MATH 168 Precalculus
MATH 168 Precalculus
Consortium of Adventist Colleges and Universities

Self-Paced Format
This course follows a self-paced online format. You have 180 days from your selected start date to complete the course. The last day to withdraw with a full refund is 15 days after your start date.

Instructor Contact
Please refer to course in LearningHub for the teacher contact information.

Communication with the Instructor
It is important to remember that while the Internet is available 24 hours a day, your instructor is not. You can expect that your instructor will respond to e-mail message to you within 2 business days during the week and may not be available to respond on weekends.

Other Assistance

<table>
<thead>
<tr>
<th>Assistance</th>
<th>Contact</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username and password assistance</td>
<td>helpdesk@andrews.edu</td>
<td>(269) 471-6016</td>
</tr>
<tr>
<td>Enrollment and withdrawal questions</td>
<td>sderegister@andrews.edu</td>
<td>(269) 471-6323</td>
</tr>
<tr>
<td>Technical assistance with online courses</td>
<td>dlit@andrews.edu</td>
<td>(269) 471-3960</td>
</tr>
<tr>
<td>Exam requests and online proctoring</td>
<td>sdeexams@andrews.edu</td>
<td>(269) 471-6566</td>
</tr>
<tr>
<td>Distance Student Services - any other questions</td>
<td>sdestudents@andrews.edu</td>
<td>(269) 471-6566</td>
</tr>
</tbody>
</table>

Part 1: Course Information

Course Descriptions
Linear, quadratic, and absolute value equations and inequalities with applications; radical equations; polynomial, rational, exponential, logarithmic, inverse, trigonometric functions; higher order equations; exponential and logarithmic equations; the unit circle, trigonometric identities and equations; Law of Sines and Cosines; vectors in the plane, polar coordinates and graphs; complex numbers and De Moivre’s Theorem; conic sections.

Prerequisite
SAT Math ≥ 510 or ACT Math ≥ 22 or Andrews Math Placement Exam ≥ P3 or MATH 165 or MATH 166

Required Text/Material

MyMathLab Access
- A purchase of a new hardcopy textbook comes with an access code to additional online materials
- Alternatively, you can purchase a standalone code from MyMathLab and use the e-version of the text, DO NOT: use mymathlab.com to sign into the course.
- Click on MyLab & Mastering Tools in LearningHub
- Click on Open MyLab & Mastering
• Following the instructions to put in your access code that you received with your textbook or that you purchased at mymathlab.com
• You are now ready to do your assignments for the course
• Your assignment grades will show up in the gradebook in LearningHub

Recommended Calculator
Texas Instruments two variable scientific TI-30XIIS or the graphing calculator TI-83 or TI-84.

Credit Hour and Commitment
This course is offered for 4 semester credits; therefore it is expected that you will spend 180 total hours on this course. This translates to approximately 12 hours each week. This course has many different assignments, so it is recommended you set aside time for the following:

A recommended weekly schedule to divide your time is provided below.

- Textbook Reading: 2 hours
- Section Video Lectures and Other Multimedia Content: 3 hours
- Journal Posts: 30 minutes
- Homework Assignments: 5 hours 30 minutes
- Quizzes: 30 mins
- Solution-Write Up Assignments: 30 mins

Institutional Outcomes
1.a. Demonstrate competence in intellectual, affective, and practical skills to prepare for careers in the twenty-first century, lifelong learning and service.

1.b. Select and apply intellectual, affective, and practical skills from their field of study to solve meaningful problems. The identified transferable skills for undergraduate students are: information literacy, quantitative literacy, engaging diverse perspectives, ethical reasoning, analytical inquiry in the form of problem solving and creative thinking, communication, wellness and transferable life skills.

2.b. Pursue enduring questions through study in core fields and explore the connections between those fields.

Program Outcomes
1. Demonstrate understanding of human communication from a theoretical basis, in varied contexts and applied to promote change.
2. Critical and creative thinking, and problem-solving skills.
3. Apply the scientific method to our real life.

Student Learning Outcomes
1. To develop a demonstrable understanding of the topics outlined in the course description.
2. To successfully engage in mathematical reasoning, problem solving, and expression.
3. To appreciate how God reveals the beauty and order of the universe through the language of Mathematics.
Part 2: Course Methods and Delivery

Methods of Instruction
Methods of instruction include reading, accessing instructional materials, interacting with your instructor and classmates via discussion posts, MyMathLab assignments, solutions write-up assignments, and mid- and final exams.

Technical Requirements
- Modern computer system including:
 - High speed internet connection (DSL, Cable Modem, LAN)
 - Modern web browser (Google Chrome 19+, Firefox 3.0+, IE 9+, etc) with flash plugin for viewing videos
 - Sound card and speakers/headphones for listening to videos
 - Adobe Acrobat Reader (free from http://www.adobe.com/)
 - Graphing Calculator

LearningHub Access
This course is delivered online through LearningHub at http://learninghub.andrews.edu

Your username and password are your Andrews username and password. You need to activate your username and password to access LearningHub.

Please do this online here:
https://vault.andrews.edu/vault/pages/activation/information.jsp if you haven’t already. If you need assistance, call or email us: (296) 471-6016 or mailto:helpdesk@andrews.edu.

If you need technical assistance at any time during the course, or to report a problem with LearningHub, please email dlit@andrews.edu or call (269) 471-3960.

Part 3: Course Requirements

Important Note: This online class is not self-paced. You can arrange your schedule flexibly during each week, but you MUST participate each week. You are expected to “show up” to class by interacting in the discussion forums a minimum of two times per week. In addition, assignments are due regularly each week. Adequate Internet access during the duration of the course is critical for your participation. To be successful, plan to spend time daily on the course.

Assessment Descriptions
All assignments for this course will be submitted electronically through Moodle and MyMathLab unless otherwise instructed. Assignments and exams must be completed in the order noted on the schedule. Feedback on assignments and exams will be provided in a timely manner, as outlined below.
Pearson/MyMathLab Homework Assignments
Feedback is provided instantaneously by the MyMathlab system. If you have questions or believe that you have entered a correct solution and it is not being accepted, please email your instructor.

Solution Write-Up Assignments
Your instructor will grade your write-up assignments and post your final score, along with comments on any improvements you should make to your solution writing, within one week of the date on which you submit the assignment. These assignments must be scanned, not photographed, and uploaded in to learning hub.

Journal Posts/Faith Integration Discussion Questions
Feedback on your journal posts will be provided within one week of your submission.

Exams and Quizzes
Quizzes and exams will be graded instantly within the MyMathlab system.

Exam scores will be posted, but the exams themselves will not be returned. You may contact your instructor for additional feedback on your exam performance.

Non-Graded Activities
Even though these activities do not count directly towards your grade, they are important steps in the learning process.

Section Video Lectures and Textbook Readings
Before attempting the assignments for a given section, you must read the associated textbook section and watch the associated section video lectures. Mathematics textbooks should be read with pencil and paper so that you can work your way through the examples as you read. These lessons are equivalent to a lecture in a face-to-face course. They allow your instructor to highlight the most important parts of each section, give useful hints or shortcuts, and provide you with examples in addition to those given in the text.
Supplementary Multimedia Content
There are several supplementary multimedia resources and learning aids embedded within MyMathLab. These include animations, test preparation videos, interactive figures, PowerPoint slides, etc. Please take advantage of these resources as they enrich the learning experience.

Graded Course Activities
These assignments give you the opportunity to demonstrate mastery of the course material. They are divided into several categories, each with a specific purpose and weight.

MyMathLab Homework Assignments (15% of your grade)
Mathematics requires your full engagement. Reading your textbook and watching video examples is typically not enough for you to master the material. As an athlete must spend hours practicing in order to excel at his or her sport, so you must practice your precalculus skills if you wish to do well. The MyMathLab online homework system will help you do just that by checking your answers and giving you instantaneous feedback. After reading the material and watching the section video lectures for each lesson, attempt the homework problems. There are several support systems embedded within the MyMathLab system that can give you real time help as you work on a problem. Please make use of them. Don’t worry if you get some problems wrong the first time. In most cases you will have an unlimited number of attempts on each problem. However, it is not to your advantage to guess at the answer either. If MyMathLab marks one of your answers wrong, go back and check your work or seek assistance from the instructor.

Solution Write-Up Assignments (10% of your grade)
While MyMathLab can check your final answer, it does not check your solution process. In order to do well on the exams, you must not only be able to find the right answer, but express your solution using correct mathematical notation. You will be required to scan your work and upload it to Moodle.

Journal Posts (5% of your grade)
Several times during the term you will be asked to respond to a journal question. These questions promote the integration of faith and learning by asking you to reflect on the connections between mathematics and spiritual issues. The following rubric will be used to evaluate your responses.

<table>
<thead>
<tr>
<th>Response is:</th>
<th>Excellent (5)</th>
<th>Average (3)</th>
<th>Below Average (1)</th>
<th>Unacceptable (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>well thought out, addressing the question carefully and completely.</td>
<td>reasonable, but does not address all aspects of the question, addresses them carelessly.</td>
<td>minimal, showing little thought and missing many question aspects completely.</td>
<td>off topic or completely missing</td>
</tr>
</tbody>
</table>

Quizzes (10% of your grade)
There is a quiz after each chapter. It is administered within MyMathLab and is grade instantly. You will be allowed 30 minutes to complete each quiz.

Midterm Exam (25% of your grade)
The midterm exam covers the material from chapters 1-4 of your text. The exam is administered by a proctor (see part 5 below) and will be taken online in MyMathlab. You may use a
calculator for the midterm exam. You must show all steps in your solutions. Solutions lacking neatness and/or proper evidence will be discounted at the instructor's discretion. You will be allowed 150 minutes to complete the midterm.

Final Exam (35% of your grade)
The final exam is comprehensive, emphasizing the material from the second half of the course, chapters 6-8. The format of the final is similar to that of the midterm. **You will need a simple scientific calculator with trigonometric function capabilities.** The rules for showing your work still apply.

Exams
You are allowed 150 minutes to complete the midterm exam and the final exam. You are allowed to use your calculator for the both exams.

Follow prompts in the course space to set up your exam session. In each module that contains an exam, you will find what to review and what materials are allowed (if any) during the exam.

Please read the important information about taking exams and how online proctoring works at www.andrews.edu/distance/students/exams.html. The follow the instructions that apply to your situation on the exam request form to set up your exam session.

Please note that an exam code is never released to the student. All students must present photo identification before each exam session. Exams can only be proctored after a deadline with approval directly from the instructor to the Testing Center (sdeexams@andrews.edu or 269-471-6566). No exam is returned to the student for review. The instructor, to aid studying for future exams can provide feedback on exams.
Suggested schedule for completion in 8 weeks:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lessons</th>
<th>Readings and Videos</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro</td>
<td>These items will need to be completed before you will have access to the rest of the course</td>
<td>Orientation, Course Overview, Introductions, Academic Integrity</td>
<td>Schedule, Introduce Yourself, Academic Integrity Quiz, Academic Integrity Statement</td>
</tr>
<tr>
<td>1</td>
<td>Chapter 1</td>
<td>1.1 Graphs and Graphing Utilities, 1.2 Linear Equations and Rational Equations, 1.3 Models and Applications, 1.4 Complex Numbers, 1.5 Quadratic Equations, 1.6 Other Types of Equations, 1.7 Linear Inequalities and Absolute Value Inequalities</td>
<td>HW 1-1, HW 1-2, HW 1-3, HW 1-4, Journal Post #1, HW 1-5, HW 1-6, HW 1-7, Chapter 1 Quiz, Chapter 1 Solution Write Up</td>
</tr>
<tr>
<td>2</td>
<td>Chapter 2</td>
<td>2.1 Basics of Functions and Their Graphs, 2.2 More on Functions and Their Graphs, 2.3 Linear Functions on Slope, 2.4 More on Slope, 2.5 Transformations of Functions, 2.6 Combinations of Functions; Composite Functions, 2.7 Inverse Functions, 2.8 Distance and Midpoint Formulas; Circles</td>
<td>HW 2-1, HW 2-2, HW 2-3, HW 2-4, Journal Post #2, HW 2-5, HW 2-6, HW 2-7, HW 2-8, Chapter 2 Quiz, Chapter 2 Solution Write Up</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 3</td>
<td>3.1 Quadratic Functions, 3.2 Polynomial Functions and Their Graphs, 3.3 Dividing Polynomials; Remainder and Factor Theorems, 3.4 Zeros of Polynomial Functions, 3.5 Rational Functions and Their Graphs, 3.6 Polynomial and Rational Inequalities, 3.7 Modeling Using Variation</td>
<td>HW 3-1, HW 3-2, HW 3-3, Journal Post #3, HW 3-4, HW 3-5, HW 3-6, HW 3-7, Chapter 3 Quiz, Chapter 3 Solution Write Up</td>
</tr>
<tr>
<td>4</td>
<td>Chapter 4</td>
<td>4.1 Exponential Functions, 4.2 Logarithmic Functions, 4.3 Properties of Logarithms, 4.4 Exponential and Logarithmic Equations, 4.5 Exponential Growth and Decay; Modeling Data</td>
<td>HW 4-1, HW 4-2, HW 4-3, HW 4-4, HW 4-5, Chapter 4 Quiz, Journal Post #4, Chapter 4 Solution Write Up</td>
</tr>
</tbody>
</table>

PROCTORED Midterm Exam
<table>
<thead>
<tr>
<th>Week</th>
<th>Lessons</th>
<th>Readings and Videos</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| 5 | Chapter 5 | 5.1 Angles and Radian Measure
5.2 Right Triangle Trigonometry
5.3 Trigonometric Functions of Any Angle
5.4 Trigonometric Functions of Real Numbers; Periodic Functions
5.5 Graphs of Sine and Cosine Functions
5.6 Graphs of Other Trigonometric Functions
5.7 Inverse Trigonometric Functions
5.8 Applications of Trigonometric Functions | HW 5-1
HW 5-2
HW 5-3
HW 5-4
HW 5-5
HW 5-6
HW 5-7
HW 5-8
Chapter 5 Quiz
Chapter 5 Solution Write Up |
| 6 | Chapter 6 | 6.1 Verifying Trigonometric Identities
6.2 Sum and Difference Formulas
6.3 Double-Angle, Power-Reducing and Half-Angle Formulas
6.4 Product-to-Sum and Sum-to-Product Formulas
6.5 Trigonometric Equations | HW 6-1
HW 6-2
HW 6-3
HW 6-4
HW 6-5
Chapter 6 Quiz
Chapter 6 Solution Write Up |
| 7 | Chapter 7 | 7.1 The Law of Sines
7.2 The Law of Cosines
7.3 Polar Coordinates
7.4 Graphs of Polar Equations
7.5 Complex Numbers in Polar Form; DeMoivre’s Theorem
7.6 Vectors
7.7 The Dot Product | HW 7-1
HW 7-2
HW 7-3
Journal Post #5
HW 7-4
HW 7-5
HW 7-6
HW 7-7
Chapter 7 Quiz
Chapter 7 Solution Write Up |
| 8 | Chapter 8 | 8.1 Systems of Linear Equations in Two Variables
8.2 Systems of Linear Equations in Three Variables
8.3 Partial Fractions
8.4 Systems of Nonlinear Equations in Two Variables
8.5 Systems of Inequalities
8.6 Linear Programming | HW 8-1
HW 8-2
HW 8-3
HW 8-4
HW 8-5
HW 8-6
Chapter 8 Quiz
Chapter 8 Solution Write Up |

PROCTORED FINAL EXAM
Suggested schedule for completion in 16 weeks:

<table>
<thead>
<tr>
<th>Week</th>
<th>Lessons</th>
<th>Readings and Videos</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| Intro | These items will need to be completed before you will have access to the rest of the course | Orientation
Course Overview
Introductions
Academic Integrity | Schedule
Introduce Yourself
Academic Integrity Quiz
Academic Integrity Statement |
| 1 | Chapter 1 – Part 1 | 1.1 Graphs and Graphing Utilities
1.2 Linear Equations and Rational Equations
1.3 Models and Applications
1.4 Complex Numbers | HW 1.1
HW 1.2
HW 1.3
HW 1.4
Journal Post #1 |
| 2 | Chapter 1 – Part 2 | 1.5 Quadratic Equations
1.6 Other Types of Equations
1.7 Linear Inequalities and Absolute Value Inequalities | HW 1.5
HW 1.6
HW 1.7
Chapter 1 Quiz
Chapter 1 Solution Write Up |
| 3 | Chapter 2 – Part 1 | 2.1 Basics of Functions and Their Graphs
2.2 More on Functions and Their Graphs
2.3 Linear Functions on Slope
2.4 More on Slope | HW 2.1
HW 2.2
HW 2.3
HW 2.4
Journal Post #2 |
| 4 | Chapter 2 – Part 2 | 2.5 Transformations of Functions
2.6 Combinations of Functions; Composite Functions
2.7 Inverse Functions
2.8 Distance and Midpoint Formulas; Circles | HW 2.5
HW 2.6
HW 2.7
HW 2.8
Chapter 2 Quiz
Chapter 2 Solution Write Up |
| 5 | Chapter 3 – Part 1 | 3.1 Quadratic Functions
3.2 Polynomial Functions and Their Graphs
3.3 Dividing Polynomials; Remainder and Factor Theorems | HW 3.1
HW 3.2
HW 3.3
Journal Post #3 |
| 6 | Chapter 3 – Part 2 | 3.4 Zeros of Polynomial Functions
3.5 Rational Functions and Their Graphs
3.6 Polynomial and Rational Inequalities
3.7 Modeling Using Variation | HW 3.4
HW 3.5
HW 3.6
HW 3.7
Chapter 3 Quiz
Chapter 3 Solution Write Up |
| 7 | Chapter 4 | 4.1 Exponential Functions
4.2 Logarithmic Functions
4.3 Properties of Logarithms
4.4 Exponential and Logarithmic Equations
4.5 Exponential Growth and Decay; Modeling Data | HW 4.1
HW 4.2
HW 4.3
HW 4.4
HW 4.5
Chapter 4 Quiz
Chapter 4 Solution Write Up
Journal Post #4 |
<p>| 8 | PROCTORED Midterm Exam | | |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Lessons</th>
<th>Readings and Videos</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| 9 | Chapter 5 – Part 1 | 5.1 Angles and Radian Measure
 5.2 Right Triangle Trigonometry
 5.3 Trigonometric Functions of Any Angle | HW 5.1
 HW 5.2
 HW 5.3 |
| 10 | Chapter 5 – Part 2 | 5.4 Trigonometric Functions of Real Numbers; Periodic Functions
 5.5 Graphs of Sine and Cosine Functions
 5.6 Graphs of Other Trigonometric Functions
 5.7 Inverse Trigonometric Functions
 5.8 Applications of Trigonometric Functions | HW 5.4
 HW 5.5
 HW 5.6
 HW 5.7
 HW 5.8
 Chapter 5 Quiz
 Chapter 5 Solution Write Up |
| 11 | Chapter 6 – Part 1 | 6.1 Verifying Trigonometric Identities
 6.2 Sum and Difference Formulas
 6.3 Double-Angle, Power-Reducing and Half-Angle Formulas | HW 6.1
 HW 6.2
 HW 6.3 |
| 12 | Chapter 6 – Part 2 | 6.4 Product-to-Sum and Sum-to-Product Formulas
 6.5 Trigonometric Equations | HW 6.4
 HW 6.5
 Chapter 6 Quiz
 Chapter 6 Solution Write Up |
| 13 | Chapter 7 – Part 1 | 7.1 The Law of Sines
 7.2 The Law of Cosines
 7.3 Polar Coordinates | HW 7.1
 HW 7.2
 HW 7.3
 Journal Post #5 |
| 14 | Chapter 7 – Part 2 | 7.4 Graphs of Polar Equations
 7.5 Complex Numbers in Polar Form; DeMoivre’s Theorem
 7.6 Vectors
 7.7 The Dot Product | HW 7.4
 HW 7.5
 HW 7.6
 HW 7.7
 Chapter 7 Quiz
 Chapter 7 Solution Write Up |
| 15 | Chapter 8 | 8.1 Systems of Linear Equations in Two Variables
 8.2 Systems of Linear Equations in Three Variables
 8.3 Partial Fractions
 8.4 Systems of Nonlinear Equations in Two Variables
 8.5 Systems of Inequalities
 8.6 Linear Programming | HW 8.1
 HW 8.2
 HW 8.3
 HW 8.4
 HW 8.5
 HW 8.6
 Chapter 8 Quiz
 Chapter 8 Solution Write Up |
| 16 | PROCTORED FINAL EXAM | | |

Completing Assignments

All assignments for this course will be submitted electronically through LearningHub unless otherwise instructed. Assignments and exams must be completed within **180 days** of course registration date. This timeframe is subject to change depending on deadlines set by your home institution.
Part 4: Grading Policy

Graded Course Activities

<table>
<thead>
<tr>
<th>Percent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Homework</td>
</tr>
<tr>
<td>10</td>
<td>Quizzes</td>
</tr>
<tr>
<td>10</td>
<td>Solution Write-Ups</td>
</tr>
<tr>
<td>5</td>
<td>Journal Posts</td>
</tr>
<tr>
<td>25</td>
<td>Midterm Exam</td>
</tr>
<tr>
<td>35</td>
<td>Final Exam</td>
</tr>
<tr>
<td>100</td>
<td>Total Percent Possible</td>
</tr>
</tbody>
</table>

Viewing Grades in Moodle
- Click into the course.
- Click on the Grades link in Administration Block to the left of the main course page.

Letter Grade Assignment

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93-100%</td>
</tr>
<tr>
<td>A-</td>
<td>90-92%</td>
</tr>
<tr>
<td>B+</td>
<td>88-89%</td>
</tr>
<tr>
<td>B</td>
<td>83-87%</td>
</tr>
<tr>
<td>B-</td>
<td>80-82%</td>
</tr>
<tr>
<td>C+</td>
<td>78-79%</td>
</tr>
<tr>
<td>C</td>
<td>73-77%</td>
</tr>
<tr>
<td>C-</td>
<td>70-72%</td>
</tr>
<tr>
<td>D</td>
<td>60-69%</td>
</tr>
<tr>
<td>F</td>
<td>0-59%</td>
</tr>
</tbody>
</table>

Part 5: Course Policies

Withdrawal and Incomplete Policies
The current withdrawal policy can be found online at https://www.andrews.edu/distance/students/gradplus/withdrawal.html. The incomplete policy is found online at http://www.andrews.edu/weblmsc/moodle/public/incompletes.html.

Maintain Professional Conduct Both in the Classroom and Online
The classroom is a professional environment where academic debate and learning take place. Your instructor will make every effort to make this environment safe for you to share your opinions, ideas, and beliefs. In return, you are expected to respect the opinions, ideas, and beliefs of other students—both in the face-to-face classroom and online communication. Students have the right and privilege to learn in the class, free from harassment and disruption.
Academic Accommodations
Students who require accommodations may request an academic adjustment as follows:
1. Read the Andrews University Disability Accommodation information at https://www.andrews.edu/services/sscenter/disability/
2. Download and fill in the disability form at http://www.andrews.edu/services/sscenter/disability/accommodationsreqform.pdf. Preferably type answers. To save a digital copy, 1) print to file and save or 2) print and scan. Email the completed form and disability documentation (if any) to success@andrews.edu or fax it to (269) 471-8407.
3. Email sdestudents@andrews.edu to inform the School of Distance Education that a disability has been reported to Student Success.

Commitment to Integrity
As a student in this course, and at the university, you are expected to maintain high degrees of professionalism, commitment to active learning, participation in this course, and integrity in your behavior in and out of this online classroom.

Commitment to Excellence
You deserve a standing ovation based on your decision to enroll in, and effectively complete this course. Along with your pledge of “commitment to Integrity” you are expected to adhere to a “commitment to excellence.” Andrews University has established high academic standards that will truly enhance your writing and communication skills across the disciplines and in diverse milieu with many discourse communities in the workplace.

Honesty
Using the work of another student or allowing work to be used by another student jeopardizes not only the teacher-student relationship but also the student’s academic standing. Lessons may be discussed with other students, tutors may help to guide a student’s work, and textbooks, encyclopedias and other resource materials may be used for additional assistance, but the actual response must be the student’s own work. A student who gives information to another student to be used in a dishonest way is equally guilty of dishonesty.

Any violation of this policy will be taken before the Higher Education Academic and Curriculum Committee for appropriate punitive action.