A Quantitative Lenz’s Law Demonstration

Robert Kingman

Department of Physics
Andrews University
Berrien Springs, Michigan 49104-0380
kingman@andrews.edu

American Association of Physics Teachers
125th National Meeting
August 7, 2002
Boise, Idaho
Acknowledgment

Appreciation is expressed for the assistance of our secretary/departmental assistant, Janine Show, in the collection of the data and critique of these slides.
Outline

- Motivation
- Experimental Setup
- Induced Current and Force on the Coil
- The Coil
- Determination of the Resistance of the Coil
- The Magnet
- Measurements of the Force on the Coil and it’s Velocity
- Comparison of Predicted and Measured Forces
- Conclusion
Motivation

Lenz’s law is often illustrated with qualitative demonstration experiments such as dropping a button magnet through a conducting pipe. Computer data acquisition makes it possible to measure the force on a coil as the secondary effect opposing its motion through a magnetic field.
Experimental Setup

- Coil Magnet
- Force Sensor
- Supporting Wire
- Smart Pulley
- Plywood Frame
- Magnet
- Wire
Experimental Setup
Equipment

- Pasco Science Workshop 750 Interface
- Dell Optiplex Pentium III 550 MHz
- Coil and Plywood Frame
- Magnet
- Dual Range Force Sensor
- Pasco Smart Pulley
- F. W. Bell 4048 Gauss Meter
- Low Friction Pulleys
- Dial Calipers
Voltage Induced in the Coil

\[V = \nu N w B \]

Current Induced in the Coil

\[I = \frac{V}{R} = \frac{\nu N w B}{R} \]

Force on the Coil because of the Induced Current

\[F = I N w B = \frac{(N w B)^2}{R} \nu \]

where \(\nu \) is the coil velocity, \(N \) is the number of coil turns, \(w \) is the width of the coil, \(B \) is the magnetic field strength and \(R \) is the resistance of the coil.
Coil Properties

- **Coil Size:** 7mm by 17 mm
- **Number of Turns:** 50
- **Wire Gauge:** 14

Width Determination

- **Average inside width** 0.0528 m
- **Average outside width** 0.0796 m
- **Average coil width** 0.0662 m
Coil Resistance

Voltage vs. Current for 50 turn 14 gauge coil

R = slope = 0.1902 Ohms Intercept = -0.0026 V
The magnet

A U-shaped steel frame with a 4 inch x 6 inch x 1 inch ceramic magnet on each side.

A magnetic field of about 1750 gauss in an air gap of 1.5 inches.
Y Component of the B Field of the Ceramic Magnets in the frame along the X-Axis
Y Component of the B Field of the Ceramic Magnet in the frame along the Y-Axis
Y Component of the B Field of the Ceramic Magnet in the frame along the Z-Axis
Determination of the Average B Field over the Coil Width

An average of the measurements of the magnetic field over the coil width indicated by * gives the result

\[B_{\text{ave}} = 0.165 \, \text{T} \]
Force and Velocity Data for Run 10

$F_{off} = -0.043 \text{ N}$

$F_{r1} = 0.780 \text{ N}$

$F_1 = 0.823 \text{ N}$

$v_1 = 0.545 \text{ m/s}$

$F_{p1} = 0.844 \text{ N}$

$F_{r2} = 0.800 \text{ N}$

$F_2 = 0.843 \text{ N}$

$v_1 = 0.530 \text{ m/s}$

$F_{p1} = 0.844 \text{ N}$
Determination of Coil Average Width on Each Half

<table>
<thead>
<tr>
<th>Dist</th>
<th>Wout</th>
<th>Win</th>
<th>Wave 2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.07820</td>
<td>0.05332</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.07883</td>
<td>0.05290</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.07886</td>
<td>0.05211</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.07948</td>
<td>0.05198</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.07958</td>
<td>0.05230</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.07963</td>
<td>0.05265</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.07907</td>
<td>0.05232</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.07904</td>
<td>0.05265</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.07949</td>
<td>0.05300</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.08013</td>
<td>0.05330</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.08092</td>
<td>0.05346</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.08000</td>
<td>0.05338</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.08086</td>
<td>0.05367</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.07961</td>
<td>0.05204</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dist</th>
<th>Wout</th>
<th>Win</th>
<th>Wave 8-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ave 2-7</td>
<td>0.07924</td>
<td>0.05238</td>
<td>0.06581</td>
</tr>
<tr>
<td>sd 2-7</td>
<td>0.00037</td>
<td>0.00034</td>
<td></td>
</tr>
<tr>
<td>ave 8-13</td>
<td>0.08007</td>
<td>0.05324</td>
<td>0.06666</td>
</tr>
<tr>
<td>sd 8-13</td>
<td>0.00074</td>
<td>0.00036</td>
<td></td>
</tr>
</tbody>
</table>
Results for 10 Runs

Lenz's Law, Measurement of Reaction Force on a Coil as Magnet Sweeps Past

July 2, 2002

<table>
<thead>
<tr>
<th>Run#</th>
<th>Force of</th>
<th>F1</th>
<th>V1</th>
<th>F1meas</th>
<th>F1pred</th>
<th>F1meas/V1</th>
<th>F2</th>
<th>V2</th>
<th>F2meas</th>
<th>F2pred</th>
<th>F2meas/V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.042</td>
<td>0.769</td>
<td>0.542</td>
<td>0.811</td>
<td>0.8397</td>
<td>1.4963</td>
<td>0.806</td>
<td>0.525</td>
<td>0.848</td>
<td>0.8358</td>
<td>1.6152</td>
</tr>
<tr>
<td>2</td>
<td>-0.045</td>
<td>0.644</td>
<td>0.479</td>
<td>0.689</td>
<td>0.7421</td>
<td>1.4384</td>
<td>0.768</td>
<td>0.502</td>
<td>0.813</td>
<td>0.7992</td>
<td>1.6195</td>
</tr>
<tr>
<td>3</td>
<td>0.011</td>
<td>0.859</td>
<td>0.571</td>
<td>0.848</td>
<td>0.8847</td>
<td>1.4851</td>
<td>0.939</td>
<td>0.576</td>
<td>0.928</td>
<td>0.9170</td>
<td>1.6111</td>
</tr>
<tr>
<td>4</td>
<td>0.007</td>
<td>0.903</td>
<td>0.605</td>
<td>0.896</td>
<td>0.9374</td>
<td>1.4810</td>
<td>1.019</td>
<td>0.630</td>
<td>1.012</td>
<td>1.0030</td>
<td>1.6063</td>
</tr>
<tr>
<td>5</td>
<td>-0.015</td>
<td>0.810</td>
<td>0.529</td>
<td>0.825</td>
<td>0.8196</td>
<td>1.5595</td>
<td>0.843</td>
<td>0.512</td>
<td>0.858</td>
<td>0.8151</td>
<td>1.6758</td>
</tr>
<tr>
<td>6</td>
<td>-0.044</td>
<td>0.797</td>
<td>0.550</td>
<td>0.841</td>
<td>0.8521</td>
<td>1.5291</td>
<td>0.847</td>
<td>0.546</td>
<td>0.891</td>
<td>0.8692</td>
<td>1.6319</td>
</tr>
<tr>
<td>7</td>
<td>-0.047</td>
<td>0.840</td>
<td>0.565</td>
<td>0.887</td>
<td>0.8754</td>
<td>1.5699</td>
<td>0.825</td>
<td>0.515</td>
<td>0.872</td>
<td>0.8199</td>
<td>1.6932</td>
</tr>
<tr>
<td>8</td>
<td>-0.044</td>
<td>0.687</td>
<td>0.488</td>
<td>0.731</td>
<td>0.7561</td>
<td>1.4980</td>
<td>0.744</td>
<td>0.487</td>
<td>0.788</td>
<td>0.7753</td>
<td>1.6181</td>
</tr>
<tr>
<td>9</td>
<td>-0.039</td>
<td>0.801</td>
<td>0.546</td>
<td>0.840</td>
<td>0.8459</td>
<td>1.5385</td>
<td>0.862</td>
<td>0.559</td>
<td>0.901</td>
<td>0.8899</td>
<td>1.6118</td>
</tr>
<tr>
<td>10</td>
<td>-0.043</td>
<td>0.780</td>
<td>0.545</td>
<td>0.823</td>
<td>0.8444</td>
<td>1.5099</td>
<td>0.800</td>
<td>0.530</td>
<td>0.843</td>
<td>0.8438</td>
<td>1.5906</td>
</tr>
</tbody>
</table>

Summary

- **F1pred/V1**: 1.5493
- **F1meas/V1**: 1.5106
- **% error**: 2.50
- **stand dev**: 0.0396

- **F2pred/V2**: 1.5920
- **F2meas/V2**: 1.6274
- **% error**: 2.22
- **stand dev**: 0.0321
Conclusion

- Computer data acquisition provides a means to observe the force on a coil as a result of current induced in it as predicted by Lenz’s law.
- Equipment required is readily available or can easily be constructed.
- Care must be taken to suppress normal modes of oscillation.
- Careful measurements must be made of average magnetic field over the coil width and of the average width of the coil since the forces increases quadratically with these variables.
- Predicted and measured values of the force agree to within errors of about 2.5%, consistent with the standard deviation of the force determined over 10 experimental repetition.
- The force versus time graph provides a visual representation that reinforces the teaching of Lenz’s law.