
Coding Standard
Language: __C++_____

Author: __Dan Turk__________
Date: __1997 Mar 24__

Adapted from:
 Humphrey, Watts S. (1995). A Discipline for Software Engineering.

New York: Addison-Wesley. Pages 670-672.
Purpose To guide the development of C++ programs
Program Headers • Begin all programs with a descriptive header.
Program Header
Format

/***
*
* Program Name: the program name
* Version: version number
*
* Author: the author’s name
*
* Date written: date
*
* Description: sentence / paragraph description of what the
* program does
*
* Platform(s) tested on: hardware / OS
*
* Modification history:
* list of dates, authors, and changes made
*
***/

Program Header
Example

/***
*
* Program Name: date.cpp
* Version: 1.0
*
* Author: Dan Turk
*
* Date written: 1997 Mar 10
*
* Description: date.cpp performs data calculations such
* as determining the how many days old a person is,
* given the current date and their birthday, determining
* the day a person was born given the current date,
* day of week, and their birthday, determining if a
* given year is a leap year or not, determining how
* many days there are in a given month, etc.
*
* Platform(s) tested on: Pentium / Windows 95
*
* Modification history:
* 1997 Mar 21 Dan Turk Added “days old” calculations
* 1997 Mar 15 Dan Turk Corrected leap year determination
*
***/

Function Headers • Begin each function with a descriptive header.
Function Header
Format

/***
 *
 * Function Name: the function name
 * Version: version number
 *
 * Author: the author’s name
 *
 * Date written: date
 *
 * Description: sentence / paragraph description of what the
 * function does
 *
 * Parameter descriptions:
 * name and description of each parameter
 *
 * Modification history:
 * list of dates, authors, and changes made
 *
 ***/

Function Header
Example

/***
 *
 * Function Name: days_in_month()
 * Version: 1.0
 *
 * Author: Dan Turk
 *
 * Date written: 1990 Feb 13
 *
 * Description: days_in_month() determines the number of days in month m.
 * It returns the days in the month if m is a valid month number (1-12),
 * or –1 if m is invalid.
 *
 * Parameter descriptions:
 * INPUT:
 * m month (1-12) for which to determine number of days
 * OUTPUT:
 * none
 * RETURN:
 * 28, 29, 30, or 31 depending on the valid month number
 * -1 if m is not valid
 *
 * Modification history:
 *
 ***/

White Space • Write programs with sufficient spacing so that they do not appear crowded.
• Separate every program construct with at least one space.

Blank Lines • Use blank lines to separate logical blocks of code and to improve readability.
• Put at least one blank line between the end of one function and the beginning of the next.

Indentation • Indent every level of logic from the previous one.
• Indent a minimum of 2 and a maximum of 8 spaces for each additional level.
• Start all lines at the same logical level at the same indentation level.

Line Spacing • Single-space all lines, except when double-spacing (inserting blank lines) will clarify
sections of code, such as setting off logical blocks of code from one another.

Begin-End block
delimiters

• Put begin-block braces on the same line as the beginning statement.
• Put end-block braces on a separate line, indented to the same level as all code within the

block.

Examples of
effective use of
White Space,
Blank Lines,
Indentation, and
Line Spacing

• Good Example:

 void main (void) {

 int i, n;

 for (i=0; i<n; i++) {

 cout << i;
 cout << “ Hello, world!\n”;
 } // for

 } // main()

• Bad Example:

 void main(void){
 int i,n;
 for(i=0;i<n;i++)
 {cout<<i;
 cout<<“Hello, world!\n”;

 }
 }

Grouping • Group logical types of code together (Ex: #includes for header files, #defines,
prototypes)

Prototypes • Declare all prototypes at the beginning of the program before main()
Includes • Include all header files at the beginning of the program before main()
Defines • Define all constants & macros at the beginning of the program before main()
Naming
Conventions

• Use meaningful names for all variables, constants, and functions.
• Use lower-case names for variables, and upper-case for constants.
• Separate portions of long names with underscores.

• Examples of good naming conventions:

 int total_cost, color;
 #define TAX_RATE 0.06
 void calculate_taxes (float gross_income, int exemptions);

• Examples of bad naming conventions:

int tc, c;
#define R 0.06
void calc (float gi, int ex);

Comments • Document the code as necessary so the reader can easily understand it.
• Make sure comments say more than what the code already says.
• Do not comment every line of code.
• Comment the beginning of logical blocks of code.
• Clarify end-blocks by commenting them.

• Good Examples:

// read until EOF and count number of input items
total = 0;
while (cin << i) {

n++;
total += i;
} // while

avg = total / n;

// print results
cout << “total=” << total << “\n”;
cout << “n=” << n << “\n”;
cout << “avg=” << avg << “\n”;

• Bad Examples:

total = 0; // set total to zero
while (cin << i) // read i
{

n++; // add 1 to n
total += i; // add i to total
}

avg = total / n; // calculate average
cout << “total=” << total << “\n”; // print total
cout << “n=” << n << “\n”; // print n
cout << “avg=” << avg << “\n”; // print average

