Coding Standard

Language: C++
Author: Dan Turk
Date: 1997 Mar 24

Adapted from:
Humphrey, Watts S. (1995). A Discipline for Software Engineering.
New York: Addison-Wesley. Pages 670-672.

Purpose To guide the development of C++ programs

Program Headers Begin all programs with a descriptive header.

Fwogranqiieader /***
Format *

* Program Name: the program name
* Version: version number

*

* Author: the author’s name

*

* Date written: date

Description: sentence / paragraph description of what the
program does

Platform(s) tested on: hardware/ OS

Modification history:
list of dates, authors, and changes made

* X Ok F ¥ X X X F

***/

Program Header
Example

/***

*

* Program Name: date.cpp
* Version: 1.0

*

* Author: Dan Turk

*

* Date written: 1997 Mar 10

Description: date.cpp performs data cal culations such
as determining the how many days old a person is,
given the current date and their birthday, determining
the day a person was born given the current date,
day of week, and their birthday, determining if a
given year is a leap year or not, determining how
many days there are in a given month, etc.

Platform(s) tested on: Pentium / Windows 95
Modification history:

1997 Mar 21 Dan Turk Added “ daysold” calculations
1997 Mar 15 Dan Turk Corrected leap year determination

0% Ok 0k ¥ X X X F F ¥ X X X F

***/

Function Headers

Begin each function with a descriptive header.

Function Header
Format

/***
*

* Function Name: the function name
* Verson: version number

*

* Author: the author’s name

*

* Date written: date

Description: sentence / paragraph description of what the
function does

Parameter descriptions:
name and description of each parameter

Modification history:
list of dates, authors, and changes made

¥ 0F Ok F F X X X X F

***/

Function Header
Example

/***

*

* Function Name: days_in_month()
* Version: 1.0

*

* Author: Dan Turk

*

* Date written: 1990 Feb 13

* Description: days _in_month() determines the number of days in month m.
It returns the days in the month if mis a valid month number (1-12),
or =1 if misinvalid.

Parameter descriptions:
INPUT:
m month (1-12) for which to determine number of days
OUTPUT:
none
RETURN:
28, 29, 30, or 31 depending on the valid month number
-1if misnot valid

b T I B B R T R R . .

* Modification history:

*

***/

White Space

Write programs with sufficient spacing so that they do not appear crowded.
Separate every program construct with at least one space.

Blank Lines

Use blank lines to separate logical blocks of code and to improve readability.
Put at least one blank line between the end of one function and the beginning of the next.

I ndentation

Indent every level of logic from the previous one.
Indent a minimum of 2 and a maximum of 8 spaces for each additional level.
Start all lines at the same logical level at the same indentation level.

Line Spacing

Single-space all lines, except when double-spacing (inserting blank lines) will clarify
sections of code, such as setting off logical blocks of code from one another.

Begin-End block
delimiters

Put begin-block braces on the same line as the beginning statement.
Put end-block braces on a separate line, indented to the same level as all code within the
block.

Examples of Good Example:
effective use of
White Space, void main (void) {
Blank Lines,
Indentation, and inti, n;
Line Spacing
for (I=0; i<n; i++) {
cout << i;
cout << “ Hello, world!\n”;
} I for
} /I main()
Bad Example:
void main(void){
inti,n;
for(i=0;i<n;i++)
{ cout<<i;
cout<<“Hello, world!\n";
}
}
Grouping Group logical types of code together (Ex: #includes for header files, #defines,
prototypes)
Prototypes Declare dl prototypes at the beginning of the program before main()
Includes Include all header files at the beginning of the program before main()
Defines Define al constants & macros at the beginning of the program before main()
Naming Use meaningful names for all variables, constants, and functions.
Conventions Use lower-case names for variables, and upper-case for constants.

Separate portions of long names with underscores.
Examples of good naming conventions:

int total_cost, color;

#define TAX_RATE 0.06

void calculate_taxes (float gross_income, int exemptions);
Examples of bad naming conventions:

int tc, c;

#define R 0.06
void calc (float gi, int ex);

Comments

Document the code as necessary so the reader can easily understand it.
Make sure comments say more than what the code already says.

Do not comment every line of code.

Comment the beginning of logical blocks of code.

Clarify end-blocks by commenting them.

Good Examples:

I read until EOF and count number of input items
total = 0;
while (cin <<i) {
n++;
total +=1;
} I/ while
avg =tota / n;

/I print results

cout << “total=" << total << “\n”;
cout << “p=" << n << *\n”;

cout << “avg=" << avg << “\n’;

Bad Examples:
total = 0; // set total to zero
while (cin <<i) /l read i
{
n++; /ladd 1ton
total +=1i; /I add i to total
}

avg =tota / n; /I calculate average

cout << “total=" << total << “\n”; // print total
cout << “np=" << n << *\n”; Il print n

cout << “avg=" << avg << “\n"; /Il print average

