Writing in Math Classes

Teachers on all levels are realizing the value of writing across the curriculum. William Zinsser declared that “writing is how we think our way into a subject and make it our own.” Traditionally, writing has been used for communicating ideas, but it is increasingly being seen as a way to learn. Through writing, students can clarify their ideas, make connections with prior learning, and gain greater understanding. Writing makes students think and helps them construct their own sense of what they are studying. But while writing is often integrated into science, history, and religion classes, it is not often considered as a way to teach mathematics.

Why Add Writing to Math Class?

Writing helps students develop a conceptual understanding of math. It helps them focus on the “why” of math as well as the “how.” When they can write clearly about a concept, it is likely that they understand it. Also, writing allows students to express mathematical ideas in a way that may be more comfortable for them. I remember several years ago watching a statistics teacher deal with an angry, anxious student. The student said, “You go so fast, and all those symbols confuse me. Can you write it another way?”

After a dumbfounded look, the teacher said, “Sure,” and wrote the explanation using words only—no symbols. The student visibly relaxed, and throughout the rest of the term was allowed to use written text whenever she chose.

In math classes, the communication skill most often used is listening. Students are not encouraged to talk, and when they are asked to explain a problem verbally or work it on the chalkboard, they often feel panic-stricken. Writing allows students to express their ideas

Traditionally, writing has been used for communicating ideas, but it is increasingly being seen as a way to learn.

BY SHIRLEY FREED
Writing helps students develop a conceptual understanding of math.

me feel . . . or A good experience I had in math was . . . or When I learned fractions, I . . . can help students sort out their feelings about math. Since cognition and emotion are directly connected, this can help decrease students’ anxiety.

4. Students can explain why they made a mistake or what confused them. “I am pretty sure I understand about whole numbers, but decimals, I am a bit confused about them. I understand about place-value. I don’t understand about the base-ten system,” wrote one student in a personal journal.

5. Students can identify what they know about a topic before beginning a lesson or unit. This helps the teacher know what to emphasize and saves time. If the level of understanding is identified before teaching, students can be led to deeper understanding. In their analysis of a popular math series, Engelmann, Carline, and Steely wrote that 76% of the material in grade 6 is review, 80% in grade 7, and 82% in grade 8. Time spent on review is wasted if students have a good working knowledge of the topic.

6. After a lesson, students can summarize what they learned and tell how they apply it.

7. Students can make suggestions for the teacher. Following are some journal entries by students:

“Of course to help me I can see why it could just go slower.”

“I’m having problems understanding. You are teaching me too much stuff and I’m getting confused.”

Some Formats and Strategies

1. Poems require a creative process that adds interest and humor to math classes.

a. Limericks: a light humorous or nonsensical verse of five anaesthetic lines, usually with the rhyme scheme aabba. Following is an example from a seventh-grade class:

There once was a little red hen
Who couldn’t multiply by 10.
“Move the decimal,” I said,
“To the right, Little Red.
One place, then you’re done.”

b. Concrete poems: lines and words in the shape of the subject. (See Figure 1.)

c. Cinquains: short, simple poems

Figure 1

Parallelograms have opposite sides

Parallelograms have opposite sides

SYMMETRY

parallels

parallel and equal

parallel and equal

Parallelograms have opposite sides

Fractions

Simple, Difficult

Reducing, Inverting, Multiplying

Take too much time

Portions

Cinquains have a definite form. The first line is a one-word title (usually a
noun). The second line is a two-word description of the topic (usually two adjectives). The third line is three words that express action about the topic (usually three “ing” words). The fourth line is a four-word phrase showing feeling for the topic. The last line, which is a one-word synonym, restates the essence of the topic.9

2. Rap: a poem with a strong sense of beat or rhythm.
When you spin a spinner,
Which number is best?
Will one come up
More than all the rest?

When you toss a coin,
Which side do you call?
Is “heads” or “tails”
Most likely to fall?

Is it all just luck?
Is it nothing but chance?
Or is there a way
To tell in advance?10

Following are guidelines for writing a rap: Establish a beat! (clap, snap fingers, tape a beat from a portable keyboard, use a drum machine, etc.) Brainstorm a list of key concept words that you want your students to learn about a particular subject (include concepts, setting, facts, events, descriptive words, etc.). From the list, choose specific concept words and establish possible rhymers for them. Write your rhyme. When it's put to a beat, it becomes a rap!

3. Letters: A letter written to a friend, relative, or teacher can combine reflective and communicative writing. “The letter can describe what they have learned or what is causing them difficulty, what they would like to learn about, or how they feel about a particular topic or mathematics in general.”11

4. Story Problems: Students love to write story problems. Writing in pairs is often more effective than writing alone, as partners stimulate and challenge each other’s thinking. Exchanging questions with another pair of students and then returning them to the original pair for grading can be fun. To increase students’ ability in writing story problems, students. (See figure 2.)

5. Word Webs: This is a visual, thought-organizing, and clarifying strategy. Students generate words associated with a topic and then organize them in a web that connects related ideas. This approach works well for use by pairs of students.

6. Possible Sentences:13 This strategy activates prior knowledge and introduces or verifies vocabulary skills. Following are guidelines to writing Possible Sentences:
 a. Identify important terms.
 b. List the terms on the blackboard and pronounce them as needed.
 c. Have students create a sentence using two of the terms in a way that they think the text might use them.
 d. Record students’ sentences on the chalkboard.
 e. Read the text to verify students’ use of the terms.
 f. Revise sentences and have students copy corrected sentences into their notes.

 Steps e and f could easily be done by

 b. Another way to use questions is called “Top It Off.”14 Ask the students to write questions pertaining to the example given. For example, if you give students the coordinates 0 and -5, they might create these questions: On which axis will the ordered pair be graphed? Which number is the Y-coordinate?

 c. Many children’s books lend themselves to student-constructed questions. One such book is Will We Miss Them: Endangered Species, by Alexander Wright. The text is rich with numerical information, e.g. “A newborn blue whale calf weighs 2,000 pounds and gains 200 pounds a day every day for the first year.” The question automatically arises, “How much will it weigh on its first birthday?”

7. Questions: Having students write their own questions is a way to check for conceptual understanding.
 a. Give students the answers and ask them to write the questions. (e.g. Write a question whose answer is 1,328. Write an equation with roots of +2 and -3.)
Writing allows students to express mathematical ideas in a way that may be more comfortable for them.

in the “What students can write about” section.

d. Experiment with different formats:
(1) Divide the page in half vertically; have students write in the left-hand column, and you can respond in the right-hand column. (2) Divide each page in half horizontally. Students are to write thoughts and feelings in the top half, and describe problem areas in the bot-
tom half of the page.

In summary, the Curriculum and Evaluation Standards for School Mathematics lists five general goals for all students: that they (1) learn to value mathematics, (2) become confident in their ability to do mathematics, (3) become mathematical problem solvers, (4) learn to communicate mathematically, and (5) learn to reason mathematically. Using writing in mathematics class can make these goals more achievable.

Shirley Freed is an Associate Professor in the School of Education at Andrews University, Berrien Springs, Michigan. She has taught math to all grades (1–12) and remedial math in college. She supervised the elementary math classes at Pakistan Adventist Seminary for six years. Currently she teaches math methods to elementary education majors.

ADDITIONAL READING

Children’s Literature

Aker, Suzanne, What Comes in 2’s, 3’s, and 4’s? New York: Simon & Schuster, 1990. (multiplication)

Carle, Eric, Rooster’s Off to See the World. Saxonville: Picture Book Studio Limited, 1992. (subtraction)

Students can share their feelings through writing.

Sloat, Teri, From One to One Hundred. New York: Dutton Children's Books, 1991. (counting multiples of 10)

Testa, Fulvio, If You Take a Pencil. New York: Dial Books for Young Readers, 1982. (counting)

REFERENCES
2. L. D. Miller, “Writing to Learn Mathematics,” Mathematics Teacher 84-7 (October 1991), pp. 517
7. Gordon and Macinnis, p. 40
9. T. Estes and J. Vaughan, Reading and Learning in the Content Classroom (Boston, Mass.: Allyn and Bacon, 1985), pp. 184, 185
12. Mayotte and Moore
14. C. Bachman, Reading, Writing, and Thinking Math Activities: Presented at the Capital Consortium Reading to Learn Conference, Richmond, Virginia, April 1989