CHEMISTRY AND BIOCHEMISTRY

Halenz Hall, Room 225
(269) 471-3247 or 471-3248
chemistry@andrews.edu
http://www.andrews.edu/CHEM/

Faculty
G. William Mutch, Chair
David E. Alonso
Getahun Merga
Desmond H. Murray
D. David Nowack
Steven E. Warren
Peter A. Wong

<table>
<thead>
<tr>
<th>Academic Programs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS: Chemistry</td>
<td>38</td>
</tr>
<tr>
<td>BS: Chemistry (Approved by the American Chemical Society (ACS) Committee on Professional Training)</td>
<td>44</td>
</tr>
<tr>
<td>BS: Biochemistry</td>
<td>34</td>
</tr>
<tr>
<td>Minor in Chemistry</td>
<td>20</td>
</tr>
</tbody>
</table>

Students who plan to major in chemistry or biochemistry are expected to have entrance credit in the preparatory subjects of chemistry and mathematics (including algebra and trigonometry); a background in physics is desirable. Those who do not have entrance credit or equivalent training in these subjects, particularly mathematics, may not fulfill the department graduation requirements in four years.

Students are encouraged to plan early for an on-campus or off-campus research experience required of all students in the Bachelor of Science degree programs in chemistry and strongly recommended for those in the Bachelor of Science degree program in biochemistry. This experience may take the form of a cooperative educational-research experience or research in an academic, industrial, or governmental laboratory setting. Interested students should consult the department chair.

AMERICAN CHEMICAL SOCIETY CERTIFICATION
Students desiring American Chemical Society certification must
- Complete the required courses for the (ACS) Bachelor of Science degree in chemistry as spelled out in this bulletin
- Achieve a minimum GPA of 3.00 in all chemistry courses taken at Andrews University
- Satisfactorily complete a research or cooperative educational experience in chemistry
- Pass at least one advanced course selected from the following: CHEM470, 474 or 475.

A complete statement of certification requirements is available from the department chair.
Undergraduate Programs

Core Courses–30
CHEM131, 132, 200, 231, 232, 241, 242, 311, 312, 411, 412, 431, 441, BCHM421

BS: Chemistry—38
Major Requirements: Core plus CHEM415, 440.
Research/Cooperative Experience: An on-campus or off-campus research or cooperative educational experience. The student may satisfy this requirement by matriculating in CHEM495, HONS497, 498 or IDSC380.
Cognate Courses: CPTR125 or CPTR151; MATH141, 142; PHYS241, 242, 271, 272.

BS: Chemistry—44
(American Chemical Society approved)
Major Requirements: Core plus CHEM440, 415, 432, 442; and one course selected from the following: CHEM470, 474, or 475.
Research/Cooperative Experience: An on-campus or off-campus research or cooperative educational experience. The student may satisfy this requirement by matriculating in CHEM495, HONS497, 498 or IDSC380.
Cognate Courses: MATH141, 142, 286; CPTR125 or CPTR151; PHYS241, 242, 271, 272.

Courses

See inside front cover for symbol code.

BCHM120 $ (4)
Introduction to Biological Chemistry
A survey of major concepts in biochemistry such as structures of biological molecules, their functions, energy metabolism, regulation of biochemical pathways; for nursing, dietetics, and allied health students. Weekly: 3 lectures, 1 recitation, and a 3-hour lab. Not applicable towards a major or minor in chemistry or biochemistry. Prerequisite: CHEM110. Spring

BCHM421 g (4)
Biochemistry I
Study of the fundamental principles of enzyme kinetics and mechanisms based on the structure and chemistry of biomolecules including amino acids, carbohydrates, lipids, proteins, nucleotides, nucleic acids, and biological membranes. Weekly: 4 lectures. Prerequisite: CHEM232. Fall

BCHM422 g (3)
Biochemistry II
Continuation of BCHM421 including selected topics of hormone and regulatory biochemistry, and the study of the four primary neurotransmitter systems--acetylcholine, catecholamines, serotonin, and gamma-aminobutyric acid. Weekly: 3 lectures. Prerequisite: BCHM421. Spring

BCHM430 g $ (1)
Biochemistry Lab
Introduction to quantitative and qualitative methods for the isolation, purification and identification of biological materials and applications of enzyme kinetics. Weekly: 4 hours of lab. Prerequisite: BCHM421 and registration in BCHM422. Spring

CHEM110 $ (4)
Introduction to Inorganic and Organic Chemistry
An introduction to the principles and applications of inorganic and organic chemistry; for nursing, dietetics, and allied health students. Meets the natural/physical science general education restricted choice requirement. Weekly: 3 lectures, 1 recitation, and a 3-hour lab. Fall

CHEM131 $ (4)
General Chemistry I
This first course in chemistry is for students planning to major in science and engineering. Topics include stoichiometry, atomic and molecular structure, bonding, states of matter, solutions, chemical kinetics, and chemical equilbrium. Weekly: 3 lectures, 2 recitations, and a 3-hour lab. Prerequisite: MPE> P3 or MATH166 or MATH141; High school chemistry or physics strongly recommended. Fall

CHEM132 $ (4)
General Chemistry II
A continuation of CHEM131 with topics including thermodynamics, acid and base chemistry, descriptive and nuclear chemistry. Weekly: 3 lectures, 2 recitations, and a 3-hour lab. Prerequisites: a grade of C- or better in CHEM131. Spring

CHEM200 $ (4)
Quantitative Analysis
Lecture topics include statistics, chemical equilibrium, titrimetric procedures, gravimetric procedures, and electrochemistry. Laboratory experiments include gravimetric procedures and titrimetric procedures of acid and base systems and redox systems,
electrochemistry, and an introduction to instrumental methods. Weekly: 2 lectures and two 4-hour labs. Prerequisites: CHEM132. Fall

CHEM231
Organic Chemistry I
The chemistry of carbon-containing compounds with emphasis on nomenclature, molecular structure, spectra-structure relationships, and a mechanistic approach to organic reactions. Weekly: 3 lectures and 2 recitations. Prerequisites: CHEM132. Fall

CHEM232
Organic Chemistry II
This course is a continuation of CHEM231. Weekly: 3 lectures and 2 recitations. Prerequisites: a grade of C- or better in CHEM231. Spring

CHEM241
Organic Chemistry Laboratory I
Experiments related to the course content of CHEM231. Weekly: one 4-hour laboratory. Prerequisite: CHEM231 or concurrent enrollment in CHEM231. Fall

CHEM242
Organic Chemistry Laboratory II
Experiments related to the course content of CHEM232. Weekly: one 4-hour laboratory. Prerequisite: CHEM232 or concurrent enrollment in CHEM232. Spring

CHEM300
Laboratory Glassblowing
Practice of fundamental glassblowing skills common to both scientific and creative glass blowing. Two projects are required. The student may choose between scientific and creative projects. Weekly: 1 lecture demonstration and 4 hours of lab. Not applicable towards a major or minor in chemistry or toward the General Education requirement in natural science. Offered Fall (even years or as needed)

CHEM311
Seminar in Chemistry
Departmental seminar series devoted to topics in current chemical research by students, faculty, and guest speakers. This course is required of, and open only to, junior chemistry and biochemistry majors, and attendance for both semesters is required for one credit; freshmen and sophomores are encouraged to attend. Grading is on an S/U basis. A deferred grade (DG) is assigned Fall Semester and is removed upon successful completion of CHEM312. Weekly: 1 seminar. Prerequisite: CHEM232. Fall

CHEM312
Seminar in Chemistry
Continuation of CHEM311. This course is required of, and open only to, junior chemistry and biochemistry majors; freshmen and sophomore are encouraged to attend. Grading is on S/U basis. Weekly: 1 seminar. Prerequisite: CHEM311. Spring

CHEM340
Environmental Chemistry
A survey of environmental and energy-related problems. Topics include air, soil, and water pollution, energy and other resources, solid wastes and recycling, and toxic chemicals. Weekly: 3 lectures and one 4-hour lab. Not applicable towards a major in chemistry or biochemistry. Prerequisites: CHEM132, CHEM232 or CHEM200 strongly recommended. Spring (odd years or as needed)

CHEM410
Forensic Chemistry
Principles of chemistry as applied to the methods of analysis and identification of drugs. Rules of evidence as they apply to testimony in court. Observation of drug-related court procedures. Weekly: 1 lecture and two 3-hour labs. Participation must be arranged with the instructor at least 2 months prior to beginning of course. Prerequisites: CHEM200, 232. Spring

CHEM411
Seminar in Chemistry
First half of semester consists of two meetings per week: one is an introduction to chemical literature and computer searching of Chemical Abstracts and chemical databases, the other meeting is the regular seminar series presented by students, faculty, and invited speakers. During the semester, each student prepares and presents a seminar. This course is required of, and open only to, senior chemistry and biochemistry majors, and attendance for both semesters is required for one credit. A deferred grade (DG) is assigned Fall Semester and is removed upon successful completion of CHEM412. Weekly: Two meetings during first half of semester, one meeting remainder of semester. Prerequisite: CHEM312. Fall

CHEM412
Seminar in Chemistry
Continuation of CHEM411. During the semester, each student prepares and presents a seminar. This course is required of, and open only to, seniors. Prerequisite: CHEM411. Spring

CHEM415
Advanced Inorganic Chemistry
Atomic and molecular structure, symmetry, group theory, solid state, acids and bases, structure, bonding, spectra, and reaction mechanisms of d-metal complexes, systematic chemistry of non-metals; organometallic chemistry and catalysis. Weekly: 4 lectures. Prerequisites: CHEM232, 431. Spring

CHEM431
Physical Chemistry I
Fundamental concepts in chemical thermodynamics, free energy, chemical equilibria, phase changes, solutions, molecular transport, chemical dynamics, and electrochemistry. Weekly: 3 lectures. Prerequisites: CHEM200, MATH142, PHYS142 (or 242, 272). Fall

CHEM432
Physical Chemistry II
Wave mechanics, atomic and molecular structure, chemical bonding, atomic and molecular spectroscopies, and applications to chemical dynamics and statistical thermodynamics. Weekly: 3 lectures. Prerequisites: CHEM431, MATH286; MATH240 strongly recommended. Spring

CHEM440
Instrumental Analysis
Theory and practice of analytical separations and chemical analyses by chromatographic, optical, and electrochemical methods. Introduction to interface of instruments with micro-computers. Instruments used include emission and absorption spectrometers, lasers, mass spectrometer, chromatographs, micro-computers, analog and digital devices. Weekly: 2 lectures and two 4-hour labs. Prerequisites: CHEM200, MATH142. Fall

CHEM441
Physical Chemistry Laboratory I
Experiments related to the course content of CHEM431. Weekly:
one 4-hour laboratory. Prerequisite: concurrent enrollment in CHEM431. **Fall**

CHEM442

Physical Chemistry Laboratory II
Experiments related to the course content of CHEM432. Weekly: one 4-hour laboratory. Prerequisite: concurrent enrollment in CHEM 432. **Spring**

CHEM470

Modern Synthetic Techniques
An advanced laboratory course designed to incorporate a wide variety of modern synthetic techniques of organic, organometallic, and inorganic chemistry. Weekly: two 4-hour labs. Prerequisites: CHEM474,415 or concurrent enrollment in CHEM415. **Spring**

CHEM474

Advanced Topics in Organic Chemistry
Study of the principles of modern synthetic organic chemistry with applications from one or more of the following areas: natural product, medicinal, or polymer chemistry. Weekly: 2 lectures. Prerequisite: CHEM232. **Fall**

CHEM475

Advanced Topics in Physical Chemistry
Advanced study of molecular spectroscopy, statistical thermodynamics, chemical dynamics, or the application of quantum mechanics. Prerequisites: CHEM432 or CHEM431 and permission of the instructor.

CHEM495

Independent Research
An opportunity for chemistry and biochemistry majors to gain research experience by joining with a faculty member in study of an area of special interest.

GRADUATE

CHEM530

Topics in Teaching Chemistry
Each time the course is offered, it treats one of the following areas:
- Concepts in Chemistry
 Fundamental ideas of chemistry
- Demonstrations
 Simple experiments which illustrate chemical principles
- Problem-Solving Strategies
 Exploration into the mental processes and logic behind problem solving.
None of the above areas are to occur twice in one student’s program. Prerequisite: CHEM232. Repeatable to 6 credits.

CHEM540

Topics in Chemistry
Independent readings to be chosen in consultation with the instructor. A written report and an oral presentation covering the materials read are required. A minimum of 60 hours of work is required for each credit. Prerequisites: CHEM431. Repeatable to 6 credits.

Nethery Hall, Room 024
(269) 471-3160; Fax (269) 471-3125
commdept@andrews.edu
http://www.andrews.edu/COMM/

Faculty
Delyse Steyn, Chair
Luanne J. Bauer
Shelley-Jean Bradfield
Beverly J. Matiko
J. Michael Parnell
Janice Y. Watson

<table>
<thead>
<tr>
<th>Academic Programs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA: Communication</td>
<td>37</td>
</tr>
<tr>
<td>International Communication Emphasis</td>
<td>58</td>
</tr>
<tr>
<td>Communication Management Emphasis</td>
<td>58</td>
</tr>
<tr>
<td>BA: Journalism</td>
<td>37</td>
</tr>
<tr>
<td>Media Studies Emphasis</td>
<td>58</td>
</tr>
<tr>
<td>BA: Public Relations</td>
<td>37</td>
</tr>
<tr>
<td>International Public Relations Emphasis</td>
<td>58</td>
</tr>
<tr>
<td>Minor in Communication Studies</td>
<td>20</td>
</tr>
<tr>
<td>Minor in Journalism</td>
<td>20</td>
</tr>
<tr>
<td>Minor in Media Studies</td>
<td>20</td>
</tr>
<tr>
<td>Minor in Public Relations</td>
<td>20</td>
</tr>
<tr>
<td>MA: Interdisciplinary Studies (Communication)</td>
<td>37-45</td>
</tr>
</tbody>
</table>

After completing the freshman/sophomore sequence of courses, students make formal application to the faculty to continue their chosen majors. Students may be asked to take specific communication courses to develop required skills. Transfer students beyond the sophomore year are allowed one year to make up deficiencies.

INTERNSHIPS
Journalism and PR majors must submit applications for required internships during the sophomore and/or junior year. Communication majors are encouraged to participate in the internship program and must then submit applications for internships during the junior or senior year. Students must have department permission prior to applying for internships. It is strongly recommended that students complete COMM480 prior to submitting applications.

PRACTICUM
Practicum refers to the out-of-class opportunities on campus and in the immediate area for developing skills valuable to the communication professional. Students are encouraged to apply to the department for such opportunities. These experiences will be documented in a Portfolio as evidence of the student’s involvement in the practical application of theory.