Design & Code Reviews

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 1

Review of PSP Levels e, 19050 11

Outline

. PSP3
Cyclic i Cyclic development

Quality Mgt CP,SPZW nsﬁfmzpiis
L=

PSP1 PP

Planning size estimating schede planning

Testreport

Coding standard
Current process Size measurement

1 Time recording Process improvement
Baseline Defect fecording proposal (PF)
Deiee: ype sndra

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 3

Three Types of Reviews

(cf. Humphrey, 1995, p. 231-233)

Review of PSP Levels

Introduction

Why Review?

Review Principles

Design Review Principles

Review Measures

Checklists

Reviewing Before vs. After Compiling
Reviews & Inspections

]
]
]
]
]
]
]
]
]
m Homework #6 - Part 2

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 2

I nt rOd U Ct i 0 n (cf. Humphrey, 1995, p. 231)

® Inspection - team review
« Prepare at initial meeting
+ Inspect separately, then in meeting
« Author repairs, report is made, track to closure
m Walkthrough - less formal team review
« Author makes presentation
« Developers & users can participate
— ID omissions & misunderstandings
— educate
« Little advance preparation or follow-up is necessary
m Personal review - ID/fix as many defects as possible before
compile, inspection, compile, or test
« This was the standard practice before PC's, fast compilers, and
integrated graphical environments became the norm.
« They save time later

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide5

m “Design and code reviews... [provide]
more improvement... than... any
other single change you can make in
your personal software process.”

m “Doing reviews is the most important
step you can take to improve your
software engineering performance.”

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide4

Products to Review

(cf. Humphrey, 1995, p. 233)

m All SW products can be reviewed

m Reviewing early products provide most benefit.

< Early products are even more critical for the whole SW
development process.

« They are easier and cheaper to review.

m Products:

Analysis

Design

« Code

Documentation

Development plans

Test cases / plans

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 6

Why ReViEWr) (cf. Humphrey, 1995, p. 233-237)

ReV i eW Efﬁ C I e n Cy (cf. Humphrey, 1995, p. 235)

m The secret to good writing is re-writing.

m Many beginning PSP-users spend more
than 33% of their development time on
compiling and testing. At the end of the A-
series programs students spend about
10% (or less).

m Conclusion:

< Reviews improved time, efficiency,
predictability, and quality
« cf. student data graphs, Fig. 8.1 & 2, p. 234

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 7

Review Efficiency (cont.)

(cf. Humphrey, 1995, p. 236-237)

B The biggest single problem with reviews is
convincing yourself of their value.

m It doesn’t seem worthwhile when you have a
powerful compiler / debugger to find (some)
defects for you...

® The only way to convince yourself is to collect data
and see.

« Table 8.1, p. 235, shows 8-12 times more time for unit
test fix vs. code review, and 16-60 times for post unit-
test fix...!

« Fig 8.3, p. 236 shows 3-5 times more defects per hour
for code review than test.

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide8

Review Efficiency (cont.)

(cf. Humphrey, 1995, p. 237)

m Code reviews are more efficient than testing:
* Reviews
— Defects are found directly
— You build a mental model of the program
— Thus it's easier to fix errors when they are found
« Testing
— Only symptoms of defects are found
« Debugging
— You must search for the causes of the defects which were found in
testing
* Examples:
— Three months searching vs. 2 hours inspection: inspection found
the error plus 71 others!

— Three days searching for one misplaced semicolon after a for
statement....

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide9

ReView P ri nC i p I eS (cf. Humphrey, 1995, p. 239-243)

m Debuggers are good for stepping through program logic and
checking parameter values.
« This is helpful if you know what the values should be.
« In order to know this you have to understand the program logic.
« Conclusion: Why not thoroughly check the logic ahead of time
since you need to know it anyway?!
m Most professional programmers have about 100 defects /
KLOC.
« Before using reviews, PSP students found approximately 50%
of their defects in compile.
« Thus 50% were left for test.
® You must decide the most efficient way to find them.
m Collect personal data to convince yourself.

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 10

Review Principles:
EStabI |Sh Goals (cf. Humphrey, 1995, p. 239-240)

m Establish review goals
m Follow a defined review process

m Measure & improve your review
process

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 11

m Ex:

* 100% defect removal before first compile
= Reality:

* Most people will achieve 50-80%

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 12

Review Principles: Review Principles: Measure &

Follow Defined Process Improve Your Process
(cf. Humphrey, 1995, p. 240-243) (cf. Humphrey, 1995, p. 243)
m A defined process will include for each ® You measure reviews in order to
activity: improve their quality
« Entry & exit criteri : : - -
: Tzsr:s me;;r‘f:gr:'a = A high-quality review finds the most
« cf. Table 8.2, Code Review Script (Design defects in the least amount of time
script is very similar) m In order to track this you must know:
« cf. Table 8.3, Checklist « Review time
m Keep script and checklist separate « Number of defects found
+ Facilitates planning * Number of defects found after review

< Easier to update

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 13 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 14

Review Principles: Keep Design &

Code Reviews Separate Four Design Review Principles
-247)

(cf. Humphrey, 1995, p. 243) (cf. Humphrey, 1995, p. 244
m Keeping design and code reviews separate m Produce reviewable designs
helps: m Follow an explicit review strategy

« Make designs more understandable

« Save implementation time m Review the design in stages
+ Avoid missing product defects m Verify that the logic correctly
= Spot possible design improvements implements the requirements
m When design & code reviews are kept
separate you are more likely to:
< Look for design alternatives
« Look for ways to make the design neater and/or
AU INSY m,anw&l@%gg'}mk Humphrey Ch. 8 - dlide 15 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dide 16
Design Review Principles: Design Review Principles:
Reviewable Designs Explicit Strategy
(cf. Humphrey, 1995, p. 245) (cf. Humphrey, 1995, p. 245-246)
m For a design to be reviewable: ™ Following a specific design /
« It's purpose and function must be explicitly stated. .
— Explicitly list program’s required functions and constraints, development SEqu_e_nce prOVIde_S a
conditions, standards. context and the ability to coordinate
« The design description must be complete and precise. . .
— System issues that affect the design should be noted. and/or Integrate dESIQnS'
— Ex: performance, memory, usability
< The design must be segmented into logical elements.
— This facilitates limited reviews at one time.
— Rule of thumb: One page of text.
m Gather data and find out what works best for you.
» Have we seen this theme before?!
AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dlide 17 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - slide 18

Design Review Principles:
Review in Stages

(cf. Humphrey, 1995, p. 246-247)

Design Review Principles:
Verify Log)ic vs. Requirements

(cf. Humphrey, 1995, p. 24

m Guidelines:
« Check for all required program elements.
« Verify overall program structure and flow.
« Check correctness of logical constructs.

m Checking that the program’s logic
meets the requirements is:

« Check logic for robustness. (Stress test.) * Hard work
« Check function calls - parameter number, order, & type; valid f
values. » The only way to check for oversights

= Check special variables, data types, files. and/or omissions
® Human vs. Compiler checking of names & types
« If you don't have name / type defects then don't worry about
this during design review
® Humphrey:
« During design review manually check global variables and state
controlling parameters, and all specially declared types.

« Check all others during code review

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 19 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 20

Review Measures: Review Yield

(cf. Humphrey, 1995, p. 248-251)

ReVieW M eaSU res (cf. Humphrey, 1995, p. 247-248)

m There are 4 explicit review measures:
* Reviewed program size - LOC
— PC and Pl would help to have common size measure throughout
* Review time - minutes
« Number of defects found
+ Number of escapes - defects found later
= Derived measures: m cf. Table 8.4, Yield Calculation Ex.

m Review yield
« Is the best measure of review quality

« Is the % of defects in design or code at the time of review
which were found by the review

< You can't calculate this precisely until later

* Review yield = % defects found during review
« Defects / KLOC design or code reviewed
« Defects / Hour

cf. Table 8.5, corresponding Defect Log
cf. Table 8.6, Ex. defect summary (net escapes,
...) and formulas

* LOC reviewed / Hour
* DRL = defect removal leverage
— relative rate of defect removal for any two process phases

m cf. Fig 8.5, Ex C++ Code Review Yield
cf. Fig 8.6, Ex Student yield data

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 21 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 22

Instant Review Measures

(cf. Humphrey, 1995, p. 251-256)

Instant Review Measures: DRL

(cf. Humphrey, 1995, p. 256-257)

m You need measures which can be gathered at the
current time which correlate with yield.
< This tells how good you're doing while you're doing

m DRL = Defect Removal Leverage
« Measures relative effectiveness

reviews. < Ratio of defects removed / Hour for any two
« % yield is not known until the end. phases
m Examples: ;
- Defocte | KLOG m Most used to compare test phase with
— Problem: some other phase
. Idseltg\g‘é/i?eld due to superficial review or did you start with few ™ Examples

« Fig. 8.7, p. 253 doesn’t show strong correlation.
« Defects / Hour
— 200 LOC / Hour optimal
— cf. Fig 8.9, p. 255

« cf. Table 8.7, Student PSP 10a data
« cf. Table 8.8 & Fig 8.11, Humphrey's PSP data

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 23 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 24

C h eC kl i StS (cf. Humphrey, 1995, p. 257-260) C h eC kl i Sts (CO nt.) (cf. Humphrey, 1995, p. 260-263)

m Building Checklists

m Checklists are very important
* Review your defect data to see where you should focus

+ Example: airline pilots preflight checks . Start with the PSPO defect standard (Tables 8.9 & 10)
™ USiI’]g Checklists information the checklist
. . . « Modify the checklist based on your defects-found (Pareto)
* Review 1 topic at a time distribution
« Review 1 program section at a time - Categaries not to worry about
. . — Subcategories
© Des'Qn reviews are best performed top-down — cf. Fig 8.12, p. 261, Pareto distribution (sorted by frequency)
« Code reviews are best performed bottom-up — Focus on most-frequently found defect types, and see how you can
L . improve your rate.
(unless you are unfamiliar with the COde) — Don't drop checking for low-frequency “found” review items, just
those that you are not having.
* You're finding these!
« Ifyou drop them you'll have to find them in test...
* Check coding standard items in your reviews
AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dlide 25 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dlide 26

o Reviewing Before vs. After
Reviewing Before vs. After Comp |I|nngros 2 Cons

Compl I I ng (cf. Humphrey, 1995, p. 263-264) (cf. Humphrey, 1995, p. 26:

m Compiling First:

] Th|s |s not a S|mp|e |Ssue « Compiling has 2x DRL for some defect types
* 90% of syntax & naming defects found
0, « Individual review effectiveness varies: may miss from 20-50% of syntax
m Not 100% of syntax errors are caught Indiidy
by the com pl |er « Syntax defects missed by compiler are easy to find
[] Rewewmg First:
* 8.7-9.3% of Hu mph rey’s weren't Compiler misses about 9% of syntax defects
* Finding defects in review saves both compile time and makes it more
* These may actually be thought of as predictable)) -
. It generally takes longer to fix syntax errors in test than in review
semantic, not syntax, errors: the code « Unit testing generally finds about 1/2 of a program’s defects. If you find
. more defects before test then your total found is likely to go up.
does not dO Wh at was Intended . « Later test phases are even less efficient than unit test
. « Hard to do thorough job reviewing pre-compiled code because there
| Cf F|g 813, p 264, DefeCt typeS are few defects. You lose interest...
. + You won't save any time by compiling first; reviewing first saves time in
found / mISSEd compile and in later test.
AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dlide 27 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8 - dlide 28

Reviewing Before vs. After
Comp |I|ng Objectives Reviews & Inspections

(cf. Humphrey, 1995, p. 265-266) (cf. Humphrey, 1995, p. 267-268)

® You should perform (group) inspections in addition to your

m What is your goal? X
personal reviews
* Do you want to get to test as soon as - Include all involved people’s time in your Time Log
possible, or do you want to remove the ® Question: Where to inspect?
* Review code before inspection?
most defects? « Compile code before inspection?
m Don’t confuse speed with progress! = Answers
|f t . t th t « Give inspectors as clean code as possible - review it first: polite,
| Ou are 1rying to remove the mos they'll focus better.
d Yr t th y g H ht " . * When improving your review process - inspect before compile.
erects, en yOU mlg as well review * When you have a good review process - compile before
where it is most effective. inspection.

« Don't unit test first.

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 29 AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 30

Homework #6 - Part 2

m See “Homework Assignments” list and
textbook instructions.

AU INSY 560, Singapore 1997, Dan Turk Humphrey Ch. 8- dide 31

