
1

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 11

Design & Code ReviewsDesign & Code Reviews

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 22

OutlineOutline
Review of PSP Levels
Introduction
Why Review?
Review Principles
Design Review Principles
Review Measures
Checklists
Reviewing Before vs. After Compiling
Reviews & Inspections
Homework #7

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 33

Review of PSP Levels (Humphrey, 1995, p. 11)Review of PSP Levels (Humphrey, 1995, p. 11)

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP1
Size estimating

Test report

PSP3
Cyclic development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)Baseline

Planning

Quality Mgt

Cyclic

PSP2
Code reviews

Design reviews

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 44

Introduction (cf. Humphrey, 1995, p. 231)Introduction (cf. Humphrey, 1995, p. 231)

“Design and code reviews… [provide]
more improvement… than… any
other single change you can make in
your personal software process.”
“Doing reviews is the most important
step you can take to improve your
software engineering performance.”

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 55

Three Types of Reviews
(cf. Humphrey, 1995, p. 231-233)

Three Types of Reviews
(cf. Humphrey, 1995, p. 231-233)

Inspection - team review
• Prepare at initial meeting
• Inspect separately, then in meeting
• Author repairs, report is made, track to closure

Walkthrough - less formal team review
• Author makes presentation
• Developers & users can participate

– ID omissions & misunderstandings
– educate

• Little advance preparation or follow-up is necessary

Personal review - ID/fix as many defects as possible before
compile, inspection, compile, or test
• This was the standard practice before PC’s, fast compilers, and

integrated graphical environments became the norm.
• They save time later

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 66

Products to Review
(cf. Humphrey, 1995, p. 233)

Products to Review
(cf. Humphrey, 1995, p. 233)

All SW products can be reviewed
Reviewing early products provide most benefit.
• Early products are even more critical for the whole SW

development process.
• They are easier and cheaper to review.

Products:
• Analysis
• Design
• Code
• Documentation
• Development plans
• Test cases / plans
• ...

2

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 77

Why Review? (cf. Humphrey, 1995, p. 233-237)Why Review? (cf. Humphrey, 1995, p. 233-237)

The secret to good writing is re-writing.
Many beginning PSP-users spend more
than 33% of their development time on
compiling and testing. At the end of the A-
series programs students spend about 10%
(or less).
Conclusion:
• Reviews improved time, efficiency,

predictability, and quality
• cf. student data graphs, Fig. 8.1 & 2, p. 234

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 88

Review Efficiency (cf. Humphrey, 1995, p. 235)Review Efficiency (cf. Humphrey, 1995, p. 235)

The biggest single problem with reviews is
convincing yourself of their value.
It doesn’t seem worthwhile when you have a
powerful compiler / debugger to find (some)
defects for you…
The only way to convince yourself is to collect data
and see.
• Table 8.1, p. 235, shows 8-12 times more time for unit

test fix vs. code review, and 16-60 times for post unit-
test fix…!

• Fig 8.3, p. 236 shows 3-5 times more defects per hour
for code review than test.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 99

Review Efficiency (cont.)
(cf. Humphrey, 1995, p. 236-237)

Review Efficiency (cont.)
(cf. Humphrey, 1995, p. 236-237)

Code reviews are more efficient than testing:
• Reviews

– Defects are found directly
– You build a mental model of the program
– Thus it’s easier to fix errors when they are found

• Testing
– Only symptoms of defects are found

• Debugging
– You must search for the causes of the defects which were found in

testing
• Examples:

– Three months searching vs. 2 hours inspection: inspection found
the error plus 71 others!

– Three days searching for one misplaced semicolon after a for
statement….

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1010

Review Efficiency (cont.)
(cf. Humphrey, 1995, p. 237)

Review Efficiency (cont.)
(cf. Humphrey, 1995, p. 237)

Debuggers are good for stepping through program logic and
checking parameter values.
• This is helpful if you know what the values should be.
• In order to know this you have to understand the program logic.
• Conclusion: Why not thoroughly check the logic ahead of time

since you need to know it anyway?!
Most professional programmers have about 100 defects /
KLOC.
• Before using reviews, PSP students found approximately 50%

of their defects in compile.
• Thus 50% were left for test.

You must decide the most efficient way to find them.
Collect personal data to convince yourself.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1111

Review Principles (cf. Humphrey, 1995, p. 239-243)Review Principles (cf. Humphrey, 1995, p. 239-243)

Establish review goals
Follow a defined review process
Measure & improve your review
process

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1212

Review Principles:
Establish Goals (cf. Humphrey, 1995, p. 239-240)

Review Principles:
Establish Goals (cf. Humphrey, 1995, p. 239-240)

Ex:
• 100% defect removal before first compile

Reality:
• Most people will achieve 50-80%

3

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1313

Review Principles:
Follow Defined Process
(cf. Humphrey, 1995, p. 240-243)

Review Principles:
Follow Defined Process
(cf. Humphrey, 1995, p. 240-243)

A defined process will include for each
activity:
• Entry & exit criteria
• Tasks to perform
• cf. Table 8.2, Code Review Script (Design

script is very similar)
• cf. Table 8.3, Checklist

Keep script and checklist separate
• Facilitates planning
• Easier to update

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1414

Review Principles: Measure &
Improve Your Process
(cf. Humphrey, 1995, p. 243)

Review Principles: Measure &
Improve Your Process
(cf. Humphrey, 1995, p. 243)

You measure reviews in order to
improve their quality
A high-quality review finds the most
defects in the least amount of time
In order to track this you must know:
• Review time
• Number of defects found
• Number of defects found after review

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1515

Review Principles: Keep Design &
Code Reviews Separate
(cf. Humphrey, 1995, p. 243)

Review Principles: Keep Design &
Code Reviews Separate
(cf. Humphrey, 1995, p. 243)

Keeping design and code reviews separate
helps:
• Make designs more understandable
• Save implementation time
• Avoid missing product defects
• Spot possible design improvements

When design & code reviews are kept
separate you are more likely to:
• Look for design alternatives
• Look for ways to make the design neater and/or

cleaner
AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1616

Four Design Review Principles
(cf. Humphrey, 1995, p. 244-247)

Four Design Review Principles
(cf. Humphrey, 1995, p. 244-247)

Produce reviewable designs
Follow an explicit review strategy
Review the design in stages
Verify that the logic correctly
implements the requirements

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1717

Design Review Principles:
Reviewable Designs
(cf. Humphrey, 1995, p. 245)

Design Review Principles:
Reviewable Designs
(cf. Humphrey, 1995, p. 245)

For a design to be reviewable:
• It’s purpose and function must be explicitly stated.

– Explicitly list program’s required functions and constraints,
conditions, standards.

• The design description must be complete and precise.
– System issues that affect the design should be noted.
– Ex: performance, memory, usability

• The design must be segmented into logical elements.
– This facilitates limited reviews at one time.
– Rule of thumb: One page of text.

Gather data and find out what works best for you.
• Have we seen this theme before?!

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1818

Design Review Principles:
Explicit Strategy
(cf. Humphrey, 1995, p. 245-246)

Design Review Principles:
Explicit Strategy
(cf. Humphrey, 1995, p. 245-246)

Following a specific design /
development sequence provides a
context and the ability to coordinate
and/or integrate designs.

4

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 1919

Design Review Principles:
Review in Stages
(cf. Humphrey, 1995, p. 246-247)

Design Review Principles:
Review in Stages
(cf. Humphrey, 1995, p. 246-247)

Guidelines:
• Check for all required program elements.
• Verify overall program structure and flow.
• Check correctness of logical constructs.
• Check logic for robustness. (Stress test.)
• Check function calls - parameter number, order, & type; valid

values.
• Check special variables, data types, files.

Human vs. Compiler checking of names & types
• If you don’t have name / type defects then don’t worry about

this during design review

Humphrey:
• During design review manually check global variables and state

controlling parameters, and all specially declared types.
• Check all others during code review

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2020

Design Review Principles:
Verify Logic vs. Requirements
(cf. Humphrey, 1995, p. 247)

Design Review Principles:
Verify Logic vs. Requirements
(cf. Humphrey, 1995, p. 247)

Checking that the program’s logic
meets the requirements is:
• Hard work
• The only way to check for oversights

and/or omissions

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2121

Review Measures (cf. Humphrey, 1995, p. 247-248)Review Measures (cf. Humphrey, 1995, p. 247-248)

There are 4 explicit review measures:
• Reviewed program size - LOC

– PC and PI would help to have common size measure throughout
• Review time - minutes
• Number of defects found
• Number of escapes - defects found later

Derived measures:
• Review yield = % defects found during review
• Defects / KLOC design or code reviewed
• Defects / Hour
• LOC reviewed / Hour
• DRL = defect removal leverage

– relative rate of defect removal for any two process phases

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2222

Review Measures: Review Yield
(cf. Humphrey, 1995, p. 248-251)

Review Measures: Review Yield
(cf. Humphrey, 1995, p. 248-251)

Review yield
• Is the best measure of review quality
• Is the % of defects in design or code at the time of review

which were found by the review
• You can’t calculate this precisely until later

cf. Table 8.4, Yield Calculation Ex.
cf. Table 8.5, corresponding Defect Log
cf. Table 8.6, Ex. defect summary (net escapes,
…) and formulas
cf. Fig 8.5, Ex C++ Code Review Yield
cf. Fig 8.6, Ex Student yield data

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2323

Instant Review Measures
(cf. Humphrey, 1995, p. 251-256)

Instant Review Measures
(cf. Humphrey, 1995, p. 251-256)

You need measures which can be gathered at the
current time which correlate with yield.
• This tells how good you’re doing while you’re doing

reviews.
• % yield is not known until the end.

Examples:
• Defects / KLOC

– Problem:
• Is low yield due to superficial review or did you start with few

defects?
• Fig. 8.7, p. 253 doesn’t show strong correlation.

• Defects / Hour
– 200 LOC / Hour optimal
– cf. Fig 8.9, p. 255

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2424

Instant Review Measures: DRL
(cf. Humphrey, 1995, p. 256-257)

Instant Review Measures: DRL
(cf. Humphrey, 1995, p. 256-257)

DRL = Defect Removal Leverage
• Measures relative effectiveness
• Ratio of defects removed / Hour for any two

phases

Most used to compare test phase with
some other phase
Examples
• cf. Table 8.7, Student PSP 10a data
• cf. Table 8.8 & Fig 8.11, Humphrey’s PSP data

5

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2525

Checklists (cf. Humphrey, 1995, p. 257-260)Checklists (cf. Humphrey, 1995, p. 257-260)

Checklists are very important
• Example: airline pilots’ preflight checks

Using Checklists
• Review 1 topic at a time
• Review 1 program section at a time
• Design reviews are best performed top-down
• Code reviews are best performed bottom-up

(unless you are unfamiliar with the code)

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2626

Checklists (cont.) (cf. Humphrey, 1995, p. 260-263)Checklists (cont.) (cf. Humphrey, 1995, p. 260-263)

Building Checklists
• Review your defect data to see where you should focus
• Start with the PSP0 defect standard (Tables 8.9 & 10)

information the checklist
• Modify the checklist based on your defects-found (Pareto)

distribution
– Categories not to worry about
– Subcategories
– cf. Fig 8.12, p. 261, Pareto distribution (sorted by frequency)
– Focus on most-frequently found defect types, and see how you can

improve your rate.
– Don’t drop checking for low-frequency “found” review items, just

those that you are not having.
• You’re finding these!
• If you drop them you’ll have to find them in test…

• Check coding standard items in your reviews

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2727

Reviewing Before vs. After
Compiling (cf. Humphrey, 1995, p. 263-264)

Reviewing Before vs. After
Compiling (cf. Humphrey, 1995, p. 263-264)

This is not a simple issue
Not 100% of syntax errors are caught
by the compiler
• 8.7-9.3% of Humphrey’s weren’t
• These may actually be thought of as

semantic, not syntax, errors: the code
does not do what was intended.

cf. Fig 8.13, p. 264, Defect types
found / missed

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2828

Reviewing Before vs. After
Compiling: Pros & Cons
(cf. Humphrey, 1995, p. 264-265)

Reviewing Before vs. After
Compiling: Pros & Cons
(cf. Humphrey, 1995, p. 264-265)

Compiling First:
• Compiling has 2x DRL for some defect types
• 90% of syntax & naming defects found
• Individual review effectiveness varies: may miss from 20-50% of syntax

defects
• Syntax defects missed by compiler are easy to find

Reviewing First:
• Compiler misses about 9% of syntax defects
• Finding defects in review saves both compile time and makes it more

predictable
• It generally takes longer to fix syntax errors in test than in review
• Unit testing generally finds about 1/2 of a program’s defects. If you find

more defects before test then your total found is likely to go up.
• Later test phases are even less efficient than unit test
• Hard to do thorough job reviewing pre-compiled code because there

are few defects. You lose interest…
• You won’t save any time by compiling first; reviewing first saves time in

compile and in later test.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 2929

Reviewing Before vs. After
Compiling: Objectives
(cf. Humphrey, 1995, p. 265-266)

Reviewing Before vs. After
Compiling: Objectives
(cf. Humphrey, 1995, p. 265-266)

What is your goal?
• Do you want to get to test as soon as

possible, or do you want to remove the
most defects?

Don’t confuse speed with progress!
If you are trying to remove the most
defects, then you might as well review
where it is most effective.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 3030

Reviews & Inspections
(cf. Humphrey, 1995, p. 267-268)

Reviews & Inspections
(cf. Humphrey, 1995, p. 267-268)

You should perform (group) inspections in addition to your
personal reviews
• Include all involved people’s time in your Time Log

Question: Where to inspect?
• Review code before inspection?
• Compile code before inspection?

Answers
• Give inspectors as clean code as possible - review it first:

polite, they’ll focus better.
• When improving your review process - inspect before compile.
• When you have a good review process - compile before

inspection.
• Don’t unit test first.

6

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 8 - slide Humphrey Ch. 8 - slide 3131

Homework #7Homework #7
Report R4
• Midterm report: Define a process for analyzing your PSP

data and use this process to produce report R4.
• See p. 771-2 and Assignment Kit #7

