentence (e.g.
all possible (outcome number, outcome) pairs in a sentence),
quantities and mentions are linked using the following rules,
starting with the highest probability pairing and considering
pairs in order of descending probability:

• (group size, group): If the group size and group have
yet to be associated, link them.

• (outcome number, outcome): If the outcome number is
not linked to an outcome, link it to this one.

• (outcome number, group): If the outcome number is not
linked to a group, link it to this one.

The system also ensures that outcome numbers and group
sizes that appear in the common patterns “OUTCOME
NUMBER / GROUP SIZE” or “OUTCOME NUMBER of
GROUP SIZE” are associated with the same group.

3) Summary statistic templates: Once group, outcome,
group size, and outcome number templates are filled, we
need to determine if we have enough information to cal-
culate summary statistics. For this we need two outcome
number templates (one control and one experiment). For
each sentence, we pair outcome number templates that are
linked to the same outcome template or to outcomes with
identical names. For each pair create a new summary statistic
template. If an outcome number template is incomplete
because the size of a treatment group is not mentioned in the
sentence that contains the outcome number, the system will
look in previous sentences to see if a size is mentioned for
the treatment group. If multiple sizes are mentioned (subjects
may have dropped out), the current system just rejects the
outcome number template and does not compute statistics
for the outcome.

Currently, if the group name associated with the out-
come number contains words/phrases referring to a control
group (‘control’, ‘standard care’, ‘usual care’, ‘placebo’)
or to an experimental group (‘experiment(al)’, ‘new treat-
ment/therapy/intervention’) it is labeled it as control or
experiment respectively and the opposite label is assigned
to the other group name. Otherwise, the system reports
that group roles are uncertain and calculates the statistics
assuming that the group with the lower bad outcome event
rate is the experimental group. Statistics are calculated using
the formula given in Section I-A.

IV. RESULTS AND DISCUSSION

We evaluate performance on a sample corpus of 263
British Medical Journal (BMJ) abstracts obtained via
PubMed5. They describe randomized controlled trials pub-
lished between 2005 and 2009. Articles not evaluating
treatments were ignored. We annotated treatment groups,
outcomes, group sizes, and outcome numbers. For longer
treatment groups and outcome, there are two boundaries one
that defines the minimal string that needs to be recognized
to uniquely identify the entity and another that defines the
largest string that could be considered acceptable

Table I shows accuracy results for finding and associat-
ing mentions and quantities. 10-fold cross-validation was
performed over abstracts, and recall, precision, and F-score

5http://www.ncbi.nlm.nih.gov/pubmed/



Table I
ACCURACY OF MENTION FINDING, QUANTITY FINDING, AND

MENTION-QUANTITY ASSOCIATION

Current system Baselines
Rec. Prec. F Rec. Prec. F

Groups 0.71 0.82 0.76 0.67 0.84 0.74
Outcomes 0.34 0.56 0.42 0.28 0.61 0.38
Group sizes 0.82 0.77 0.80 0.61 0.72 0.66
Outcome numbers 0.73 0.69 0.71 0.41 0.70 0.52
(number, outcome) 0.62 0.82 0.71 0.62 0.82 0.71
(number, group) 0.86 0.86 0.86 0.69 0.73 0.71
(size, group) 0.88 0.89 0.89 0.93 0.68 0.78

(the harmonic mean of precision and recall) were computed.
A mention detected by the system matches an annotated
mention if the detected mention contains all the words in
the short version and does not contain any words outside
the long version of the annotated mention..

As a baseline, we used the biomedical named entity
recognizer BANNER[9] that has been shown to be effective
at identifying treatment and disease mentions. To boost
recall, we used the same post-processing rules for finding
additional mentions as in our own mention finder.

We see that our mention finder is more effective at
finding both group and outcome mentions than BANNER.
BANNER has better precision, but its recall and F-score are
noticeably worse. This is not surprising since BANNER does
not have any semantic features, such as UMLS semantic
types, but instead relies mainly on lexical and orthographic
features, which have been shown to be less useful for finding
groups and outcomes [15]. Overall, outcomes are harder to
detect, because they have more variability.

For group sizes and outcome numbers, we compare our
method with a baseline that labels all integers matching the
pattern “( n = INTEGER )” as group sizes and those match-
ing “INTEGER / INTEGER”, or “INTEGER of INTEGER”
as outcome numbers (first number) and group sizes (second
number). Our proposed number finder significantly outper-
forms the baseline which only uses the patterns. Hence,
while the patterns are useful, they are not enough to find
most of the quantities that we want. To our knowledge this
is the first attempt at extracting outcome numbers and group
sizes. As a rough comparison, Hansen et al. [4] achieve an
F-score of 0.84 for the simpler task of extracting the total
number of trial participants from a corpus of 223 abstracts.

Regarding associating mentions and quantities, we use a
baseline that associates a quantity with the nearest detected
mention of the appropriate type. In this context, precision
is the proportion of quantity-mention associations made by
the system that are correct, and recall is the proportion of
quantities that were able to be correctly associated with
mentions by the system. False misses are quantities that
were not associated with any mention, due to the mention
finder missing some mentions. We see that the classifier-

Table II
ACCURACY OF CALCULATING SUMMARY STATISTICS FROM SENTENCES

Recall Precision F-score
Detected data 0.39 0.82 0.53
Annotated data 0.90 0.90 0.90

based approach outperforms the simple baseline except when
it comes to associating outcome numbers with outcome
mentions. This indicates that additional features, although
useful for association in the other cases, are not helpful for
associating outcome numbers with outcomes.

Table II gives results for finding and calculating summary
statistics. Results are given for both detected and annotated
mentions and quantities; the latter, in effect, shows how
the system would do with perfect mention and quantity
finding. As before, 10-fold cross-validation was performed
over abstracts, and metrics were computed for individual
summary statistics. A summary statistic is considered correct
if the outcome numbers and group sizes are associated with
the correct group and outcome mentions and, in the case
where working with detected mentions, if these mentions
match annotated mentions using the previously described
matching criteria. If there is an error in any of these pieces
of information, the entire statistic is considered incorrect.

Of the 263 abstracts in our corpus, there are a total 59
in which summary statistics can be calculated just from the
information given in a single sentence. Overall, the system
gets decent precision, at 82%, though recall is only 39%;
note that precision is more important, since incorrect results
may be more dangerous than missing potentially useful
results. We also see that the system performs much better
when working with annotated data, as expected, showing
that the main area for improvement is in mention detection.
The main difficulty appears to lie in extracting outcomes.

In addition to the 59 summary stats that may be calculated
from single sentence, there are another 41 summary stats
that may be calculated if we obtain the group size from an
earlier sentence. When we extended our system system to
look in previous sentences for group sizes, we were only
able to calculate an additional two summary statistics (both
correct). The reason for this is that there is more variation
in how group sizes are reported in sentences that do not
contain outcome numbers. Demographic information (e.g.
how many people were men or women) is often reported
in a similar manner to group sizes in these cases, making
classification more difficult.

Another challenge is that a particular group can be re-
ferred to with various names throughout an abstract. For
instance, all of “intensive rehabilitation programme”, “ re-
habilitation”, and “control group” may refer to the same
treatment group. The system currently considers two group
names to refer to the same group only if the mentions consist
of the same set of words. This approach is too strict and



should take coreference into account.
The 30 summary statistics found by our system were

independently evaluated by authors JH and AS, who are
EBM experts. They evaluated the generated statistics and
classified each as correct (no errors), qualitatively correct
(contains a minor error, but still useful), or wrong (not useful
at all). One considered 24 (80%) to be correct, 3 (10%)
qualitatively correct, and 3 (10%) wrong; the other author
considered 24 (80%) correct, 1 (3%) qualitatively correct,
and 5 (17%) wrong. Disagreement arose regarding outcomes
that were not the main outcome of interest (e.g. number
of people who found their treatment acceptable), and the
correctness of detected per-protocol results (ignores those
who drop out of the trial) when intention to treat results
(analysis includes those who dropped out) were missed.
While there was less agreement on what both considered
questionable, 19 (63%) summary stats were considered by
both to be fully correct. Thus even the questionable summary
stats found by the system may still be useful.

V. CONCLUSION

We have presented a method for accomplishing the novel
task of automatically extracting information and calculating
summary statistics from peer-reviewed medical research arti-
cles describing randomized controlled trials. Such structured
summaries are needed to support effective evidence-based
medicine. To our knowledge, this is the first attempt at
extracting outcome numbers and associating mentions with
quantities for the purpose of calculating summary statistics.

Future work includes improving the detection of outcome
mentions, implementing a more sophisticated method for
identify mentions that refer to the same treatment group, and
developing a method to classify outcome mentions as good
or bad. Currently the system does not look for the number
of participants that drop out of a study. As this affects the
group size calculation in situations where the size is not
mentioned in the same sentence as the outcome numbers,
we will need to add support for this in the future. Finally,
the system needs to identify the type of analysis used when
reporting results (intention to treat or per-protocol).
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