
1

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 11

Software DesignSoftware Design

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 22

OutlineOutline
Review of PSP Levels
Overview
The Design Process
Design Quality
Structuring the Design Process
Design Notation
Templates for use in Design
Design Guidelines

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 33

Review of PSP Levels (Humphrey, 1995, p. 11)Review of PSP Levels (Humphrey, 1995, p. 11)

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

PSP3
Cyclic development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)Baseline

Planning

Quality Mgt

Cyclic

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 44

Overview (cf. Humphrey, 1995, p. 309-310)Overview (cf. Humphrey, 1995, p. 309-310)

Good SW design transforms (ill-defined) requirements into
an implementable product design specification.
• Ill-defined requirements?
• Requirements are generally less-than-perfectly defined.

Thus we say they are ill-defined.
Ideally we would have well-defined requirements.

Two aspects of design quality:
• Content
• Representation

Even a good design will probably be poorly implemented if
its representation is bad
The PSP addresses design from a defects-prevention
perspective
Design defects are more difficult to reduce than are coding
defects

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 55

The Design Process
(cf. Humphrey, 1995, p. 309-310)

The Design Process
(cf. Humphrey, 1995, p. 309-310)

Design is creative and cannot be
reduced to a routine,
However, it need not be totally
unstructured.
Design involves many parallel,
cooperating activities in which
discovery, invention, and intuition are
frequently required.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 66

The Design Framework
(cf. Humphrey, 1995, p. 311)

The Design Framework
(cf. Humphrey, 1995, p. 311)

Gather data on
user requirements

Analyze the
requirements

data

Conceive of a
high level

design

Refine and
document the

design

Validate the
design against

the requirements

Obtain answers
to requirements

questions

Initial Requirements

Completed Design

2

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 77

The (Simplified) Systems
Development Framework
(cf. Humphrey, 1995, p. 312)

The (Simplified) Systems
Development Framework
(cf. Humphrey, 1995, p. 312)

Implementation

Design

Unit test

Integration test

System test

Acceptance

Use

User

Requirements

NOTE: There are NOTE: There are
many feedback many feedback
loops which have loops which have
not been shown.not been shown.

Design is a smallDesign is a small
part of the wholepart of the whole
system develop-system develop-
ment process.ment process.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 88

Design is a Learning Process
(cf. Humphrey, 1995, p. 310-314)

Design is a Learning Process
(cf. Humphrey, 1995, p. 310-314)

Design starts out with no one really understanding the
requirements, design, or the implementation.
The Requirements Uncertainty Principle : Users don’t really
(begin to) understand their requirements until they first see
and use the system.
Thus designers must create workable solutions to ill-defined
problems.
While there is no procedural way to accomplish this, a
rigorous and explicit design process can help.

There are several especially good paragraphs in this section
describing these processes and difficulties.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 99

Conceptual Design (cf. Humphrey, 1995, p. 3132)Conceptual Design (cf. Humphrey, 1995, p. 3132)

Types of problems and solutions:
• Sometimes complex problems have complex solutions.
• However, sometimes there are simple solutions.
• On the other hand, sometimes simple problems have complex

solutions.
• And finally, sometimes the problem is in the great volume of detail.

A general iterative design process is helpful:
• Focus on high-level issues until you know enough to create a

conceptual design
• Complete & document the conceptual design
• Document and make the development plan
• Test the conceptual design by “walking around it” from every

conceivable angle, thinking about user-issues, scenarios, etc.
• Focus on the details.

Note how the SASY process differs from Humphrey’s description of
an iterative process.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1010

SASY Iterative Incremental
Process
SASY Iterative Incremental
Process

####

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1111

Design Quality (cf. Humphrey, 1995, p. 314-317)Design Quality (cf. Humphrey, 1995, p. 314-317)

Quality designs contain sufficiently complete, accurate, and
precise solutions.
Design specifications include:
• class & object definitions & relationships
• required data
• state transitions
• system inputs / outputs

Design documentation can greatly exceed source code in
size
The program source listing is the most precise design
document, but it is usually hard to understand.
Sometimes design decisions can be deferred - experienced
developers can make them, so don’t waste time designing
them. However, make sure not to underspecify the design
too much - this is costly and error-prone.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1212

Design Decisions are Based on
Design Users’ Needs
(cf. Humphrey, 1995, p. 315-316)

Design Decisions are Based on
Design Users’ Needs
(cf. Humphrey, 1995, p. 315-316)

Types of design users:
• implementers
• design & code reviewers
• documenters
• test developers & testers
• maintainers & enhancers

Each design product should have an owner and author.
• The owner is the only one who can make changes to the

design.
• Categories of owners:

– System / Product Mgt
– System Engineers
– Software Designers

3

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1313

Products Controlled by Design
Product Owners (cf. Humphrey, 1995, p. 315-316)

Products Controlled by Design
Product Owners (cf. Humphrey, 1995, p. 315-316)

System / Product Mgt
• Issues log
• Program’s intended function & how it should be used
• System-level user scenarios
• System constraints

System Engineers
• File descriptions
• System messages
• Reasons why system design decisions were made
• Special error check / conditions

Software Designers
• List of related objects
• External variables, calls, references
• Statement of program’s logic
• Picture of where the program fits into the system

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1414

Change Control (cf. Humphrey, 1995, p. 316)Change Control (cf. Humphrey, 1995, p. 316)

Because of the large size of the design of any
reasonably large system, the number of changes
will be large / frequent and change control is
absolutely necessary.
Make sure that you only specify the absolute
minimum of information, and
Document each piece of information in just one
place (so that multiple occurrences do not become
inconsistent).
The PSP deals with design standards for individual
developers.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1515

Design Levels (cf. Humphrey, 1995, p. 317)Design Levels (cf. Humphrey, 1995, p. 317)

Design proceeds at multiple levels of
abstraction. (cf. Fig 10.3 Design Pyramid)
Decisions should be documented at each
level where they are made.
If not, they will have to be reconstructed at
each successively higher level.
This reconstruction is an error-prone
process.
Attempting to work at multiple levels at one
time causes difficulty and facilitates errors.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1616

Structuring the Design Process
(cf. Humphrey, 1995, p. 318-320)

Structuring the Design Process
(cf. Humphrey, 1995, p. 318-320)

Design is a dynamic, iterative-incremental, and creative process, yet it is
best performed within a structured process framework:

Requirements
definition

System
specification

System
high-level design

Product N
specification

Product N
high-level design

Product 1
specification

Product 1
high-level design

Component 1-1
specification

Component 1-1
high-level design

Component 1-n
specification

Component 1-n
high-level design

- - - - - - -

- - - - - - - -

Module 1nk
specification - - - - - - - - - -

Module 1n1
specification

Module 1n1
detailed design

Module 1nk
detailed design- -

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1717

Requirements Definition
(cf. Humphrey, 1995, p. 318-319)

Requirements Definition
(cf. Humphrey, 1995, p. 318-319)

A requirements definition statement describes the
problem and/or need in user terms. It does not
propose a solution .
It is rare that you can get a complete and accurate
req’s statement before you begin work because:
• Few people have the specialized skills needed for req’s

specification
• Req’s change: over time and as you ask questions the users

will think more deeply about their needs.
• New solutions will cause needs, and thus req’s, to change.

This is a feedback loop…

Thus, your focus is to work with users to help them
generate as clear, precise, and specific a req’s
statement as they can at a given point in time.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1818

Design Specification
(cf. Humphrey, 1995, p. 319-322)

Design Specification
(cf. Humphrey, 1995, p. 319-322)

The goal of software design is “to produce
concise and precise statements of exactly
what the program is to do and how to do it”.
 A design specification describes solutions
to the problem in both user and technical
terms. One or more potential solutions are
proposed.
Designs are specified at multiple levels:
• High-Level
• Detailed
• Implementation

4

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 1919

Multiple Design Levels
(cf. Humphrey, 1995, p. 319-322)

Multiple Design Levels
(cf. Humphrey, 1995, p. 319-322)

High-Level
• Conceptual / overall design.
• Critical trade-off decisions are made here.
• Balances development economics, application needs, and technology:

what is feasible , desirable , and affordable . (And, we should add, what is
politically / organizationally acceptable…)

• Thus to make proper high-level designs you must have accurate
development estimates. This will allow you to present in economic
terms the costs of each request the user has for system features .

Detailed
• Reduces high-level design to implementable form: functions, objects,

states, …

Implementation
• While implementation is not design, it implements detailed design,

provides feedback (testing) on the quality of the design, and may in fact
motivate changes in the design.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2020

Design Notation (cf. Humphrey, 1995, p. 322-324)Design Notation (cf. Humphrey, 1995, p. 322-324)

English (and any other natural language) is too redundant
and imprecise to use as a design notation.
The PSP provides a set of design templates & logic notation
to facilitate documenting the various aspects of design.
Design notation criteria:
• Can precisely and completely represent the design.
• Is understandable and usable by the people who must use the

design.
• Helps in efficiently producing a design.

Design notation used for high-level design work should be
implementation independent, but as lower and lower-level
design is performed the notation should be come more and
more implementation dependent, even to the point of using
constructs from the implementation language.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2121

Learning Design Notations
(cf. Humphrey, 1995, p. 323-324)

Learning Design Notations
(cf. Humphrey, 1995, p. 323-324)

It takes time to learn design notations.
Thus, at first your design work will be harder and will take
longer.
So, give yourself time to first learn a variety of notations.
Then analyze the effectiveness of various techniques in
contrast to not using these techniques.
Keep techniques that help you address problem areas, and
discard techniques that are not helpful.

Summary: learn, experiment / measure, analyze, select.
The design method should serve you, not you serve it.
If the data you collect does not indicate that a technique is
useful, find something that does!

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2222

The PSP’s Design NotationThe PSP’s Design Notation

cf. Appendix B
cf. Tables 10.1 / 2, p. 325, 326

Do Appendix B examples in-class.
####

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2323

Design Templates (cf. Humphrey, 1995, p. 324-327)Design Templates (cf. Humphrey, 1995, p. 324-327)

The PSP focuses on OO design; however,
non-OO designs can use the very same
techniques:
• Define ADT’s, organize your designs around “logical”

classes, the functions that implement them, state
diagrams for these logical “objects”, etc.

The PSP provides templates that help lead
to complete and precise designs, and
minimize duplication of information.
Information is stored in one place and is
then simply referenced other places.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2424

Template Dimensions
(cf. Humphrey, 1995, p. 325-327)

Template Dimensions
(cf. Humphrey, 1995, p. 325-327)

The elements of a complete design can be organized as follows:
• Internal-Static:

– logical design
– attributes, constraints

• Internal-Dynamic
– dynamic behavior
– state diagram

• External-Static
– relationships to other objects
– inheritance hierarchy
– logical behavior
–

? Take this slide out and don’t
even talk about this model ? It
doesn’t quite seem to map directly to
the four templates as Humphrey
suggests.

5

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2525

Functional Specification
Templates (cf. Humphrey, 1995, p. 327-333)

Functional Specification
Templates (cf. Humphrey, 1995, p. 327-333)

The functional specification describes several aspects of a
system, including:
• Class / object names & attributes
• Inheritance hierarchy (parent classes)
• Method names (declarations)
• Method preconditions and actions

These aspects describe each class conceptually
(inheritance, pre-conditions & actions), and specify how the
class will be used (method names and calling format).
Thus we see that this template describes both internal
requirements and external uses of each class / method, as
well as both static and dynamic aspects.

cf. Example template and notation on p. 327-330.
cf. Appendix B1-5 on design notation

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2626

State Specification
Templates (cf. Humphrey, 1995, p. 333-337)

State Specification
Templates (cf. Humphrey, 1995, p. 333-337)

The state specification describes the internal dynamic
behavior of an object. This includes:
• The object’s states
• All allowed transitions between these states
• All conditions that cause transitions.

What we desire is a “proper” state machine. Proper state
machines have the following properties:
• States are complete & orthogonal.
• State transitions are complete & orthogonal.
• Can reach an exit state from every other state.

cf. Example template and notation on p. 331-335.
(State machine can be shown both graphically and
functionally.)
cf. Appendix B6 on “proper state machines”

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2727

Logic Specification
Templates (cf. Humphrey, 1995, p. 337-339)

Logic Specification
Templates (cf. Humphrey, 1995, p. 337-339)

The logic specification describes the internal
processing logic of each method. It provides:
• Pseudocode describing the method’s internal processing

logic
• The object’s language-specific internal attributes and

actual definition and calling / return protocol
• #defines, #includes, ...

cf. Example template on p. 339.
cf. CRC cards are conceptually a better way to do
this. They can be used to combine the functional
and logic templates all together.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2828

Operational Scenario
Templates (cf. Humphrey, 1995, p. 340-343)

Operational Scenario
Templates (cf. Humphrey, 1995, p. 340-343)

Operational scenarios are descriptions of
how a user might expect to interact with the
system. They describe things users will
want to be able to do. They can also
describe incorrect ways the system might
be used.

cf. Example template on p. 341-343.
cf. Ivar Jacobson’s “Use Cases”

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 2929

Using Templates in Design
(cf. Humphrey, 1995, p. 343-347)

Using Templates in Design
(cf. Humphrey, 1995, p. 343-347)

Logic specification

State specification

Functional specification

Operational Scenario

Module/object
specifications

Program requirements:
what the user needs

Program specifications:
what the program

does

High-level design:
how the program

works

Logic specification

State specification

Functional specification

Operational Scenario

Module
source code

Module requirements:
what the program needs

Module specifications:
what the module

does

Detailed design:
how the module

works
cf. Fig 10.4, p. 320 to review cf. Fig 10.4, p. 320 to review
the multi-level nature of design.the multi-level nature of design.

At each level you specify At each level you specify external external
behaviorbehavior with functional and operational with functional and operational
spec’s. spec’s. Internal behaviorInternal behavior is specified with is specified with
state and logic spec’s.state and logic spec’s.

The design and implementation The design and implementation
hierarchies parallel each other,hierarchies parallel each other,
with implementation following with implementation following
naturally on the heels of design.naturally on the heels of design.

Implementation:Implementation:

Design:Design:

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 10 - slide Humphrey Ch. 10 - slide 3030

Design Guidelines (cf. Humphrey, 1995, p. 347-349)Design Guidelines (cf. Humphrey, 1995, p. 347-349)

Design Levels
• Work up and down the design hierarchy, however:

– When possible complete higher-level designs first.
– Do not consider a higher-level design complete until all

abstractions it uses are fully specified.
– Do not consider program element designs complete until all the

elements that call them are complete.
– Document assumptions as you go.
– Defer lower-level design decisions if they do not affect other parts

of the system.

Prototyping
• Prototyping can help you resolve difficult issues so you can specify

designs about which uncertainty remains until actual implementation is
performed.

Redesign
• Use the design templates when you have to reverse engineer or

redesign an already-existing product.

