CHEMISTRY AND BIOCHEMISTRY

Halenz Hall, Room 225
(269) 471-3247 or 471-3248
chemistry@andrews.edu
http://www.andrews.edu/CHEM/

Faculty
G. William Mutch, Chair
David E. Alonso
Getahun Merga
Desmond H. Murray
D. David Nowack
Steven E. Warren
Peter A. Wong

Students who plan to major in chemistry or biochemistry are expected to have entrance credit in the preparatory subjects of chemistry and mathematics (including algebra and trigonometry); a background in physics is desirable. Those who do not have entrance credit or equivalent training in these subjects, particularly mathematics, may not fulfill the department graduation requirements in four years.

Students are encouraged to plan early for an on-campus or off-campus research experience required of all students in the Bachelor of Science degree programs in chemistry and strongly recommended for those in the Bachelor of Science degree program in biochemistry. This experience may take the form of a cooperative educational-research experience or research in an academic, industrial, or governmental laboratory setting. Interested students should consult the department chair.

AMERICAN CHEMICAL SOCIETY CERTIFICATION
Students desiring American Chemical Society certification must
• Complete the required courses for the (ACS) Bachelor of Science degree in chemistry as spelled out in this bulletin
• Achieve a minimum GPA of 3.00 in all chemistry courses taken at Andrews University
• Satisfactorily complete a research or cooperative educational experience in chemistry
• Pass at least one advanced course selected from the following: CHEM470, 474 or 475.

A complete statement of certification requirements is available from the department chair.
Undergraduate Programs

Core Courses—30
CHEM131, 132, 200, 231, 232, 241, 242, 311, 312, 411, 412, 431, 441, BCHM421

BS: Chemistry—38
Major Requirements: Core plus CHEM415, 440.
Research/Cooperative Experience: An on-campus or off-campus research or cooperative educational experience. The student may satisfy this requirement by matriculating in CHEM495, HONS497, 498 or IDSC380.
Cognate Courses: CPTR125 or CPTR151; MATH141, 142; PHYS241, 242, 271, 272.

BS: Chemistry—44
(American Chemical Society approved)
Major Requirements: Core plus CHEM440, 415, 432, 442; and one course selected from the following: CHEM470, 474, or 475.
Research/Cooperative Experience: An on-campus or off-campus research or cooperative educational experience. The student may satisfy this requirement by matriculating in CHEM495, HONS497, 498 or IDSC380.
Cognate Courses: MATH141, 142, 286; CPTR125 or CPTR151; PHYS241, 242, 271, 272.

Courses in economics and marketing are strongly recommended. A reading knowledge of German or French, although not required for professional undergraduate education in chemistry, is strongly recommended for students planning advanced study.

BS: Biochemistry—34
Major Requirements: Core plus BCHM422, 430.
Cognate Courses: BIOL165, 166; MATH141, 142; PHYS141, 142 (or PHYS241, 242, 271, 272); and two courses selected from BIOL371, 372; FDNT485; ZOOL315, 464, 465.

Students desiring a career in biochemistry might be better served by adding the biochemistry courses to the Bachelor of Science degree in chemistry, but the Bachelor of Science degree in biochemistry can be strengthened by the addition of CHEM415, 440, and 495.

Minor in Chemistry—20
CHEM131, 132, 231, 232, plus 4 credits of majors level chemistry or biochemistry.

Graduate Program

The Department of Chemistry and Biochemistry collaborates in offering the Master of Science: Interdisciplinary Studies (Mathematics and Physical Sciences). See the Interdisciplinary Studies section, p. 136.

Courses

See inside front cover for symbol code.

BCHM120
Introduction to Biological Chemistry
A survey of major concepts in biochemistry such as structures of biological molecules, their functions, energy metabolism, regulation of biochemical pathways; for nursing, dietetics, and allied health students. Weekly: 3 lectures, 1 recitation, and a 3-hour lab. Not applicable towards a major or minor in chemistry or biochemistry. Prerequisite: CHEM110. Spring

BCHM421
Biochemistry I
Study of the fundamental principles of enzyme kinetics and mechanisms based on the structure and chemistry of biomolecules including amino acids, carbohydrates, lipids, proteins, nucleotides, nucleic acids, and biological membranes. Weekly: 4 lectures. Prerequisite: CHEM232. Fall

BCHM422
Biochemistry II
Continuation of BCHM421 including selected topics of hormone and regulatory biochemistry, and the study of the four primary neurotransmitter systems—acetylcholine, catecholamines, serotonin, and gamma-aminobutyric acid. Weekly: 3 lectures. Prerequisite: BCHM421. Spring

BCHM430
Biochemistry Lab
Introduction to quantitative and qualitative methods for the isolation, purification and identification of biological materials and applications of enzyme kinetics. Weekly: 4 hours of lab. Prerequisite: BCHM421 and registration in BCHM422. Spring

CHEM110
Introduction to Inorganic and Organic Chemistry
An introduction to the principles and applications of inorganic and organic chemistry; for nursing, dietetics, and allied health students. Meets the natural/physical science general education restricted choice requirement. Weekly: 3 lectures, 1 recitation, and a 3-hour lab. Fall

CHEM131
General Chemistry
This first course in chemistry is for students planning to major in science and engineering. Topics include stoichiometry, atomic and molecular structure, bonding, states of matter, solutions, chemical kinetics, and chemical equilibria. Weekly: 3 lectures, 2 recitations, and a 3-hour lab. Prerequisite: MPE>P3 or MATH166 or MATH141; High school chemistry or physics strongly recommended. Fall

CHEM132
General Chemistry II
A continuation of CHEM131 with topics including thermodynamics, acid and base chemistry, descriptive and nuclear chemistry. Weekly: 3 lectures, 2 recitations, and a 3-hour lab. Prerequisites: a grade of C- or better in CHEM131. Spring

CHEM200
Quantitative Analysis
Lecture topics include statistics, chemical equilibrium, titrimetric procedures, gravimetric procedures, and electrochemistry. Laboratory experiments include gravimetric procedures and titrimetric procedures of acid and base systems and redox systems,
electrochemistry, and an introduction to instrumental methods. Weekly: 2 lectures and two 4-hour labs. Prerequisites: CHEM132. Fall

CHEM231
Organic Chemistry I
The chemistry of carbon-containing compounds with emphasis on nomenclature, molecular structure, spectra-structure relationships, and a mechanistic approach to organic reactions. Weekly: 3 lectures and 2 recitations. Prerequisites: CHEM132. Fall

CHEM232
Organic Chemistry II
This course is a continuation of CHEM231. Weekly: 3 lectures and 2 recitations. Prerequisites: a grade of C- or better in CHEM231. Spring

CHEM241
Organic Chemistry Laboratory I
Experiments related to the course content of CHEM231. Weekly: one 4-hour laboratory. Prerequisite: CHEM231 or concurrent enrollment in CHEM231. Fall

CHEM242
Organic Chemistry Laboratory II
Experiments related to the course content of CHEM232. Weekly: one 4-hour laboratory. Prerequisite: CHEM232 or concurrent enrollment in CHEM232. Spring

CHEM300
Laboratory Glassblowing
Practice of fundamental glassblowing skills common to both scientific and creative glass blowing. Two projects are required. The student may choose between scientific and creative projects. Weekly: 1 lecture demonstration and 4 hours of lab. Not applicable towards a major or minor in chemistry or toward the General Education requirement in natural science. Offered Fall (even years or as needed)

CHEM311
Seminar in Chemistry
Departmental seminar series devoted to topics in current chemical research by students, faculty, and guest speakers. This course is required of, and open only to, junior chemistry and biochemistry majors, and attendance for both semesters is required for one credit; freshmen and sophomores are encouraged to attend. Grading is on a S/U basis. A deferred grade (DG) is assigned Fall Semester and is removed upon successful completion of CHEM312. Weekly: 1 seminar. Prerequisite: CHEM312. Fall

CHEM312
Seminar in Chemistry
Continuation of CHEM311. During the semester, each student prepares and presents a seminar. This course is required of, and open only to, seniors. Prerequisite: CHEM311. Spring

CHEM410
Forensic Chemistry
Principles of chemistry as applied to the methods of analysis and identification of drugs. Rules of evidence as they apply to testimony in court. Observation of drug-related court procedures. Weekly: 1 lecture and two 3-hour labs. Participation must be arranged with the instructor at least 2 months prior to beginning of course. Prerequisites: CHEM200, 232. Spring

CHEM411
Seminar in Chemistry
First half of semester consists of two meetings per week: one is an introduction to chemical literature and computer searching of Chemical Abstracts and chemical databases, the other meeting is the regular seminar series presented by students, faculty, and invited speakers. During the semester, each student prepares and presents a seminar. This course is required of, and open only to, senior chemistry and biochemistry majors, and attendance for both semesters is required for one credit. A deferred grade (DG) is assigned Fall Semester and is removed upon successful completion of CHEM412. Weekly: Two meetings during first half of semester, one meeting remainder of semester. Prerequisite: CHEM312. Fall

CHEM412
Seminar in Chemistry
Continuation of CHEM411. During the semester, each student prepares and presents a seminar. This course is required of, and open only to, seniors. Prerequisite: CHEM411. Spring

CHEM415
Advanced Inorganic Chemistry
Atomic and molecular structure, symmetry, group theory, solid state, acids and bases; structure, bonding, spectra, and reaction mechanisms of d-metal complexes, systematic chemistry of non-metals; organometallic chemistry and catalysis. Weekly: 4 lectures. Prerequisites: CHEM232, 431. Spring

CHEM431
Physical Chemistry I
Fundamental concepts in chemical thermodynamics, free energy, chemical equilibria, phase changes, solutions, molecular transport, chemical dynamics, and electrochemistry. Weekly: 3 lectures. Prerequisites: CHEM200, MATH142, PHYS142 (or 242, 272). Fall

CHEM432
Physical Chemistry II
Wave mechanics, atomic and molecular structure, chemical bonding, atomic and molecular spectroscopies, and applications to chemical dynamics and statistical thermodynamics. Weekly: 3 lectures. Prerequisites: CHEM431, MATH286; MATH240 strongly recommended. Spring

CHEM440
Instrumental Analysis
Theory and practice of analytical separations and chemical analyses by chromatographic, optical, and electrochemical methods. Introduction to interface of instruments with microcomputers. Instruments used include emission and absorption spectrometers, lasers, mass spectrometer, chromatographs, microcomputers, analog and digital devices. Weekly: 2 lectures and two 4-hour labs. Prerequisites: CHEM200, MATH142. Fall

CHEM441
Physical Chemistry Laboratory I
Experiments related to the course content of CHEM431. Weekly:
one 4-hour laboratory. Prerequisite: concurrent enrollment in CHEM431. Fall

CHEM442
Physical Chemistry Laboratory II
Experiments related to the course content of CHEM432. Weekly: one 4-hour laboratory. Prerequisite: concurrent enrollment in CHEM 432. Spring

CHEM470
Modern Synthetic Techniques
An advanced laboratory course designed to incorporate a wide variety of modern synthetic techniques of organic, organometallic, and inorganic chemistry. Weekly: two 4-hour labs. Prerequisites: CHEM474,415 or concurrent enrollment in CHEM415. Spring

CHEM474
Advanced Topics in Organic Chemistry
Study of the principles of modern synthetic organic chemistry with applications from one or more of the following areas: natural product, medicinal, or polymer chemistry. Weekly: 2 lectures. Prerequisite: CHEM232. Fall

CHEM475
Advanced Topics in Physical Chemistry
Advanced study of molecular spectroscopy, statistical thermodynamics, chemical dynamics, or the application of quantum mechanics. Prerequisites: CHEM432 or CHEM431 and permission of the instructor.

CHEM495
Independent Research
An opportunity for chemistry and biochemistry majors to gain research experience by joining with a faculty member in study of an area of special interest.

GRADUATE

CHEM530
Topics in Teaching Chemistry
Each time the course is offered, it treats one of the following areas:
• Concepts in Chemistry
 Fundamental ideas of chemistry
• Demonstrations
 Simple experiments which illustrate chemical principles
• Problem-Solving Strategies
 Exploration into the mental processes and logic behind problem solving.
None of the above areas are to occur twice in one student’s program. Prerequisite: CHEM232. Repeatable to 6 credits.

CHEM540
Topics in Chemistry
Independent readings to be chosen in consultation with the instructor. A written report and an oral presentation covering the materials read are required. A minimum of 60 hours of work is required for each credit. Prerequisites: CHEM431. Repeatable to 6 credits.

CLINICAL AND LABORATORY SCIENCES

Halenz Hall, Room 326
(269) 471-3336
cls@andrews.edu
http://www.andrews.edu/ALHE

Faculty
Marcia A. Kilsby, Chair, CLS Program Director
Albert W. McMullen
Richard D. Show, Graduate Program Coordinator

<table>
<thead>
<tr>
<th>Academic Programs</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS in Clinical Laboratory Science (BSCLS)</td>
<td>127</td>
</tr>
<tr>
<td>BS: Allied Health Administration</td>
<td>65</td>
</tr>
<tr>
<td>MS in Clinical Laboratory Science (MSCLS)</td>
<td>32</td>
</tr>
<tr>
<td>Biomedical</td>
<td></td>
</tr>
<tr>
<td>Business and Management</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
</tbody>
</table>

The Department of Clinical and Laboratory Sciences prepares students who are committed to preserving and protecting the dignity of life and death. They promote values and attitudes consistent with the Seventh-day Adventist Christian lifestyle. They strive to instill in students a life-long personal quest for individual growth and fulfillment and for continual excellence in health-care practice.

Clinical Laboratory Science
(Medical Technology)
The degree program includes three years of undergraduate (pre-clinical) studies plus one year (3 semesters) of clinical (professional) education.

Pre-clinical Program. The first three years of undergraduate study include General Education, cognate science, and pre-clinical degree requirements. Program options feature directed elective course work selected in consultation with the faculty advisor according to the student’s career goals and interests.

Clinical (Professional) Program. The year of clinical studies is comprised of lectures and student laboratories on the Berrien Springs campus and clinical practica at an affiliated hospital or clinical laboratory site.

Clinical Experience (Practica). Students work side-by-side with practicing professionals in patient health care during the final portion of the clinical year. Andrews University maintains a number of affiliations with clinical institutions across the country. Student preferences for clinical site assignments are solicited and granted when possible. Final site assignments are made at the discretion of the faculty.

Clinical Year Admission Requirements. An independent admissions process is required for university students who wish to enter clinical studies. Application forms may be obtained from the Department of Clinical and Laboratory Sciences office. Students should complete these applications and return them to the depart-