Contemporary Physics
Review Sheet for Exam IV
Chapters 24 - 26

Chapter 24: Magnetic Fields

Force on a moving charge: \(F' = qvB \sin \theta \)

1. Angle \(\theta \) measured between the direction of \(v \) and the direction of \(B \).
2. Direction of \(F \) determined by first right hand rule:
 a. Point fingers in direction of \(v \)
 b. Curl fingers in direction of \(B \)
 c. Thumb points in the direction of \(F \).

Force on a moving current: \(F' = IB \sin \theta \)

1. Angle \(\theta \) measured between the direction of \(I \) and the direction of \(B \).
2. Direction of \(F \) determined by first right hand rule:
 a. Point fingers in direction of \(I \)
 b. Curl fingers in direction of \(B \)
 c. Thumb points in the direction of \(F \).

Magnetic field generated by a moving current in a long straight wire: \(B = \frac{\mu_0 I}{2\pi r} \)

1. \(\mu_0 = 4\pi \times 10^{-7} \) Tm / A
2. \(B \) measured in Tesla [T]
3. \(r \) is the radial distance from the center of the wire to the point where \(B \) is measured.
4. Direction of \(B \) determined by second right hand rule:
 a. Point thumb in direction of \(I \)
 b. Fingers curl in the direction of \(B \) in circles around the current

Magnetic field generated by a moving current in a solenoid: \(B = \mu_0 I n \frac{N}{R} \)

1. \(n \) is the number of turns per unit length
2. \(N \) is the total number of turns. \(R \) is the length of the solenoid.
3. Direction of \(B \) determined by third right hand rule:
 a. Curl fingers in direction of \(I \) around the solenoid
 b. Thumb points in the direction of \(B \) through the solenoid

Magnetic field lines:

1. Start at North poles, end at South poles
2. Never terminate, always go in complete loops
Chapter 25: Electromagnetic Induction

Electromotive force: $\mathbf{g}mf' \quad v RB$

1. $\mathbf{g}mf$ is measured in Volts [V].
2. Equation true only for v, R, and B mutually perpendicular
3. If v, R, and B are not mutually perpendicular, then $\mathbf{g}mf$ may be calculated as follows:
 a. $E' \quad v B \sin \theta$, angle θ measured between v and B, direction determined by r.h.r. #1.
 b. $\mathbf{g}mf' \quad E R \cos \theta$, angle θ measured between E and R

Magnetic flux: $\mathbf{\Phi}' \quad BA \cos \theta$

1. $\mathbf{\Phi}$ measured in Webers [Wb] = T m2
2. Angle θ measured between B and the perpendicular vector to the surface A.

Faraday’s Law of Induction: $\mathbf{g}mf' \quad \mathbf{\&} N \frac{\mathbf{\Phi}'}{\mathbf{\Delta}t}$

1. N is number of turns of the coil
2. $\mathbf{\Delta}\Phi/\mathbf{\Delta}t$ is the change in magnetic flux through the coil per unit time
3. Negative sign represents Lenz’s Law: the induced $\mathbf{g}mf$ will always try to counteract change in flux.

Self-Inductance: $L' \quad \frac{\mathbf{\Phi}'}{I}, \quad \mathbf{g}mf' \quad \mathbf{\&} N \frac{\mathbf{I}'\mathbf{\Delta}t}{\mathbf{\Delta}t}$

1. L measured in Henrys [H] = Wb / A
2. $\mathbf{g}mf$ generated by self-inductance called “back $\mathbf{g}mf$” since it opposes changes in external Voltage.

Transformers:

\[
\frac{V_s}{N_s} = \frac{V_p}{N_p} \quad \text{or} \quad \frac{V_s}{V_p} = \frac{N_s}{N_p}
\]

1. N_p = number of turns on primary coil, N_s = number of turns on secondary coil.
2. Power supplied, $P_p = V_p I_p$, Power delivered, $P_s = V_s I_s$, efficiency $e = P_s / P_p$
Chapter 26: Electromagnetism

Lorentz force: \(\mathbf{F} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B} \sin \theta \)

1. \(q \mathbf{E} \) is electric force of a charged particle in an electric field
2. \(q \mathbf{v} \times \mathbf{B} \sin \theta \) is magnetic force of a charged particle in a magnetic field
3. If electric and magnetic forces are opposed, particles are undeflected if \(v = \frac{E}{B} \)
4. Velocity Selector of a mass spectrometer.

Magnetic force: \(\mathbf{F} = q \mathbf{v} \mathbf{B} \sin \theta \), \(m \mathbf{a} = m \frac{v^2}{r} \)

1. Equate centripetal force to magnetic force to determine radius of circle.
2. Detector of a mass spectrometer.

Electric potential and Kinetic Energy: \(KE = \frac{1}{2} m v^2 \)

1. Particle of charge \(e = 1.60 \times 10^{-19} \text{ C} \) accelerated through a potential difference of \(V \) has \(V \) electron volts (eV) of energy.
2. Accelerator of a mass spectrometer.

Electromagnetic Waves: \(\mathbf{v} \times \mathbf{c} = \frac{\mathbf{E}}{B} \)

1. Velocity (in vacuum) = \(c = 3 \times 10^8 \text{ m/s} \).
2. Electric field \(\mathbf{E} \) and magnetic field \(\mathbf{B} \) are mutually perpendicular and perpendicular to \(\mathbf{v} \).
3. \(c = f \lambda \), \(f \) frequency, \(\lambda \) wavelength.